Current Pharmaceutical Biotechnology

Author(s): Sylvia A. Boshra*

DOI: 10.2174/1389201022666210810105804

Astaxanthin Attenuates Adiponectin, Calprotectin, miRNA222 and miRNA378 in Obesity induced by High-Fat Diet in Rats

Page: [609 - 618] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Astaxanthin suppressed obesity in rats fed with high-fat diet (HFD) via the restriction of adipose tissue build-out, therefore, improving insulin sensitivity and inflammation. Metformin reduces insulin resistance and may reduce weight.

Aim: Investigation of the effects of astaxanthin and metformin in obesity prompted by a high-fat diet.

Objective: The present article investigates the effects of astaxanthin and metformin in obesity prompted by a high-fat diet in rats through measuring miRNA222 and 378.

Materials: The rats were classified into four classes containing ten albino rats each: Group I (Normal group): nourished with ordinary diet for 8weeks. Group II (Control positive): nourished with a high-fat diet for 8 weeks. Group III: nourished with astaxanthin (50mg/kg)(1/40 LD50) orally plus a high-fat diet for 8weeks. Group IV: nourished with metformin (500mg/kg) orally plus a high-fat diet for 8 weeks.

Methods: Leptin, adiponectin, calprotectin and interleukin 6 (IL-6) were assessed by rat-specific ELISA kits. Tumor necrosis factor-alpha (TNF-α), miRNA222 and miRNA378 expressions were quantified by quantitative real-time PCR.

Results: Astaxanthin and metformin have anti-obesity and antioxidant actions and significantly decreased the weight of the body, glucose, insulin, triglycerides, total cholesterol, triglycerides and leptin, as well as plasma calprotectin & IL-6 and increased HDL-C and adiponectin. The liver TNF-α gene expression, adipose tissue miRNA222 and miRNA378 expression were decreased compared to HFD control rats.

Discussion and conclusion: Astaxanthin has regulated the aberrant expression of miRNA222 and 378 that may be related to hyperlipidemia and insulin resistance. Accordingly, astaxanthin deserves a clinical trial in the future due to its effects on miRNAs involved in obesity.

Keywords: Adiponectin, astaxanthin, calprotectin, miRNA222, miRNA378, obesity.

