A Novel LC-MS Method for the Determination of Abiraterone in Rat Plasma and its Application to Pharmacokinetic Studies

Page: [590 - 597] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: High-Performance Liquid Chromatography (HPLC)-Ultraviolet (UV) and Liquid Chromatography (LC)-Mass Spectrometry (MS)/MS methods have been used to analyse abiraterone (ART); however, a single-quadrupole mass spectrometer with LC-MS systems has never been used to analyse ART.

Objective: The study aimed to establish a novel, simple assay of quantitating ART in rat plasma through LC-MS.

Methods: The analytical procedure involved the extraction of ART and D4-ART (internal standard, IS) from rat plasma through simple protein precipitation. Chromatographic separation was achieved using an isocratic mobile phase (acetonitrile: 5 mM ammonium formate with 0.1% formic acid, 50:50 v/v) at a flow rate of 0.30 mL/min on a Waters XBridge® C18 column with a total run time of 5 min. LC-MS ion transitions monitored were 350.1 and 354.1 for ART and IS, respectively. The method was validated, and the results met acceptance criteria.

Results: The lower limit of quantitation achieved was 1 ng/mL, and linearity was 1-8000 ng/mL. The intra- and inter-day precisions were 1.26%-14.20% and 5.49%-13.08%, respectively, in rat plasma.

Conclusion: LC-MS offers a novel, specific, sensitive, and accurate method for quantifying ART and it was successfully applied to pharmacokinetic studies of ART in rats.

Keywords: Bioanalytical method, LC-MS, abiraterone, method validation, rat plasma, pharmacokinetics.

Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Qin, X.; Liu, M.; Wang, X. New insights into the androgen biotransformation in prostate cancer: A regulatory network among androgen, androgen receptors and UGTs. Pharmacol. Res., 2016, 106, 114-122.
[http://dx.doi.org/10.1016/j.phrs.2016.02.021] [PMID: 26926093]
[3]
US FDA. Highlights of prescribing information. Zytiga® (abiraterone acetate) tablets. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202379s027s028lbl.pdf
[4]
Nv, J.I. Summary of product characteristics Zytiga 250 mg tablets. 2017.
[5]
Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol., 2021, 77(4), 441-464.
[http://dx.doi.org/10.1007/s00228-020-03014-8] [PMID: 33165648]
[6]
Posadas, E.M.; Chi, K.N.; de Wit, R.; de Jonge, M.J.A.; Attard, G.; Friedlander, T.W.; Yu, M.K.; Hellemans, P.; Chien, C.; Abrams, C.; Jiao, J.J.; Saad, F. Pharmacokinetics, safety, and antitumor effect of apalutamide with abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: phase Ib study. Clin. Cancer Res., 2020, 26(14), 3517-3524.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3402] [PMID: 32366670]
[7]
Pan, W.; Zhang, Z.; Kimball, H.; Qu, F.; Berlind, K.; Stopsack, K.H.; Lee, G.M.; Choueiri, T.K.; Kantoff, P.W. Abiraterone acetate induces CREB1 phosphorylation and enhances the function of the CBP-p300 complex, leading to resistance in prostate cancer cells. Clin. Cancer Res., 2021, 27(7), 2087-2099.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4391] [PMID: 33495313]
[8]
Masamrekh, R.A.; Kuzikov, A.V.; Haurychenka, Y.I.; Shcherbakov, K.A.; Veselovsky, A.V.; Filimonov, D.A.; Dmitriev, A.V.; Zavialova, M.G.; Gilep, A.A.; Shkel, T.V.; Strushkevich, N.V.; Usanov, S.A.; Archakov, A.I.; Shumyantseva, V.V. In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions. Fundam. Clin. Pharmacol., 2020, 34(1), 120-130.
[http://dx.doi.org/10.1111/fcp.12497] [PMID: 31286572]
[9]
Janssen, J.M.; Dorlo, T.P.C.; Beijnen, J.H.; Huitema, A.D.R. Evaluation of extrapolation methods to predict trough concentrations to guide therapeutic drug monitoring of oral anticancer drugs. Ther. Drug Monit., 2020, 42(4), 532-539.
[http://dx.doi.org/10.1097/FTD.0000000000000767] [PMID: 32384536]
[10]
Cheong, E.J.Y.; Nair, P.C.; Neo, R.W.Y.; Tu, H.T.; Lin, F.; Chiong, E.; Esuvaranathan, K.; Fan, H.; Szmulewitz, R.Z.; Peer, C.J.; Figg, W.D.; Chai, C.L.L.; Miners, J.O.; Chan, E.C.Y. Slow-, tight-binding inhibition of CYP17A1 by abiraterone redefines its kinetic selectivity and dosing regimen. J. Pharmacol. Exp. Ther., 2020, 374(3), 438-451.
[http://dx.doi.org/10.1124/jpet.120.265868] [PMID: 32554434]
[11]
Lubberman, F.J.E.; Benoist, G.E.; Gerritsen, W.; Burger, D.M.; Mehra, N.; Hamberg, P.; van Oort, I.; van Erp, N.P. A prospective phase I multicentre randomized cross-over pharmacokinetic study to determine the effect of food on abiraterone pharmacokinetics. Cancer Chemother. Pharmacol., 2019, 84(6), 1179-1185.
[http://dx.doi.org/10.1007/s00280-019-03952-w] [PMID: 31515667]
[12]
Barrie, S.E.; Haynes, B.P.; Potter, G.A.; Chan, F.C.; Goddard, P.M.; Dowsett, M.; Jarman, M. Biochemistry and pharmacokinetics of potent non-steroidal cytochrome P450(17alpha) inhibitors. J. Steroid Biochem. Mol. Biol., 1997, 60(5-6), 347-351.
[http://dx.doi.org/10.1016/S0960-0760(96)00225-7] [PMID: 9219927]
[13]
Belleville, T.; Noé, G.; Huillard, O.; Thomas-Schoemann, A.; Vidal, M.; Goldwasser, F.; Alexandre, J.; Blanchet, B. A HPLC-fluorescence method for the quantification of abiraterone in plasma from patients with metastatic castration-resistant prostate cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 989, 86-90.
[http://dx.doi.org/10.1016/j.jchromb.2015.03.001] [PMID: 25813901]
[14]
Kumar, S.V.; Rudresha, G.; Gurav, S.; Zainuddin, M.; Dewang, P.; Kethiri, R.R.; Rajagopal, S.; Mullangi, R. Validated RP-HPLC/UV method for the quantitation of abiraterone in rat plasma and its application to a pharmacokinetic study in rats. Biomed. Chromatogr., 2013, 27(2), 203-207.
[http://dx.doi.org/10.1002/bmc.2776] [PMID: 22763809]
[15]
Gurav, S.; Punde, R.; Farooqui, J.; Zainuddin, M.; Rajagopal, S.; Mullangi, R. Development and validation of a highly sensitive method for the determination of abiraterone in rat and human plasma by LC-MS/MS-ESI: application to a pharmacokinetic study. Biomed. Chromatogr., 2012, 26(6), 761-768.
[http://dx.doi.org/10.1002/bmc.1726] [PMID: 22002259]
[16]
Benoist, G.E.; van der Meulen, E.; Lubberman, F.J.E.; Gerritsen, W.R.; Smilde, T.J.; Schalken, J.A.; Beumer, J.H.; Burger, D.M.; van Erp, N.P. Analytical challenges in quantifying abiraterone with LC-MS/MS in human plasma. Biomed. Chromatogr., 2017, 31(11)
[http://dx.doi.org/10.1002/bmc.3986] [PMID: 28370076]
[17]
Martins, V.; Asad, Y.; Wilsher, N.; Raynaud, F. A validated liquid chromatographic-tandem mass spectroscopy method for the quantification of abiraterone acetate and abiraterone in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 843(2), 262-267.
