Recent Insights into the Nutritional Antioxidant Therapy in Prevention and Treatment of Diabetic Vascular Complications: A Comprehensive Review

Page: [1920 - 1935] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus (DM) and DM-induced vascular complications are significant global healthcare problems, causing a decrease in patient quality of life. The main reason for the disability and mortality of patients is rapidly progressing micro-and macroangiopathies. Currently, free radical oxidation is recognized as one of the main mechanisms in the development of DM and associated complications. Under normal physiological conditions, the level of free radicals and antioxidant defense capabilities is balanced. However, imbalance occurs between the antioxidant defense system and pro-oxidants during chronic hyperglycemia and may invoke the formation of excess free radicals, leading to activation of lipid peroxidation and accumulation of highly toxic products of free radical oxidation. This is accompanied by varying degrees of insulin deficiency and insulin resistance in DM patients. Simultaneously with the activation of free radical generation, a decrease in the activity of antioxidant defense factors (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamins C and E) and an acceleration of diabetic complications are seen. Therefore, we hypothesize that antioxidants may play a positive role in the treatment of DM patients to prevent DM-induced vascular complications. However, this has not been sufficiently studied. In this review, we discuss recent insights into the potential underlying mechanisms of oxidative stress-induced diabetic complications and the implications of antioxidants in mitigation of DM-induced vascular complications.

Keywords: Antioxidant preparations, oxidative stress, diabetic vascular complications, diabetes mellitus, mitochondria, neuroprotection.

[1]
Shi, Y.; Vanhoutte, P.M. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes, 2017, 9(5), 434-449.
[http://dx.doi.org/10.1111/1753-0407.12521] [PMID: 28044409]
[2]
Zwingli, G.; Yerly, J.; Mivelaz, Y.; Stoppa-Vaucher, S.; Dwyer, A.A.; Pitteloud, N.; Stuber, M.; Hauschild, M. Non-invasive assessment of coronary endothelial function in children and adolescents with type 1 diabetes mellitus using isometric handgrip exercise-MRI: A feasibility study. PLoS One, 2020, 15(2), e0228569.
[http://dx.doi.org/10.1371/journal.pone.0228569] [PMID: 32053613]
[3]
Vecchié, A.; Montecucco, F.; Carbone, F.; Dallegri, F.; Bonaventura, A. diabetes and vascular disease: is it all about glycemia? Curr. Pharm. Des., 2019, 25(29), 3112-3127.
[http://dx.doi.org/10.2174/1381612825666190830181944] [PMID: 31470783]
[4]
Jung, C.H.; Mok, J.O. Recent updates on vascular complications in patients with type 2 diabetes mellitus. Endocrinol. Metab. (Seoul), 2020, 35(2), 260-271.
[http://dx.doi.org/10.3803/EnM.2020.35.2.260] [PMID: 32615710]
[5]
Zelniker, T.A.; Wiviott, S.D.; Raz, I. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet, 2019, 393(10166), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[6]
Zanuso, S.; Sacchetti, M.; Sundberg, C.J.; Orlando, G.; Benvenuti, P.; Balducci, S. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br. J. Sports Med., 2017, 51(21), 1533-1538.
[http://dx.doi.org/10.1136/bjsports-2016-096724] [PMID: 28501806]
[7]
Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S.H.; Hamblin, M.R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol., 2018, 55(8), 6601-6636.
[http://dx.doi.org/10.1007/s12035-017-0852-4] [PMID: 29327206]
[8]
Heggermont, W.A.; Papageorgiou, A.P.; Heymans, S.; van Bilsen, M. Metabolic support for the heart: complementary therapy for heart failure? Eur. J. Heart Fail., 2016, 18(12), 1420-1429.
[http://dx.doi.org/10.1002/ejhf.678] [PMID: 27813339]
[9]
Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab., 2017, 25(5), 1027-1036.
[http://dx.doi.org/10.1016/j.cmet.2017.04.015] [PMID: 28467922]
[10]
Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2014, 2014, 102158.
[http://dx.doi.org/10.1155/2014/102158] [PMID: 25215171]
[11]
Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ, 2020, 370, m2297.
[http://dx.doi.org/10.1136/bmj.m2297] [PMID: 32669282]
[12]
Leung, A.; Amaram, V.; Natarajan, R. Linking diabetic vascular complications with LncRNAs. Vascul. Pharmacol., 2019, 114, 139-144.
