Biological Importance, Therapeutic Benefit, and Medicinal Importance of Flavonoid, Cirsiliol for the Development of Remedies against Human Disorders

Article ID: e240821195804 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Phytochemicals are pure chemical compounds found to be present in different plants part such as leaves, fruit, flower, seeds and the whole plant. These pure plant-based chemicals are having power to treat all disorders of the human beings and other higher animal species on earth. Flavonoidal compounds are responsible for the attractive color and important biological properties of plant material. Flavonoids are having a potential role in the treatment of numerous health complications of human beings. Antioxidant properties are one of the best pharmacological properties of all classes of flavonoidal compounds. A significant amount of these flavonoidal compounds are needed in our daily routine diet.

Methods: Cirsiliol also called 5,3′,4′-trihydroxy-6,7-dimethoxyflavone is a flavonoidal class chemical found to be present in different plants including Salvia guaranitica. Various literature databases have been searched to know the biological potential of the cirsiliol in medicine. Different scientific research data of cirsiliol have been collected from various literature sources and analyzed in the present work. Detail pharmacological activities of cirsiliol in medicine have been evaluated in the present work through literature data analysis of various scientific research works. However analytical data has also been collected and analyzed in the present work through different literature sources.

Results: From the collected data, it was found that cirsiliol is present in the plants such as Artemisia campestris, Artemisia scoparia, Centaurea jacea, Centaurea phyllocephala, Crossostephium chinense, Dracocephalum tanguticum, Eupatorium lindleyanum, Hyptis pectinata, and Iris germanica. Pharmacological data analysis revealed the biological importance of cirsiliol against cancer, inflammatory diseases, obesity-related insulin resistance, and respiratory disorders. However, the biological potential on ileum, benzodiazepine receptor, arachidonate 5-lipoxygenase, and xanthine oxidase has also been well summarized in the present investigation. High-performance liquid chromatography, bioactivity-guided isolation techniques, UPLC-ESI-MS/MS, LCMS and HPLC, and other forms of chromatographic techniques have been applicable for the analysis of cirsiliol in the various plants material.

Conclusion: The present investigation revealed the biological importance and therapeutic benefit of cirsiliol in medicine for the development of better remedies against human disorders.

Keywords: Therapeutic potential, medicinal importance, cirsiliol, natural remedies, human disorders, analytical databases.

[1]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104(2), 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[2]
Karioti, A.; Bilia, A.R.; Skaltsa, H. A rich source of polyacylated flavonoid glucosides. Food Chem., 2010, 123(1), 131-142.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.020]
[3]
Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition, 2002, 18(1), 75-81.
[http://dx.doi.org/10.1016/S0899-9007(01)00695-5] [PMID: 11827770]
[4]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[5]
Williams, R.J.; Spencer, J.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med., 2012, 52(1), 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[6]
Cook, N. Flavonoids? Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Eur. Ceram. Soc., 1996, 7(2), 66-76.
[7]
Thamizhiniyan, V.; Vijayaraghavan, K.; Subramanian, S.P. Gossypin, a flavonol glucoside protects pancreatic beta-cells from glucotoxicity in streptozotocin-induced experimental diabetes in rats. Biomed Prev Nutr, 2012, 2(4), 239-245.
[http://dx.doi.org/10.1016/j.bionut.2012.07.002]
[8]
Gautam, P.; Flora, S.J.S. Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition, 2010, 26(5), 563-570.
[http://dx.doi.org/10.1016/j.nut.2009.06.008] [PMID: 19647414]
[9]
Yang, B.; Halttunen, T.; Raimo, O.; Price, K.; Kallio, H. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem., 2009, 115(2), 657-664.
[http://dx.doi.org/10.1016/j.foodchem.2008.12.073]
[10]
Rusak, G.; Gutzeit, H.O.; Müller, J.L. Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutr. Res., 2005, 25(2), 143-155.
[http://dx.doi.org/10.1016/j.nutres.2004.12.003]
[11]
Fernández, S.P.; Wasowski, C.; Loscalzo, L.M.; Granger, R.E.; Johnston, G.A.R.; Paladini, A.C.; Marder, M. Central nervous system depressant action of flavonoid glycosides. Eur. J. Pharmacol., 2006, 539(3), 168-176.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.004] [PMID: 16698011]
[12]
Wasowski, C.; Marder, M. Flavonoids as GABAA receptor ligands: The whole story? J. Exp. Pharmacol., 2012, 4, 9-24.
