Maraviroc Oral Disintegration Tablet: Analytical Design of Experiments (DoE) for Assessment and Comparison of In vitro Dissolution Profiles

Page: [427 - 436] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The bioavailability of a drug in a solid oral dose depends on its release from the drug product and its balance in dissolution. Compared with a reference drug, the newly developed formulation needs to establish bioequivalence by comparing the dissolution profile.

Objectives: To compare dissolution profiles of a newly developed maraviroc oral disintegration tablet and the reference Axentri® tablet. The current research was designed to establish and validate an integral analytical consistency by Quality by Design (QbD) approach to quantify maraviroc from dissolution samples using the RP-HPLC method.

Methods: Maraviroc was formulated into an orally disintegrating tablet using a direct compression technique at different concentrations of sodium starch glycolate as super disintegrants and talc and magnesium stearate as glidants. The dissolution test in 0.1N HCl was performed according to standard procedures to predict bioequivalence. The results of dissolution tests were analyzed using the QbD Box Behnken Design multivariate RP-HPLC method.

Results: The optimized formulation (F2) was selected as it showed 90% drug release in 5 min and a disintegration time of 22 sec with dissolution profiles to the marketed reference to meet the FDA requirements of f2 similarity factor statistics. The integrated analytical QbD method was statistically analyzed by ANOVA, counter-plot, and 3D response surface plots, which demonstrated that the model is statistically significant. The developed method was validated as per ICH guidelines Q2 (R1).

Conclusion: In conclusion, maraviroc oral disintegrating tablets have been well prepared, and superior statement consistency is established by the implementation of the QbD analytical method for orally disintegrating tablet excellence and adoption.

Keywords: Analytical QbD, direct compression, dissolution comparison, maraviroc, orally disintegrating tablet, similarity factor.