[http://dx.doi.org/10.1016/j.vph.2018.01.007] [PMID: 29398367]
[13]
Dhawan, S.; Natarajan, R. Epigenetics and type 2 diabetes risk. Curr. Diab. Rep., 2019, 19(8), 47.
[http://dx.doi.org/10.1007/s11892-019-1168-8] [PMID: 31250127]
[14]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[15]
Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.P.; Colette, C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA, 2006, 295(14), 1681-1687.
[http://dx.doi.org/10.1001/jama.295.14.1681] [PMID: 16609090]
[16]
Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol., 2019, 70(6)
[http://dx.doi.org/10.26402/jpp.2019.6.01] [PMID: 32084643]
[17]
Lamb, R.E.; Goldstein, B.J. Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int. J. Clin. Pract., 2008, 62(7), 1087-1095.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01789.x] [PMID: 18489578]
[18]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[19]
Chusak, C.; Pasukamonset, P.; Chantarasinlapin, P.; Adisakwattana, S. Postprandial glycemia, insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich riceberry rice. Nutrients, 2020, 12(3), E782.
[http://dx.doi.org/10.3390/nu12030782] [PMID: 32188005]
[20]
Guzik, T.J.; Harrison, D.G. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today, 2006, 11(11-12), 524-533.
[http://dx.doi.org/10.1016/j.drudis.2006.04.003] [PMID: 16713904]
[21]
Davidson, S.M.; Duchen, M.R. Endothelial mitochondria: contributing to vascular function and disease. Circ. Res., 2007, 100(8), 1128-1141.
[http://dx.doi.org/10.1161/01.RES.0000261970.18328.1d] [PMID: 17463328]
[22]
Fatehi-Hassanabad, Z.; Chan, C.B.; Furman, B.L. Reactive oxygen species and endothelial function in diabetes. Eur. J. Pharmacol., 2010, 636(1-3), 8-17.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.048] [PMID: 20371238]
[23]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I. Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[24]
Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 8609213.
[http://dx.doi.org/10.1155/2020/8609213] [PMID: 32215179]
[25]
Bey, E.A.; Xu, B.; Bhattacharjee, A.; Oldfield, C.M.; Zhao, X.; Li, Q.; Subbulakshmi, V.; Feldman, G.M.; Wientjes, F.B.; Cathcart, M.K. Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. J. Immunol., 2004, 173(9), 5730-5738.
[http://dx.doi.org/10.4049/jimmunol.173.9.5730] [PMID: 15494525]
[26]
Naruse, K.; Rask-Madsen, C.; Takahara, N.; Ha, S.W.; Suzuma, K.; Way, K.J.; Jacobs, J.R.; Clermont, A.C.; Ueki, K.; Ohshiro, Y.; Zhang, J.; Goldfine, A.B.; King, G.L. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes, 2006, 55(3), 691-698.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0771] [PMID: 16505232]
[27]
Mellor, K.M.; Brimble, M.A.; Delbridge, L.M. Glucose as an agent of post-translational modification in diabetes--New cardiac epigenetic insights. Life Sci., 2015, 129, 48-53.
[http://dx.doi.org/10.1016/j.lfs.2014.03.020] [PMID: 24699006]
[28]
Lovestone, S.; Smith, U. Advanced glycation end products, dementia, and diabetes. Proc. Natl. Acad. Sci. USA, 2014, 111(13), 4743-4744.
[http://dx.doi.org/10.1073/pnas.1402277111] [PMID: 24707042]
[29]
Ohmura, C.; Watada, H.; Azuma, K.; Shimizu, T.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Fujitani, Y.; Hirose, T.; Tanaka, Y.; Kawamori, R. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr. J., 2009, 56(1), 149-156.
[http://dx.doi.org/10.1507/endocrj.K08E-237] [PMID: 18997444]
[30]
Queisser, M.A.; Yao, D.; Geisler, S.; Hammes, H.P.; Lochnit, G.; Schleicher, E.D.; Brownlee, M.; Preissner, K.T. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes, 2010, 59(3), 670-678.