[PMID: 27186113]
[13]
Oliveira, A.P.; Silva, A.L.N.; Viana, L.G.F.C.; Silva, M.G.; Lavor, É.M.; Oliveira-Júnior, R.G.; Alencar-Filho, E.B.; Lima, R.S.; Mendes, R.L.; Rolim, L.A.; Anjos, D.S.C.; Ferraz, L.R.M.; Rolim-Neto, P.J.; Silva, M.F.S.; Pessoa, C.D.Ó.; Almeida, J.R.G.S. β-Cyclodextrin complex improves the bioavailability and antitumor potential of cirsiliol, a flavone isolated from Leonotis nepetifolia (Lamiaceae). Heliyon, 2019, 5(10), e01692.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01692] [PMID: 31720439]
[14]
Prasad, P.; Vasas, A.; Hohmann, J.; Bishayee, A.; Sinha, D. Cirsiliol suppressed epithelial to mesenchymal transition in b16f10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. Int. J. Mol. Sci., 2019, 20(3), 608.
[http://dx.doi.org/10.3390/ijms20030608] [PMID: 30708951]
[15]
de Oliveira, A.P.; Borges, I.V.; Pereira, E.C.V.; Feitosa, T.A.; Dos Santos, R.F.; de Oliveira-Junior, R.G.; Rolim, L.A.; Cordeiro Viana, L.G.F.; Ribeiro, L.A.A.; Santos, A.D.D.C.; Rolim-Neto, P.J.; Almeida, J.R.G.D.S. Influence of light intensity, fertilizing and season on the cirsiliol content, a chemical marker of Leonotis nepetifolia (Lamiaceae). PeerJ, 2019, 7, e6187.
[http://dx.doi.org/10.7717/peerj.6187] [PMID: 30671296]
[16]
Kang, J.; Kim, E.; Kim, W.; Seong, K.M.; Youn, H.; Kim, J.W.; Kim, J.; Youn, B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of Epithelial-Mesenchymal Transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J. Biol. Chem., 2013, 288(38), 27343-27357.
[http://dx.doi.org/10.1074/jbc.M113.490482] [PMID: 23902763]
[17]
Androutsopoulos, V.P.; Li, N.; Arroo, R.R.J. The methoxylated flavones eupatorin and cirsiliol induce CYP1 enzyme expression in MCF7 cells. J. Nat. Prod., 2009, 72(8), 1390-1394.
[http://dx.doi.org/10.1021/np900051s] [PMID: 19601638]
[18]
Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol. Pharm. Bull., 2002, 25(7), 875-879.
[http://dx.doi.org/10.1248/bpb.25.875] [PMID: 12132661]
[19]
Tsukada, T.; Nakashima, K.; Shirakawa, S. Arachidonate 5-lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell lines. Biochem. Biophys. Res. Commun., 1986, 140(3), 832-836.
[http://dx.doi.org/10.1016/0006-291X(86)90709-6] [PMID: 3778487]
[20]
Forgo, P.; Zupkó, I.; Molnár, J.; Vasas, A.; Dombi, G.; Hohmann, J. Bioactivity-guided isolation of antiproliferative compounds from Centaurea jacea L. Fitoterapia, 2012, 83(5), 921-925.
[http://dx.doi.org/10.1016/j.fitote.2012.04.006] [PMID: 22537643]
[21]
Yanagimichi, M.; Nishino, K.; Sakamoto, A.; Kurodai, R.; Kojima, K.; Eto, N.; Isoda, H.; Ksouri, R.; Irie, K.; Kambe, T.; Masuda, S.; Akita, T.; Maejima, K.; Nagao, M. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem. Biophys. Rep., 2020, 25, 100882.
[http://dx.doi.org/10.1016/j.bbrep.2020.100882] [PMID: 33392396]
[22]
Lim, H.J.; Jang, H.J.; Bak, S.G.; Lee, S.; Lee, S.W.; Lee, K.M.; Lee, S.J.; Rho, M.C. In vitro inhibitory effects of cirsiliol on IL-6-induced STAT3 activation through anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2019, 29(13), 1586-1592.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.053] [PMID: 31060888]
[23]
Ferrándiz, M.L.; Nair, A.G.; Alcaraz, M.J. Inhibition of sheep platelet arachidonate metabolism by flavonoids from Spanish and Indian medicinal herbs. Pharmazie, 1990, 45(3), 206-208.
