HPLC-UV Method Development and Validation for Sulfadoxine from its Potential Interfering Impurities

Article ID: e130821195636 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objective: To address the separation of interfering potential impurities associated with the drug is always a daunting task. We present the method validation and quantitative determination of sulfadoxine (SUL), an anti-malarial drug with the most important interfering impurities present in pharmaceutical dosages and bulk samples using HPLC-UV method.

Methods: The UV detection was obtained at 270 nm and SUL is separated on Sunfire C18 (25 cm x 4.6 mm x 5 μm) column at 45°C with a flow rate of 1.0 mL/min in a mobile phase (CH3COOH: CH3CN). The stress testing (acidic/basic/oxidative) was performed using HPLC for SUL and its impurities, showing the highly efficient separation peaks between degradant and drug products.

Results: The developed method was found to be highly accurate and sensitive in regulation with ICH guidelines. Also, it was found to be free from interference from degradation products which allows the stability indicating capability of developed HPLC-UV method for SUL for validation in bulk drugs.

Conclusion: The main advantages of the present method; (a) Separation achieved in 30 minutes, (b) MS compatible mobile phase renders this developed method can be directly adapted to LC-MS without any major modifications in the near future, and (c) separation of twelve impurities on Sunfire C18 column. The CFs (correction factors) had been calculated for all the impurities. It was found to be 1.6 (IMP IX), 1.70 (IMP XI) and in between 0.8-1.3 for all other impurities. The LOD of the developed method for all the analytes was in the range of 0.05 to 0.11 μg/mL and the LOQ values were in the range of 0.17 to 0.36 μg/mL.

Keywords: Sulfadoxine, potential impurities, HPLC-UV, pharmaceutical samples, anti-malarial drug, chromatography.