[http://dx.doi.org/10.2337/db08-1565] [PMID: 20009088]
[31]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[32]
Koga, M.; Murai, J.; Morita, S.; Saito, H.; Kasayama, S. Comparison of annual variability in HbA1c and glycated albumin in patients with type 1 vs. type 2 diabetes mellitus. J. Diabetes Complications, 2013, 27(3), 211-213.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.12.001] [PMID: 23312788]
[33]
Gholap, N.N.; Davies, M.J.; Mostafa, S.A.; Khunti, K. Diagnosing type 2 diabetes and identifying high-risk individuals using the new glycated haemoglobin (HbA1c) criteria. Br. J. Gen. Pract., 2013, 63(607), e165-e167.
[http://dx.doi.org/10.3399/bjgp13X663244] [PMID: 23561696]
[34]
Wells-Knecht, K.J.; Brinkmann, E.; Wells-Knecht, M.C.; Litchfield, J.E.; Ahmed, M.U.; Reddy, S.; Zyzak, D.V.; Thorpe, S.R.; Baynes, J.W. New biomarkers of Maillard reaction damage to proteins. Nephrol. Dial. Transplant., 1996, 11(Suppl. 5), 41-47.
[http://dx.doi.org/10.1093/ndt/11.supp5.41] [PMID: 9044306]
[35]
Wells-Knecht, K.J.; Zyzak, D.V.; Litchfield, J.E.; Thorpe, S.R.; Baynes, J.W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 1995, 34(11), 3702-3709.
[http://dx.doi.org/10.1021/bi00011a027] [PMID: 7893666]
[36]
Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab., 2013, 17(1), 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[37]
Wu, D.; Gong, C.X.; Meng, X.; Yang, Q.L. Correlation between blood glucose fluctuations and activation of oxidative stress in type 1 diabetic children during the acute metabolic disturbance period. Chin. Med. J. (Engl.), 2013, 126(21), 4019-4022.
[PMID: 24229667]
[38]
Gerber, P.A.; Rutter, G.A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox Signal., 2017, 26(10), 501-518.
[http://dx.doi.org/10.1089/ars.2016.6755] [PMID: 27225690]
[39]
Miki, A.; Ricordi, C.; Sakuma, Y.; Yamamoto, T.; Misawa, R.; Mita, A.; Molano, R.D.; Vaziri, N.D.; Pileggi, A.; Ichii, H. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One, 2018, 13(5), e0196570.
[http://dx.doi.org/10.1371/journal.pone.0196570] [PMID: 29723228]
[40]
Green, H.L.H.; Brewer, A.C. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin. Epigenetics, 2020, 12(1), 59.
[http://dx.doi.org/10.1186/s13148-020-00848-y] [PMID: 32345373]
[41]
Sifuentes-Franco, S.; Pacheco-Moisés, F.P.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes Res., 2017, 2017, 1673081.
[http://dx.doi.org/10.1155/2017/1673081] [PMID: 29204450]
[42]
Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond.), 2017, 31(8), 1122-1130.
[http://dx.doi.org/10.1038/eye.2017.64] [PMID: 28452994]
[43]
Lima, A.H.R.A.; Correia, M.A.; Soares, A.H.G.; Farah, B.Q.; Forjaz, C.L.M.; Silva, A.S.; Brasileiro-Santos, M.S.; Santos, A.C.; Ritti-Dias, R.M. Acute effects of walking and combined exercise on oxidative stress and vascular function in peripheral artery disease. Clin. Physiol. Funct. Imaging, 2018, 38(1), 69-75.
[http://dx.doi.org/10.1111/cpf.12384] [PMID: 27491344]
[44]
Koutakis, P.; Ismaeel, A.; Farmer, P.; Purcell, S.; Smith, R.S.; Eidson, J.L.; Bohannon, W.T. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol. Rep., 2018, 6(7), e13650.
[http://dx.doi.org/10.14814/phy2.13650] [PMID: 29611350]
[45]
Turan, B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr. Pharm. Biotechnol., 2010, 11(8), 819-836.
[http://dx.doi.org/10.2174/138920110793262123] [PMID: 20874678]
[46]
Domingueti, C.P.; Dusse, L.M.; Carvalho, Md.; de Sousa, L.P.; Gomes, K.B.; Fernandes, A.P. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complications, 2016, 30(4), 738-745.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018] [PMID: 26781070]
[47]
Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol., 2018, 34(5), 575-584.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[48]
Gruden, G.; Barutta, F.; Kunos, G.; Pacher, P. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol., 2016, 173(7), 1116-1127.