[http://dx.doi.org/10.1016/j.jchromb.2006.06.010] [PMID: 16809076]
[18]
Alyamani, M.; Li, Z.; Upadhyay, S.K.; Anderson, D.J.; Auchus, R.J.; Sharifi, N. Development and validation of a novel LC-MS/MS method for simultaneous determination of abiraterone and its seven steroidal metabolites in human serum: Innovation in separation of diastereoisomers without use of a chiral column. J. Steroid Biochem. Mol. Biol., 2017, 172, 231-239.
[http://dx.doi.org/10.1016/j.jsbmb.2016.04.002] [PMID: 27063554]
[19]
Llopis, B.; Robidou, P.; Tissot, N.; Pinna, B.; Gougis, P.; Aubart, F.C.; Campedel, L.; Abbar, B.; Weil, D.R.; Uzunov, M.; Gligorov, J.; Salem, J.E.; Funck-Brentano, C.; Zahr, N. Development and clinical validation of a simple and fast UPLC-ESI-MS/MS method for simultaneous quantification of nine kinase inhibitors and two antiandrogen drugs in human plasma: Interest for their therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2021, 197, 113968.
[http://dx.doi.org/10.1016/j.jpba.2021.113968] [PMID: 33618135]
[20]
Weiss, T.L.D.; Furtado, C.M.; Antunes, M.V.; Gössling, G.; Schwartsmann, G.; Linden, R.; Verza, S.G. A quick UPLC-MS/MS method for therapeutic drug monitoring of abiraterone and delta(4)-abiraterone in human plasma. Biomed. Chromatogr., 2020, 34(11), e4947.
[http://dx.doi.org/10.1002/bmc.4947] [PMID: 32652651]
[21]
van Nuland, M.; Venekamp, N.; Wouters, W.M.E.; van Rossum, H.H.; Rosing, H.; Beijnen, J.H. LC-MS/MS assay for the quantification of testosterone, dihydrotestosterone, androstenedione, cortisol and prednisone in plasma from castrated prostate cancer patients treated with abiraterone acetate or enzalutamide. J. Pharm. Biomed. Anal., 2019, 170, 161-168.
[http://dx.doi.org/10.1016/j.jpba.2019.03.043] [PMID: 30925273]
[22]
Blanchet, B.; Carton, E.; Alyamani, M.; Golmard, L.; Huillard, O.; Thomas-Scheomann, A.; Vidal, M.; Goldwasser, F.; Sharifi, N.; Alexandre, J. A PK/PD study of Delta-4 abiraterone metabolite in metastatic castration-resistant prostate cancer patients. Pharmacol. Res., 2018, 136, 56-61.
[http://dx.doi.org/10.1016/j.phrs.2018.08.016] [PMID: 30142421]
[23]
Stappaerts, J.; Geboers, S.; Snoeys, J.; Brouwers, J.; Tack, J.; Annaert, P.; Augustijns, P. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies. Eur. J. Pharm. Biopharm., 2015, 90, 1-7.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.001] [PMID: 25592324]
[24]
European Medicines Agency. Guideline on bioanalytical method validation; European Medicines Agency, 2012.
[25]
Dubinsky, S.; Thawer, A.; McLeod, A.G.; McFarlane, T.R.J.; Emmenegger, U. Management of anticoagulation in patients with metastatic castration-resistant prostate cancer receiving abiraterone + prednisone. Support. Care Cancer, 2019, 27(9), 3209-3217.
[http://dx.doi.org/10.1007/s00520-019-04816-y] [PMID: 31073853]
[26]
Bouhajib, M.; Tayab, Z. Evaluation of the pharmacokinetics of abiraterone acetate and abiraterone following single-dose administration of abiraterone acetate to healthy subjects. Clin. Drug Investig., 2019, 39(3), 309-317.
[http://dx.doi.org/10.1007/s40261-019-00752-1] [PMID: 30671920]
[27]
Wang, C.; Hu, C.; Gao, D.; Zhao, Z.; Chen, X.; Hu, X.; Gong, S.; Li, L.; Zhang, L. Pharmacokinetics and bioequivalence of generic and branded abiraterone acetate tablet: a single-dose, open-label, and replicate designed study in healthy Chinese male volunteers. Cancer Chemother. Pharmacol., 2019, 83(3), 509-517.
[http://dx.doi.org/10.1007/s00280-018-3754-x] [PMID: 30535959]
[28]
Bhatnagar, A.; McKay, M.J.; Crumbaker, M.; Ahire, K.; Karuso, P.; Gurney, H.; Molloy, M.P. Quantitation of the anticancer drug abiraterone and its metabolite Δ(4)-abiraterone in human plasma using high-resolution mass spectrometry. J. Pharm. Biomed. Anal., 2018, 154, 66-74.
[http://dx.doi.org/10.1016/j.jpba.2018.03.012] [PMID: 29533860]
[29]
Bhatnagar, A.; McKay, M.J.; Thaysen-Andersen, M.; Arasaratnam, M.; Crumbaker, M.; Gurney, H.; Molloy, M.P. Bioanalytical evaluation of dried plasma spots for monitoring of abiraterone and ∆(4)-abiraterone from cancer patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1126-1127, 121741.
[http://dx.doi.org/10.1016/j.jchromb.2019.121741] [PMID: 31421381]
[30]
Conteduca, V.; Castro, E.; Wetterskog, D.; Scarpi, E.; Jayaram, A.; Romero-Laorden, N.; Olmos, D.; Gurioli, G.; Lolli, C.; Sáez, M.I.; Puente, J.; Schepisi, G.; Salvi, S.; Wingate, A.; Medina, A.; Querol-Niñerola, R.; Marin-Aguilera, M.; Arranz, J.A.; Fornarini, G.; Basso, U.; Mellado, B.; Gonzalez-Billalabeitia, E.; Attard, G.; De Giorgi, U. Plasma AR status and cabazitaxel in heavily treated metastatic castration-resistant prostate cancer. Eur. J. Cancer, 2019, 116, 158-168.
[http://dx.doi.org/10.1016/j.ejca.2019.05.007] [PMID: 31200322]