Graphical Abstract

[1]
Edwards, M.; Boswell, H.; Gorecki, T. Comprehensive multidimensional chromatography. Curr. Chromatogr., 2015, 2, 80-109.
[http://dx.doi.org/10.2174/2213240602666150722232236]
[2]
Hanai, T. Definition of HILIC system and quantitative analysis of retention mechanisms. Curr. Chromatogr., 2019, 5, 43-52.
[http://dx.doi.org/10.2174/2213240605666180207093716]
[3]
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Aboul-Enein, H.Y. Recent trends in chiral separations by nano liquid chromatography and nano capillary electrophoresis. Curr. Chromatogr., 2014, 1, 81-89.
[http://dx.doi.org/10.2174/2213240601666140301001948]
[4]
Aboul-Enein, H.Y.; Ali, I. Comparative study of the enantiomeric resolution of chiral antifungal drugs econazole, miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode. J. Pharm. Biomed. Anal., 2002, 27(3-4), 441-446.
[http://dx.doi.org/10.1016/S0731-7085(01)00575-1] [PMID: 11755745]
[5]
Ali, I.; Naim, L.; Ghanem, A.; Aboul-Enein, H.Y. Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta, 2006, 69(4), 1013-1017.
[http://dx.doi.org/10.1016/j.talanta.2005.12.004] [PMID: 18970673]
[6]
Aboul-Enein, H.Y.; Ali, I. Studies on the effect of alcohols on the chiral discrimination mechanisms of amylose stationary phase on the enantioseparation of nebivolol by HPLC. J. Biochem. Biophys. Methods, 2001, 48(2), 175-188.
[http://dx.doi.org/10.1016/S0165-022X(01)00148-8] [PMID: 11356487]
[7]
Aboul-Enein, H.Y.; Ali, I. Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. Farmaco, 2002, 57(7), 513-529.
[http://dx.doi.org/10.1016/S0014-827X(02)01242-9] [PMID: 12164206]
[8]
Aboul-Enein, H.Y.; Ali, I. HPLC enantiomeric resolution of nebivolol on normal and reversed amylose based chiral phases. Pharmazie, 2001, 56(3), 214-216.
[PMID: 11265585]
[9]
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Asnin, L.; Chudinov, A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J. Sep. Sci., 2014, 37(18), 2447-2466.
[http://dx.doi.org/10.1002/jssc.201400587] [PMID: 25044566]
[10]
Aboul-Enein, H.Y.; Ali, I. Comparison of the chiral resolution of econazole, miconazole, and sulconazole by HPLC using normal-phase amylose CSPs. Fresenius J. Anal. Chem., 2001, 370(7), 951-955.
[http://dx.doi.org/10.1007/s002160100884] [PMID: 11569882]
[11]
Olsen, B.A.; Castle, B.C.; Myers, D.P. Advances in HPLC technology for the determination of drug impurities. Trends Analyt. Chem., 2006, 25, 796-805.
[http://dx.doi.org/10.1016/j.trac.2006.06.005]
[12]
Berridge, J.C. Techniques for the Automated Optimization of HPLC Separations; Wiley: New York,. , 1985, pp. pp. 19-27.
[13]
Zhang, K.; Ma, P.; Jing, W.; Zhang, X. A developed HPLC method for the determination of alogliptin benzoate and its potential impurities in bulk drug and tablets. Asian J. Pharm. Sci., 2015, 10, 152-158.
[http://dx.doi.org/10.1016/j.ajps.2015.01.001]
[14]
Ali, I. Aboul-Enein; Gupta, V. K.; Singh, P.; Negi, U. Analyses of Chloramphenicol in Biological Samples by HPLC. Anal. Lett., 2009, 42, 1368-1381.
[http://dx.doi.org/10.1080/00032710902954482]
[15]
Mishra, K.; Sing, B.K. A Review on method development and validation by using HPLC. IJPRS, 2016, 5, 71-81.
[16]
Sabir, A.M.; Moloy, M.; Bhasin, P.S. HPLC method development and validation: a review. Int. Res. J. Pharm., 2016, 4, 39-46.
[http://dx.doi.org/10.7897/2230-8407.04407]
[17]
Carje, A.G.; Balint, A.; Ion, V.; Pop, A.L.; Muntean, D.L.; Sabau, R.; Imre, S. HPLC-UV method approach for the analysis and impurity profiling of captopril. Chemia, 2019, 64, 231-242.
[18]
He, Q.; Li, M.; Wang, X.; Xia, Z.; Du, Y.; Li, Y.; Wei, L.; Shang, J. A simple, efficient and rapid HPLC-UV method for the detection of 5-HT in RIN-14B cell extract and cell culture medium. BMC Chem., 2019, 13(1), 76-85.
[http://dx.doi.org/10.1186/s13065-019-0591-x] [PMID: 31384823]
[19]
Gholave, J.V.; Gadhari, N.S.; Patil, S.S.; Upadhyay, S.S.; Patil, V.R.; Shelke, K.F. Development and validation of a stability-indicating RP-HPLC method for the simultaneous determination of telmisartan and its related substances in telmisartan bulk drug substance. Anal. Chem. Lett., 2020, 10, 577-589.