[http://dx.doi.org/10.1111/bph.13226] [PMID: 26076890]
[49]
Al-Khaldi, A.; Sultan, S. The expression of sirtuins, superoxide dismutase, and lipid peroxidation status in peripheral blood from patients with diabetes and hypothyroidism. BMC Endocr. Disord., 2019, 19(1), 19.
[http://dx.doi.org/10.1186/s12902-019-0350-y] [PMID: 30736780]
[50]
Widlansky, M.E.; Hill, R.B. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl. Res., 2018, 202, 83-98.
[http://dx.doi.org/10.1016/j.trsl.2018.07.015] [PMID: 30144425]
[51]
Kaneto, H.; Matsuoka, T.A. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int. J. Mol. Sci., 2015, 16(3), 6281-6297.
[http://dx.doi.org/10.3390/ijms16036281] [PMID: 25794287]
[52]
Pagnin, E.; Fadini, G.; de Toni, R.; Tiengo, A.; Calò, L.; Avogaro, A. Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J. Clin. Endocrinol. Metab., 2005, 90(2), 1130-1136.
[http://dx.doi.org/10.1210/jc.2004-1283] [PMID: 15562031]
[53]
Golbidi, S.; Badran, M.; Laher, I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp. Diabetes Res., 2012, 2012, 941868.
[http://dx.doi.org/10.1155/2012/941868] [PMID: 22007193]
[54]
Barone, M.T.; Menna-Barreto, L. Diabetes and sleep: a complex cause-and-effect relationship. Diabetes Res. Clin. Pract., 2011, 91(2), 129-137.
[http://dx.doi.org/10.1016/j.diabres.2010.07.011] [PMID: 20810183]
[55]
Ge, S.; Xie, J.; Zheng, L.; Yang, L.; Zhu, H.; Cheng, X.; Shen, F. Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy. Diabetes Res. Clin. Pract., 2016, 115, 68-75.
[http://dx.doi.org/10.1016/j.diabres.2016.02.005] [PMID: 27242125]
[56]
Ryan, S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J. Physiol., 2017, 595(8), 2423-2430.
[http://dx.doi.org/10.1113/JP273312] [PMID: 27901270]
[57]
Odegaard, J.I.; Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 2013, 339(6116), 172-177.
[http://dx.doi.org/10.1126/science.1230721] [PMID: 23307735]
[58]
Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; Liliensiek, B.; Dehmer, T.; Morcos, M.; Sayed, A.A.; Andrassy, M.; Schiekofer, S.; Schneider, J.G.; Schulz, J.B.; Heuss, D.; Neundörfer, B.; Dierl, S.; Huber, J.; Tritschler, H.; Schmidt, A.M.; Schwaninger, M.; Haering, H.U.; Schleicher, E.; Kasper, M.; Stern, D.M.; Arnold, B.; Nawroth, P.P. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest., 2004, 114(12), 1741-1751.
[http://dx.doi.org/10.1172/JCI18058] [PMID: 15599399]
[59]
Rodriguez-Calvo, T.; Ekwall, O.; Amirian, N.; Zapardiel-Gonzalo, J.; von Herrath, M.G. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes, 2014, 63(11), 3880-3890.
[http://dx.doi.org/10.2337/db14-0549] [PMID: 24947367]
[60]
Pathiraja, V.; Kuehlich, J.P.; Campbell, P.D.; Krishnamurthy, B.; Loudovaris, T.; Coates, P.T.; Brodnicki, T.C.; O’Connell, P.J.; Kedzierska, K.; Rodda, C.; Bergman, P.; Hill, E.; Purcell, A.W.; Dudek, N.L.; Thomas, H.E.; Kay, T.W.; Mannering, S.I. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes, 2015, 64(1), 172-182.
[http://dx.doi.org/10.2337/db14-0858] [PMID: 25157096]
[61]
Coppieters, K.T.; Dotta, F.; Amirian, N.; Campbell, P.D.; Kay, T.W.; Atkinson, M.A.; Roep, B.O.; von Herrath, M.G. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med., 2012, 209(1), 51-60.