Graphical Abstract

[1]
Ray, N. Maraviroc in the treatment of HIV infection. Drug Des. Devel. Ther., 2009, 2(2), 151-161.
[PMID: 19920903]
[2]
Dubrocq, G.; Rakhmanina, N.; Phelps, B.R. Challenges and opportunities in the development of HIV medications in pediatric patients. Paediatr. Drugs, 2017, 19(2), 91-98.
[http://dx.doi.org/10.1007/s40272-016-0210-4] [PMID: 28074348]
[3]
Archana, G.; Raju, P.N.; Reddy, G.N. Formulation and in vitro evaluation of atazanavir oral disintegrating tablets. Asian J. Pharm. Clin. Res., 2014, 7(Suppl. 1), 184-188.
[4]
Manivannan, R. Oral disintegrating tablets: A future compaction. Int. J. Pharm. Res. Dev., 2009, 1(10), 1-10.
[5]
Lal, M.; Lai, M.; Estrada, M.; Zhu, C. Developing a flexible pediatric dosage form for antiretroviral therapy: A fast-dissolving tablet. J. Pharm. Sci., 2017, 106(8), 2173-2177.
[http://dx.doi.org/10.1016/j.xphs.2017.05.004] [PMID: 28499879]
[6]
Savage, A.C.; Tatham, L.M.; Siccardi, M.; Scott, T.; Vourvahis, M.; Clark, A.; Rannard, S.P.; Owen, A. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles. Eur. J. Pharm. Biopharm., 2019, 138(138), 30-36.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.015] [PMID: 29777772]
[7]
Paul, Y.; Tyagi, S.; Singh, B. Formulation and evaluation of oral dispersible tablets of zidovudine with different superdisintegrants. Int. J. Curr. Pharm. Rev. Res., 2011, 2(2), 81-91.
[8]
Gulsun, T.; Ozturk, N.; Kaynak, M.S.; Vural, I.; Sahin, S. Preparation and evaluation of furosemide containing orally disintegrating tablets by direct compression. Pharmazie, 2017, 72(7), 389-394.
[PMID: 29441935]
[9]
Khan, A. Development and validation of a discriminatory dissolution testing method for orally disintegrating tablets (ODTs) of domperidone. Dissolut. Technol., 2017, 24(2), 28-36.
[http://dx.doi.org/10.14227/DT240217P28]
[10]
Desai, S.; Poddar, A.; Sawant, K. Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability. Mater. Sci. Eng. C, 2016, 58, 826-834.
[http://dx.doi.org/10.1016/j.msec.2015.09.019] [PMID: 26478377]
[11]
Chen, Y.; Feng, T.; Li, Y.; Du, B.; Weng, W. Formulation and evaluation of a montelukast sodium orally disintegrating tablet with a similar dissolution profile as the marketed product. Pharm. Dev. Technol., 2017, 22(2), 168-172.
[http://dx.doi.org/10.3109/10837450.2015.1121498] [PMID: 26654222]
[12]
Dobard, C.W.; Taylor, A.; Sharma, S.; Anderson, P.L.; Bushman, L.R.; Chuong, D.; Pau, C.P.; Hanson, D.; Wang, L.; Garcia-Lerma, J.G.; McGowan, I.; Rohan, L.; Heneine, W. Protection against rectal chimeric simian/human immunodeficiency virus transmission in macaques by rectal-specific gel formulations of maraviroc and tenofovir. J. Infect. Dis., 2015, 212(12), 1988-1995.
[http://dx.doi.org/10.1093/infdis/jiv334] [PMID: 26071566]
[13]
Ball, C.; Woodrow, K.A. Electrospun solid dispersions of Maraviroc for rapid intravaginal preexposure prophylaxis of HIV. Antimicrob. Agents Chemother., 2014, 58(8), 4855-4865.
[http://dx.doi.org/10.1128/AAC.02564-14] [PMID: 24913168]
[14]
Chatzizaharia, K.A.; Hatziavramidis, D.T. Dissolution efficiency and design space for an oral pharmaceutical product in tablet form. Ind. Eng. Chem. Res., 2015, 54(24), 6305-6310.
[http://dx.doi.org/10.1021/ie5050567]
[15]
Machado, J.C.; Lange, A.D.; Todeschini, V.; Volpato, N.M. Development and validation of a discriminative dissolution method for atorvastatin calcium tablets using in vivo data by LC and UV methods. AAPS PharmSciTech, 2014, 15(1), 189-197.
[http://dx.doi.org/10.1208/s12249-013-0053-z] [PMID: 24265014]
[16]
Ono, A.; Sugano, K. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations. Eur. J. Pharm. Sci., 2014, 64, 37-43.
[http://dx.doi.org/10.1016/j.ejps.2014.08.003] [PMID: 25151946]
[17]
Diaz, D.A.; Colgan, S.T.; Langer, C.S.; Bandi, N.T.; Likar, M.D.; Van Alstine, L. Dissolution similarity requirements: How similar or dissimilar are the global regulatory expectations? AAPS J., 2016, 18(1), 15-22.
[http://dx.doi.org/10.1208/s12248-015-9830-9] [PMID: 26428517]
[18]
Shah, V.P.; Lesko, L.J.; Fan, J.; Fleischer, N.; Handerson, J.; Malinowski, H.; Makary, M.; Ouderkirk, L.; Bay, S.; Sathe, P.; Singh, G.J.P.; Iillman, L.; Tsong, Y.; Williams, R.I. FDA guidance for industry 1 dissolution testing of immediate release solid oral dosage forms. Dissolut. Technol., 1997, 4(4), 15-22.
[http://dx.doi.org/10.14227/DT040497P15]
[19]
Raman, N.V.V.S.S.; Mallu, U.R.; Bapatu, H.R. Analytical quality by design approach to test method development and validation in drug substance manufacturing. J. Chem., 2015, 2015, Article ID 435129.
[http://dx.doi.org/10.1155/2015/435129]
[20]
da Silva, A.S.; da Rosa Silva, C.E.; Paula, F.R.; da Silva, F.E.B. Discriminative dissolution method for benzoyl metronidazole oral suspension. AAPS PharmSciTech, 2016, 17(3), 778-786.
[http://dx.doi.org/10.1208/s12249-015-0407-9] [PMID: 26349689]
[21]
Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.D.S.; Saviano, A.M.; Lourenço, F.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci., 2018, 54(Special Issue), 1-16.
[http://dx.doi.org/10.1590/s2175-97902018000001006]
[22]
Bhutani, H.; Kurmi, M.; Singh, S.; Beg, S.; Singh, B. Quality by Design (QbD) in analytical sciences: An overview. Pharm. Times, 2014, 46(8), 71-75.