[PMID: 2116628]
[24]
Ferrándiz, M.L.; Alcaraz, M.J. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions, 1991, 32(3-4), 283-288.
[http://dx.doi.org/10.1007/BF01980887] [PMID: 1650522]
[25]
Metoui, R.; Bouajila, J.; Znati, M.; Cazaux, S.; Neffati, M.; Akrout, A. Bioactive flavones isolated from Tunisian Artemisia campestris L. Leaves. Cell. Mol. Biol., 2017, 63(11), 86-91.
[http://dx.doi.org/10.14715/cmb/2017.63.11.15] [PMID: 29208178]
[26]
Lin, F-J.; Yen, F-L.; Chen, P-C.; Wang, M-C.; Lin, C-N.; Lee, C-W.; Ko, H.H. HPLC-fingerprints and antioxidant constituents of Phyla nodiflora. Scientific World Journal, 2014, 2014, 528653.
[http://dx.doi.org/10.1155/2014/528653] [PMID: 25140335]
[27]
Viola, H.; Wasowski, C.; Marder, M.; Wolfman, C.; Paladini, A.C.; Medina, J.H. Sedative and hypnotic properties of Salvia guaranitica St. Hil. and of its active principle, Cirsiliol. Phytomedicine, 1997, 4(1), 47-52.
[28]
Yoshimoto, T.; Furukawa, M.; Yamamoto, S.; Horie, T.; Watanabe-Kohno, S. Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase. Biochem. Biophys. Res. Commun., 1983, 116(2), 612-618.
[http://dx.doi.org/10.1016/0006-291X(83)90568-5] [PMID: 6418162]
[29]
Furukawa, M.; Yoshimoto, T.; Ochi, K.; Yamamoto, S. Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells. Biochim. Biophys. Acta, 1984, 795(3), 458-465.
[http://dx.doi.org/10.1016/0005-2760(84)90173-5] [PMID: 6089906]
[30]
Horie, T.; Tsukayama, M.; Kourai, H.; Yokoyama, C.; Furukawa, M.; Yoshimoto, T. Syntheses of 3′,4′-dihydroxy-5,6,7- and 5,7,8-trioxygenated 3′,4′-dihydroxy flavones having alkoxy groups and their inhibitory activities against arachidonate 5-lipoxygenase. J. Med. Chem., 1986, 29(11), 2256-2262.
[http://dx.doi.org/10.1021/jm00161a021] [PMID: 3783588]
[31]
Blomgren, H.; Hammarström, S.; Wasserman, J. Synergistic enhancement of mitogen responses of human lymphocytes by inhibitors of cyclo-oxygenase and lipoxygenase. Int. Arch. Allergy Appl. Immunol., 1988, 86(1), 62-68.
[http://dx.doi.org/10.1159/000234607] [PMID: 3131257]
[32]
Yahagi, T.; Yakura, N.; Matsuzaki, K.; Kitanaka, S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells. J. Nat. Med., 2014, 68(2), 414-420.
[http://dx.doi.org/10.1007/s11418-013-0799-3] [PMID: 24142543]
[33]
Kohno, S.; Ohata, K. Resting tonus of isolated airway smooth muscles. Folia Pharmacol Jpn, 1993, 102(1), 1-10.
[34]
Mustafa, E.H.; Abu Zarga, M.; Abdalla, S. Effects of cirsiliol, a flavone isolated from Achillea fragrantissima, on rat isolated ileum. Gen Pharmacol Vasc Syst, 1992, 23(3), 555-560.
[http://dx.doi.org/10.1016/0306-3623(92)90127-6]
[35]
Marder, M.; Viola, H.; Wasowski, C.; Wolfman, C.; Waterman, P.G.; Medina, J.H.; Paladini, A.C. Cirsiliol and caffeic acid ethyl ester, isolated from Salvia guaranitica, are competitive ligands for the central benzodiazepine receptors. Phytomedicine, 1996, 3(1), 29-31.