[http://dx.doi.org/10.1084/jem.20111187] [PMID: 22213807]
[62]
Sarikonda, G.; Pettus, J.; Phatak, S.; Sachithanantham, S.; Miller, J.F.; Wesley, J.D.; Cadag, E.; Chae, J.; Ganesan, L.; Mallios, R.; Edelman, S.; Peters, B.; von Herrath, M. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J. Autoimmun., 2014, 50, 77-82.
[http://dx.doi.org/10.1016/j.jaut.2013.12.003] [PMID: 24387802]
[63]
Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol., 2021, 17(3), 150-161.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[64]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules, 2019, 9(8), E301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[65]
Machado, A.D.; Andrade, G.R.G.; Levy, J.; Ferreira, S.S.; Marchioni, D.M. Association between vitamins and minerals with antioxidant effects and coronary artery calcification in adults and older adults: a systematic review. Curr. Pharm. Des., 2019, 25(22), 2474-2479.
[http://dx.doi.org/10.2174/1381612825666190722101954] [PMID: 31333116]
[66]
McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; Gantz, I.; Terra, S.G.; Masiukiewicz, U.; Cannon, C.P. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol., 2021, 6(2), 148-158.
[http://dx.doi.org/10.1001/jamacardio.2020.4511] [PMID: 33031522]
[67]
Amanat, S.; Ghahri, S.; Dianatinasab, A.; Fararouei, M.; Dianatinasab, M. Exercise and type 2 diabetes.In: Physical Exercise for Human Health; Springer: Singapore, 2020, pp. 91-105.
[http://dx.doi.org/10.1007/978-981-15-1792-1_6]
[68]
Malik, A.; Morya, R.K.; Saha, S.; Singh, P.K.; Bhadada, S.K.; Rana, S.V. Oxidative stress and inflammatory markers in type 2 diabetic patients. Eur. J. Clin. Invest., 2020, 50(6), e13238.
[http://dx.doi.org/10.1111/eci.13238] [PMID: 32298466]
[69]
Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: mechanisms to management. Pharmacol. Ther., 2008, 120(1), 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[70]
Lu, J.; Huang, Y.; Zhang, X.; Xu, Y.; Nie, S. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol. Res., 2021., 105520.
[http://dx.doi.org/10.1016/j.phrs.2021.105520] [PMID: 33639232]
[71]
Ismaeel, A.; Papoutsi, E.; Miserlis, D.; Lavado, R.; Haynatzki, G.; Casale, G.P.; Bohannon, W.T.; Smith, R.S.; Eidson, J.L.; Brumberg, R.; Hayson, A.; Kirk, J.S.; Castro, C.; Sawicki, I.; Konstantinou, C.; Brewster, L.P.; Pipinos, I.I.; Koutakis, P. The nitric oxide system in peripheral artery disease: connection with oxidative stress and biopterins. Antioxidants, 2020, 9(7), 590.
[http://dx.doi.org/10.3390/antiox9070590] [PMID: 32640613]
[72]
Bartkoski, S.; Day, M. Alpha-lipoic acid for treatment of diabetic peripheral neuropathy. Am. Fam. Physician, 2016, 93(9), 786.
[PMID: 27175957]
[73]
Lee, K.A.; Lee, N.Y.; Park, T.S.; Jin, H.Y. Comparison of peripheral nerve protection between insulin-based glucose control and alpha lipoic acid (ALA) in the streptozotocin (STZ)-induced diabetic rat. Endocrine, 2018, 61(1), 58-67.
[http://dx.doi.org/10.1007/s12020-018-1613-5] [PMID: 29736880]
[74]
Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol., 2015, 93(12), 1021-1027.
[http://dx.doi.org/10.1139/cjpp-2014-0353] [PMID: 26406389]
[75]
Yang, H.; Zhao, F.; Jiang, G.; Sun, Z.; Mei, X. A novel deep learning approach for machinery prognostics based on time windows. Appl. Sci. (Basel), 2019, 9, 4813.
[http://dx.doi.org/10.3390/app9224813]
[76]
Hennessy, M.; Hamblin, M.R. Photobiomodulation and the brain: a new paradigm. J. Opt., 2017, 19(1), 013003.