[http://dx.doi.org/10.1080/22297928.2020.1850348]
[20]
Patil, S.S.; Srivastava, A.K. Development and validation of a liquid chromatography method for the simultaneous determination of eight water-soluble vitamins in multivitamin formulations and human urine. J. AOAC Int., 2013, 96(6), 1273-1280.
[http://dx.doi.org/10.5740/jaoacint.12-208] [PMID: 24645504]
[21]
Gbotosho, G.O.; Happi, C.T.; Sijuade, A.O.; Sowunmi, A.; Oduola, A.M. A simple cost-effective high performance liquid chromatographic assay of sulphadoxine in whole blood spotted on filter paper for field studies. Malar. J., 2009, 8, 238-243.
[http://dx.doi.org/10.1186/1475-2875-8-238] [PMID: 19852850]
[22]
Ramos Payán, M.; Bello López, M.Á.; Fernández-Torres, R.; Villar Navarro, M.; Callejón Mochón, M. Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(2), 197-204.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.006] [PMID: 21185241]
[23]
Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; Havlíková, L.; Gámiz-Gracia, L.; Solich, P.; García-Campaña, A.M. Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 2016, 124, 261-266.
[http://dx.doi.org/10.1016/j.jpba.2016.02.040] [PMID: 26970595]
[24]
Bergqvist, Y.; Eriksson, M. Simultaneous determination of pyrimethamine and sulphadoxine in human plasma by high-performance liquid chromatography. Trans. R. Soc. Trop. Med. Hyg., 1985, 79(3), 297-301.
[http://dx.doi.org/10.1016/0035-9203(85)90365-7] [PMID: 4035727]
[25]
Onah, J.O.; Odeiani, J.E. Simultaneous spectrophotometric determination of sulfadoxine and pyrimethamine in pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 30(3), 851-857.
[http://dx.doi.org/10.1016/S0731-7085(02)00361-8] [PMID: 12367711]
[26]
Bhoir, S.I.; Bhoir, I.C.; Bhagwat, A.M.; Sundaresan, M. Determination of sulfadoxine in human blood plasma using packed-column supercritical fluid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 2001, 757(1), 39-47.
[http://dx.doi.org/10.1016/S0378-4347(01)00061-5] [PMID: 11419747]
[27]
Amin, A.A.; Kokwaro, G.O. Antimalarial drug quality in Africa. J. Clin. Pharm. Ther., 2007, 32(5), 429-440.
[http://dx.doi.org/10.1111/j.1365-2710.2007.00847.x] [PMID: 17875107]
[28]
Mwalwisi, Y.H.; Hollein, L.; Kaale, E.; Holzgrabe, U. Development of a simple, rapid, and robust isocratic liquid chromatographic method for the determination of pyrimethamine and its synthetic impurities in bulk drugs and pharmaceutical formulations. Chromatographia, 2017, 80, 1343-1352.
[http://dx.doi.org/10.1007/s10337-017-3359-2]
[29]
Mansor, S.M.; Navaratnam, V.; Mohamad, M.; Hussein, S.; Kumar, A.; Jamaludin, A.; Wernsdorfer, W.H. Single dose kinetic study of the triple combination mefloquine/sulphadoxine/pyrimethamine (Fansimef) in healthy male volunteers. Br. J. Clin. Pharmacol., 1989, 27(3), 381-386.
[http://dx.doi.org/10.1111/j.1365-2125.1989.tb05381.x] [PMID: 2785812]
[30]
Karbwang, J.; Bunnag, D.; Breckenridge, A.M.; Back, D.J. The pharmacokinetics of mefloquine when given alone or in combination with sulphadoxine and pyrimethamine in Thai male and female subjects. Eur. J. Clin. Pharmacol., 1987, 32(2), 173-177.
[http://dx.doi.org/10.1007/BF00542191] [PMID: 3495440]
[31]
Mwalwisi, Y.H.; Hoellein, L.; Kaale, E.; Holzgrabe, U. Development of a simple, rapid, and robust liquid chromatographic method for the simultaneous determination of sulfalene, sulfadoxine, and pyrimethamine in tablets. J. Pharm. Biomed. Anal., 2016, 129, 558-570.
[http://dx.doi.org/10.1016/j.jpba.2016.07.044] [PMID: 27505128]
[32]
Dua, V.K.; Gupta, N.C.; Sethi, P.; Edwards, G.; Dash, A.P. High-performance liquid chromatographic assay for the determination of sulfadoxine and N-acetyl sulfadoxine in plasma from patients infected with sensitive and resistant Plasmodium falciparum malaria. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 860(2), 160-165.
[http://dx.doi.org/10.1016/j.jchromb.2007.10.016] [PMID: 17997367]
[33]
Şanli, N. anli, S; Ozkanb, Z; and Denizl, A.; Determination of pKa values of some sulfonamides by LC and LC-PDA methods in acetonitrile-water binary mixtures. J. Braz. Chem. Soc., 2010, 21, 1952-1960.