[http://dx.doi.org/10.1016/S0944-7113(96)80006-7] [PMID: 23194857]
[36]
Frezza, C.; Venditti, A.; Matrone, G.; Serafini, I.; Foddai, S.; Bianco, A.; Serafini, M. Iridoid glycosides and polyphenolic compounds from Teucrium chamaedrys L. Nat. Prod. Res., 2018, 32(13), 1583-1589.
[http://dx.doi.org/10.1080/14786419.2017.1392948] [PMID: 29058476]
[37]
Yang, X.; Wang, N.; Shen, C.; Li, H.; Zhao, J.; Chen, T. An effective method based on medium-pressure liquid chromatography and recycling high-speed counter-current chromatography for enrichment and separation of three minor components with similar polarity from Dracocephalum tanguticum. J Sep Sci, 2018.
[38]
Salimikia, I.; Reza Monsef-Esfahani, H.; Gohari, A.R.; Salek, M. Phytochemical analysis and antioxidant activity of Salvia chloroleuca aerial extracts. Iran. Red. Crescent Med. J., 2016, 18(8), e24836.
[http://dx.doi.org/10.5812/ircmj.24836] [PMID: 27761269]
[39]
Dai, L.P.; Zhao, M.; Li, C.; Zhao, J.J.; Zhang, L.X.; Chen, S.Q. Studies on chemical constituents of Isodon excisoides. China J Chinese Mater Medica, 2016, 41(18), 3361-3365.
[40]
Escandón-Rivera, S.M.; Andrade-Cetto, A.; Sánchez-Villaseñor, G. Phytochemical composition and chronic hypoglycemic effect of Bromelia karatas on STZ-NA-induced diabetic rats. Evidence-Based Complement. Altern. Med., 2019, 1-9.
[41]
Falcao, R.A.; do Nascimento, P.L.A.; de Souza, S.A.; da Silva, T.M.G.; de Queiroz, A.C.; da Matta, C.B.B. Antileishmanial Phenylpropanoids from the Leaves of Hyptis pectinata (L.) Poit. Evidence-Based Complement Altern Med, 2013, 2013, 1-7.
[42]
Uehara, A.; Kitajima, J.; Kokubugata, G.; Iwashina, T. Further characterization of foliar flavonoids in Crossostephium and their geographic variation. Nat Prod Commun, 2014, 9(2), 163-4.
[http://dx.doi.org/10.1177/1934578X1400900207]
[43]
Lin, S.; Zhang, Q.W.; Zhang, N.N.; Zhang, Y.X. Determination of flavonoids in buds of Herba Artemisiae Scopariae by HPLC. Zhongguo Zhongyao Zazhi, 2005, 30(8), 591-594.
[PMID: 16011282]
[44]
Xie, G.Y.; Chen, Y.J.; Wen, R.; Xu, J.Y.; Wu, S.S.; Qin, M.J. Chemical constituents from rhizomes of Iris germanica. China J. Chinese Mater. Medica., 2014, 39(5), 846-850.
[45]
Stefkov, G.; Kulevanova, S.; Miova, B.; Dinevska-Kjovkarovska, S.; Mølgaard, P.; Jäger, A.K.; Josefsen, K. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharm. Biol., 2011, 49(9), 885-892.
[http://dx.doi.org/10.3109/13880209.2011.552187] [PMID: 21619454]
[46]
Barkaoui, T.; Hamimed, S.; Bellamine, H.; Bankaji, I.; Sleimi, N.; Landoulsi, A. Alleviated actions of Plantago albicans extract on lead acetate-produced hepatic damage in rats through antioxidant and free radical scavenging capacities. J. Med. Food, 2020, 23(11), 1201-1215.
[http://dx.doi.org/10.1089/jmf.2019.0246] [PMID: 32316841]
[47]
Mahmoudi, M.; Abdellaoui, R.; Boughalleb, F.; Yahia, B.; Mabrouk, M.; Nasri, N. Characterization of lipids, proteins, and bioactive compounds in the seeds of three Astragalus species. Food Chem., 2021, 339, 127824.
[http://dx.doi.org/10.1016/j.foodchem.2020.127824] [PMID: 32882624]
[48]
Yan, G.; Zhou, Y.; Hu, Y.; Zhao, L.; Wang, W. Rapid screening and isolation of antioxidants from Eupatorium lindleyanum DC. using CCC target-guided by on-line HPLC-DPPH assay. Prep. Biochem. Biotechnol., 2020, 1-6.