[http://dx.doi.org/10.1088/2040-8986/19/1/013003] [PMID: 28580093]
[77]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[78]
Jakaria, M.; Azam, S.; Haque, M.E.; Jo, S-H.; Uddin, M.S.; Kim, I-S.; Choi, D-K. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol., 2019, 24, 101223.
[http://dx.doi.org/10.1016/j.redox.2019.101223] [PMID: 31141786]
[79]
Cheng, D.; Liang, B.; Li, Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. BioMed Res. Int., 2013, 2013, 162724.
[http://dx.doi.org/10.1155/2013/162724]]
[80]
Kudolo, G.B. The effect of 3-month ingestion of Ginkgo biloba extract on pancreatic β-cell function in response to glucose loading in normal glucose tolerant individuals. J. Clin. Pharmacol., 2000, 40(6), 647-654.
[http://dx.doi.org/10.1002/j.1552-4604.2000.tb05991.x] [PMID: 10868316]
[81]
Aziz, T.A.; Hussain, S.A.; Mahwi, T.O.; Ahmed, Z.A.; Rahman, H.S.; Rasedee, A. The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: a double-blind, randomized, placebo-controlled trial. Drug Des. Devel. Ther., 2018, 12, 735-742.
[http://dx.doi.org/10.2147/DDDT.S157113] [PMID: 29670330]
[82]
Sarkar, P.; Basak, P.; Ghosh, S.; Kundu, M.; Sil, P.C. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem. Toxicol., 2017, 110, 109-121.
[http://dx.doi.org/10.1016/j.fct.2017.10.022] [PMID: 29050977]
[83]
Karamitri, A.; Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol., 2019, 15(2), 105-125.
[http://dx.doi.org/10.1038/s41574-018-0130-1] [PMID: 30531911]
[84]
Al-Qahtani, S.M.; Bryzgalova, G.; Valladolid-Acebes, I.; Korach-André, M.; Dahlman-Wright, K.; Efendić, S.; Berggren, P-O.; Portwood, N. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression. Horm. Mol. Biol. Clin. Investig., 2017, 29(1), 13-26.
[PMID: 27831918]
[85]
Zhang, S.-y.; Yang, K.-l.; Zeng, L.-t.; Wu, X.-h.; Huang, H.-y. Effectiveness of coenzyme Q10 supplementation for type 2 diabetes mellitus: a systematic review and meta-analysis. Int. J. Endocrinol., 2018, 2018
[http://dx.doi.org/10.1155/2018/6484839]
[86]
Hunt, R.H. Prostaglandins for peptic ulcer disease. Lancet, 1987, 1(8544), 1262.
[http://dx.doi.org/10.1016/S0140-6736(87)92709-7] [PMID: 2884391]
[87]
Kulashekar, M.; Stom, S.M.; Peuler, J.D. Resveratrol’s potential in the adjunctive management of cardiovascular disease, obesity, diabetes, alzheimer disease, and cancer. J. Osteopathic Med., 2018, 118(9), 596-605.
[http://dx.doi.org/10.7556/jaoa.2018.133] [PMID: 30178049]
[88]
Franklin, T.R.; Ehrman, R.; Lynch, K.G.; Harper, D.; Sciortino, N.; O’Brien, C.P.; Childress, A.R. Menstrual cycle phase at quit date predicts smoking status in an NRT treatment trial: a retrospective analysis. J. Womens Health (Larchmt.), 2008, 17(2), 287-292.
[http://dx.doi.org/10.1089/jwh.2007.0423] [PMID: 18321180]
[89]
Lan, N.S.R.; Fegan, P.G.; Yeap, B.B.; Rankin, J.M.; Watts, G.F. Icosapent ethyl for dyslipidaemia in patients with diabetes and coronary artery disease: Act now to reduce it. Diabetes Obes. Metab., 2019, 21(7), 1734-1736.
[http://dx.doi.org/10.1111/dom.13689] [PMID: 30834678]
[90]
Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine flavonoids in health and disease prevention. Molecules, 2017, 22(2), 292.
[http://dx.doi.org/10.3390/molecules22020292] [PMID: 28216567]
[91]
Gasmi, A.; Mujawdiya, P.K.; Shanaida, M.; Ongenae, A.; Lysiuk, R.; Doşa, M.D.; Tsal, O.; Piscopo, S.; Chirumbolo, S.; Bjørklund, G. Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl. Microbiol. Biotechnol., 2020, 104(3), 967-979.
[http://dx.doi.org/10.1007/s00253-019-10293-4] [PMID: 31853565]
[92]
Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[93]
Banjari, I.; Misir, A.; Pavlić, M.; Herath, P.N.; Waisundara, V.Y. Traditional herbal medicines for diabetes used in Europe and Asia: remedies from Croatia and Sri Lanka. Altern. Ther. Health Med., 2019, 25(3), 40-52.
[PMID: 31160545]
[94]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[95]
Kanwugu, O.N.; Glukhareva, T.V.; Danilova, I.G.; Kovaleva, E.G. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit. Rev. Food Sci. Nutr., 2021, 1-24.
[http://dx.doi.org/10.1080/10408398.2021.1881434] [PMID: 33591215]
[96]
Han, J.; Tan, C.; Wang, Y.; Yang, S.; Tan, D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem. Biol. Interact., 2015, 227, 37-44.
[http://dx.doi.org/10.1016/j.cbi.2014.12.032] [PMID: 25559852]
[97]
Xi, M.; Hai, C.; Tang, H.; Wen, A.; Chen, H.; Liu, R.; Liang, X.; Chen, M. Antioxidant and antiglycation properties of triterpenoid saponins from Aralia taibaiensis traditionally used for treating diabetes mellitus. Redox Rep., 2010, 15(1), 20-28.
[http://dx.doi.org/10.1179/174329210X12650506623041] [PMID: 20196925]
[98]
Sun, W.; Zhang, Z.; Chen, Q.; Yin, X.; Fu, Y.; Zheng, Y.; Cai, L.; Kim, K-S.; Kim, K.H.; Tan, Y. Inhibitory effect of Magnolia officinalis and lovastatin on aortic oxidative stress and apoptosis in hyperlipidemic rabbits. J. Cardiovas. Pharmacol., 2014, 47, 463-468.
[99]
Chang, W-C.; Yu, Y-M.; Hsu, Y-M.; Wu, C-H.; Yin, P-L.; Chiang, S-Y.; Hung, J-S. Inhibitory effect of Magnolia officinalis and lovastatin on aortic oxidative stress and apoptosis in hyperlipidemic rabbits. J. Cardiovasc. Pharmacol., 2006, 47(3), 463-468.
[PMID: 16633091]
[100]
Zhang, Z.; Chen, J.; Zhou, S.; Wang, S.; Cai, X.; Conklin, D.J.; Kim, K-S.; Kim, K.H.; Tan, Y.; Zheng, Y.; Kim, Y.H.; Cai, L. Magnolia bioactive constituent 4-O-methylhonokiol prevents the impairment of cardiac insulin signaling and the cardiac pathogenesis in high-fat diet-induced obese mice. Int. J. Biol. Sci., 2015, 11(8), 879-891.
[http://dx.doi.org/10.7150/ijbs.12101] [PMID: 26157343]
[101]
Khanra, R.; Dewanjee, S.; K., Dua T.; Sahu, R.; Gangopadhyay, M.; De Feo, V.; Zia-Ul-Haq, M. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J. Transl. Med., 2015, 13, 6.
[http://dx.doi.org/10.1186/s12967-014-0364-1] [PMID: 25591455]
[102]
Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition, 2016, 32(1), 66-72.
[http://dx.doi.org/10.1016/j.nut.2015.07.011] [PMID: 26437613]
[103]
Yan, B.; Ren, J.; Zhang, Q.; Gao, R.; Zhao, F.; Wu, J.; Yang, J. Antioxidative effects of natural products on diabetic cardiomyopathy. J. Diabetes Res., 2017, 2017
[http://dx.doi.org/10.1155/2017/2070178]
[104]
Sundar Dhilip Kumar, S.; Houreld, N.N.; Abrahamse, H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules, 2018, 23(4), 835.
[http://dx.doi.org/10.3390/molecules23040835] [PMID: 29621160]
[105]
Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: clinical implications for vitamin E supplementation in diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(20), 5101.
[http://dx.doi.org/10.3390/ijms20205101] [PMID: 31618817]
[106]
Bril, F.; Biernacki, D.M.; Kalavalapalli, S.; Lomonaco, R.; Subbarayan, S.K.; Lai, J.; Tio, F.; Suman, A.; Orsak, B.K.; Hecht, J.; Cusi, K. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care, 2019, 42(8), 1481-1488.