[PMID: 33135958]
[49]
Lekmine, S.; Boussekine, S.; Kadi, K.; Martín-García, A.I.; Kheddouma, A.; Nagaz, K. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. Biocatal. Agric. Biotechnol., 2020, 27, 101668.
[http://dx.doi.org/10.1016/j.bcab.2020.101668]
[50]
Ben Yakoub, A.R.; Abdehedi, O.; Jridi, M.; Elfalleh, W.; Nasri, M.; Ferchichi, A. Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind. Crops Prod., 2018, 118, 206-213.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.047]
[51]
Roosdiana, A.; Permata, F.S.; Fitriani, R.I.; Umam, K.; Safitri, A. Extract improves histopathology and lowers malondialdehyde levels and TNF alpha expression in the kidney of streptozotocin-induced diabetic rats. Vet Med Int, 2020, 1-7.
[52]
Zhao, A-H.; Li, R-T.; Jiang, B.; Zhang, J-X.; Zhao, Q-S.; Sun, H-D. Three new compounds from Isodon melissoides. J. Asian Nat. Prod. Res., 2005, 7(2), 151-156.
[http://dx.doi.org/10.1080/1028602042000204108] [PMID: 15621618]
[53]
Gohari, A.R.; Saeidnia, S.; Malmir, M.; Hadjiakhoondi, A.; Ajani, Y. Flavones and rosmarinic acid from Salvia limbata. Nat. Prod. Res., 2010, 24(20), 1902-1906.
[http://dx.doi.org/10.1080/14786411003766912] [PMID: 21108116]
[54]
Bisio, A.; Fraternale, D.; Damonte, G.; Millo, E.; Lanteri, A.P.; Russo, E. Phytotoxic Activity of Salvia x jamensis. Nat Prod Commun, 2009.
[http://dx.doi.org/10.1177/1934578X0900401202]
[55]
Li, J.; Fronczek, F.R.; Ferreira, D.; Burandt, C.L., Jr; Setola, V.; Roth, B.L.; Zjawiony, J.K. Bis-spirolabdane diterpenoids from Leonotis nepetaefolia. J. Nat. Prod., 2012, 75(4), 728-734.
[http://dx.doi.org/10.1021/np3000156] [PMID: 22475308]
[56]
Zhang, Q.W.; Zhang, Y.X.; Zhang, Y.; Xiao, Y.Q.; Wang, Z.M. Studies on chemical constituents in buds of Artemisia scoparia. Zhongguo Zhongyao Zazhi, 2002, 27(3), 202-204.
[PMID: 12774401]
[57]
Wu, S.; Sun, Q.; Chu, C.; Zhang, J. Chemical constituents of Eupatorium lindleyanum. Zhongguo Zhongyao Zazhi, 2012, 37(7), 937-940.
[PMID: 22792793]
[58]
Verykokidou-Vitsaropoulou, E.; Vajias, C. Methylated flavones from Teucrium polium. Planta Med., 1986, 52(5), 401-402.
[http://dx.doi.org/10.1055/s-2007-969198] [PMID: 17345353]
[59]
de Oliveira, D.P.; de Almeida, L.; Marques, M.J.; de Carvalho, R.R.; Dias, A.L.T.; da Silva, G.A.; de Pádua, R.M.; Braga, F.C.; da Silva, M.A. Exploring the bioactivity potential of Leonotis nepetifolia: Phytochemical composition, antimicrobial and antileishmanial activities of extracts from different anatomical parts. Nat. Prod. Res., 2019, 1-6.
[http://dx.doi.org/10.1080/14786419.2019.1686367] [PMID: 31691582]
[60]
Twaij, H.A.A.; Kery, A.; Al-Khazraji, N.K. Some pharmacological, toxicological and phytochemical investigations on Centaurea phyllocephala. J. Ethnopharmacol., 1983, 9(2-3), 299-314.
[http://dx.doi.org/10.1016/0378-8741(83)90037-5] [PMID: 6677820]
[61]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance”. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[62]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: scope of lipid based vesicular in its effective delivery. Recent Pat Antiinfect Drug Discov, 2019, 14(1), 7-15.
[63]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[64]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: a concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[65]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni-Suef Univ J Basic Appl Sci, 2018, 7(1), 31-42.