[http://dx.doi.org/10.2337/dc19-0167] [PMID: 31332029]
[107]
Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary supplements and disease prevention - a global overview. Nat. Rev. Endocrinol., 2016, 12(7), 407-420.
[http://dx.doi.org/10.1038/nrendo.2016.54] [PMID: 27150288]
[108]
Holt, R.I. Editor’s selection: This month’s highlighted articles: vitamins and diabetes. Diabet. Med., 2016, 33(3), 279.
[http://dx.doi.org/10.1111/dme.13073] [PMID: 26864821]
[109]
Forte, M.; Schirone, L.; Ameri, P.; Basso, C.; Catalucci, D.; Modica, J.; Chimenti, C.; Crotti, L.; Frati, G.; Rubattu, S.; Schiattarella, G.G.; Torella, D.; Perrino, C.; Indolfi, C.; Sciarretta, S. The role of mitochondrial dynamics in cardiovascular diseases. Br. J. Pharmacol., 2021, 178(10), 2060-2076.
[http://dx.doi.org/10.1111/bph.15068] [PMID: 32294237]
[110]
Etchamendy, N.; Enderlin, V.; Marighetto, A.; Pallet, V.; Higueret, P.; Jaffard, R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav. Brain Res., 2003, 145(1-2), 37-49.
[http://dx.doi.org/10.1016/S0166-4328(03)00099-8] [PMID: 14529804]
[111]
Baburao Jain, A.; Anand Jain, V. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J. Clin. Diagn. Res., 2012, 6(10), 1624-1628.
[PMID: 23373014]
[112]
Dakhale, G.N.; Chaudhari, H.V.; Shrivastava, M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv. Pharmacol. Sci., 2011, 2011
[http://dx.doi.org/10.1155/2011/195271]
[113]
Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review; Oxidative Med. Cellular Longevity, 2020, 2020, .
[http://dx.doi.org/10.1155/2020/1356893]
[114]
Kohler, L.N.; Foote, J.; Kelley, C.P.; Florea, A.; Shelly, C.; Chow, H.S.; Hsu, P.; Batai, K.; Ellis, N.; Saboda, K.; Lance, P.; Jacobs, E.T. Selenium and type 2 diabetes: systematic review. Nutrients, 2018, 10(12), 1924.
[http://dx.doi.org/10.3390/nu10121924] [PMID: 30563119]
[115]
Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur. J. Epidemiol., 2018, 33(9), 789-810.
[http://dx.doi.org/10.1007/s10654-018-0422-8] [PMID: 29974401]
[116]
Mahdavi Gorabi, A.; Hasani, M.; Djalalinia, S.; Zarei, M.; Ejtahed, H.; Abdar, M.E.; Asayesh, H.; Azimzadeh, M.; Qorbani, M.; Noroozi, M. Effect of selenium supplementation on glycemic indices: a meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord., 2019, 18(2), 349-362.
[http://dx.doi.org/10.1007/s40200-019-00419-w] [PMID: 31890660]
[117]
Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys., 2016, 611, 79-85.
[http://dx.doi.org/10.1016/j.abb.2016.05.022] [PMID: 27262257]
[118]
San Mauro-Martin, I.; Ruiz-León, A.M.; Camina-Martín, M.A.; Garicano-Vilar, E.; Collado-Yurrita, L.; Mateo-Silleras, Bd. Redondo Del Río, Mde. P. [Chromium supplementation in patients with type 2 diabetes and high risk of type 2 diabetes: a meta-analysis of randomized controlled trials] Nutr. Hosp., 2016, 33(1), 27.
[http://dx.doi.org/10.20960/nh.27] [PMID: 27019254]
[119]
Tovar, J.; Johansson, M.; Björck, I. A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: an 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur. J. Nutr., 2016, 55(7), 2295-2306.
[http://dx.doi.org/10.1007/s00394-015-1039-2] [PMID: 26370118]
[120]
Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia, 2018, 61(9), 1985-1995.
[http://dx.doi.org/10.1007/s00125-018-4674-3] [PMID: 29971528]
[121]
Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions; Oxidative Med. Cellular Longevity, 2018, 2018, .
[http://dx.doi.org/10.1155/2018/7580707]