Graphical Abstract

[1]
Parmar, M.Y. Obesity and Type 2 diabetes mellitus. Integr. Obes. Diabetes, 2018, 4(4), 1-2.
[http://dx.doi.org/10.15761/IOD.1000217]
[2]
Fried, M.; Hainer, V.; Basdevant, A.; Buchwald, H.; Dietel, M.; Finer, N.; Greve, J.W.; Horber, F.; Mathus-Vliegen, E.; Scopinaro, N.; Steffen, R.; Tsigos, C.; Weiner, R.; Widhalm, K. Interdisciplinary European guidelines on surgery for severe obesity. Rozhl. Chir., 2008, 87(9), 468-476.
[PMID: 19174948]
[3]
Yalniz, M.; Bahcecioglu, I.H.; Kuzu, N.; Poyrazoglu, O.K.; Bulmus, O.; Celebi, S.; Ustundag, B.; Ozercan, I.H.; Sahin, K. Preventive role of genistein in an experimental non-alcoholic steatohepatitis model. J. Gastroenterol. Hepatol., 2007, 22(11), 2009-2014.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04681.x] [PMID: 17914984]
[4]
Pagotto, U.; Vanuzzo, D.; Vicennati, V.; Pasquali, R. Pharmacological therapy of obesity. G. Ital. Cardiol. (Rome), 2008, 9(4)(Suppl. 1), 83S-93S.
[PMID: 18773755]
[5]
Artham, S.M.; Lavie, C.J.; Milani, R.V.; Ventura, H.O. The obesity paradox: Impact of obesity on the prevalence and prognosis of cardiovascular diseases. Postgrad. Med., 2008, 120(2), 34-41.
[http://dx.doi.org/10.3810/pgm.2008.07.1788] [PMID: 18654066]
[6]
Hussein, M.A. Antidiabetic and antioxidant activity of Jasonia montana extract in STZ-induced diabetic rats. Saudi Pharm. J., 2008, 6, 214-221.
[7]
Hussein, M.A. Purslane extract effects on obesity-induced diabetic rats fed a high-fat diet.Malaysian journal of nitration, 2010, 16, 419-429.
[8]
Hussein, G.; Sankawa, U.; Goto, H.; Matsumoto, K.; Watanabe, H. Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod., 2006, 69(3), 443-449.
[http://dx.doi.org/10.1021/np050354+] [PMID: 16562856]
[9]
Visioli, F.; Artaria, C. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct., 2017, 8(1), 39-63.
[http://dx.doi.org/10.1039/C6FO01721E] [PMID: 27924978]
[10]
Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim. Biophys. Acta, 2001, 1512(2), 251-258.
[http://dx.doi.org/10.1016/S0005-2736(01)00326-1] [PMID: 11406102]
[11]
Chang, M.X.; Xiong, F. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules, 2020, 25(22), 5342.
[http://dx.doi.org/10.3390/molecules25225342] [PMID: 33207669]
[12]
Li, W.; Hellsten, A.; Jacobsson, L.S.; Blomqvist, H.M.; Olsson, A.G.; Yuan, X.M. α-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J. Mol. Cell. Cardiol., 2004, 37(5), 969-978.
[http://dx.doi.org/10.1016/j.yjmcc.2004.07.009] [PMID: 15522274]
[13]
Lee, S.J.; Bai, S.K.; Lee, K.S.; Namkoong, S.; Na, H.J.; Ha, K.S.; Han, J.A.; Yim, S.V.; Chang, K.; Kwon, Y.G.; Lee, S.K.; Kim, Y.M. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(κ)B kinase-dependent NF-kappaB activation. Mol. Cells, 2003, 16(1), 97-105.
[http://dx.doi.org/10.1007/s10059-013-1044-3] [PMID: 14503852]
[14]
Chen, J.T.; Kotani, K. Astaxanthin as a Potential Protector of Liver Function: A Review. J. Clin. Med. Res., 2016, 8(10), 701-704.
[http://dx.doi.org/10.14740/jocmr2672w] [PMID: 27635173]
[15]
Yoshida, H.; Yanai, H.; Ito, K.; Tomono, Y.; Koikeda, T.; Tsukahara, H.; Tada, N. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis, 2010, 209(2), 520-523.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.012] [PMID: 19892350]
[16]
Ishida, M.; Shimabukuro, M.; Yagi, S.; Nishimoto, S.; Kozuka, C.; Fukuda, D.; Soeki, T.; Masuzaki, H.; Tsutsui, M.; Sata, M. MicroRNA-378 regulates adiponectin expression in adipose tissue: A new plausible mechanism. PLoS One, 2014, 9(11)e111537
[http://dx.doi.org/10.1371/journal.pone.0111537] [PMID: 25379946]
[17]
Suzuki, Y.; Ohgami, K.; Shiratori, K.; Jin, X.H.; Ilieva, I.; Koyama, Y.; Yazawa, K.; Yoshida, K.; Kase, S.; Ohno, S. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-kappaB signaling pathway. Exp. Eye Res., 2006, 82(2), 275-281.
[http://dx.doi.org/10.1016/j.exer.2005.06.023] [PMID: 16126197]
[18]
Speranza, L.; Pesce, M.; Patruno, A.; Franceschelli, S.; de Lutiis, M.A.; Grilli, A.; Felaco, M. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar. Drugs, 2012, 10(4), 890-899. [CrossRef
[http://dx.doi.org/10.3390/md10040890] [PMID: 22690149]
[19]
Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Rovira, O.; Guerra, E.; Esteve, E.; Xifra, G.; Martínez, C.; Ricart, W.; Rieusset, J.; Rome, S.; Karczewska-Kupczewska, M.; Straczkowski, M.; Fernández-Real, J.M. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care, 2014, 37(5), 1375-1383.
[http://dx.doi.org/10.2337/dc13-1847] [PMID: 24478399]
[20]
Shi, Z.; Zhao, C.; Guo, X.; Ding, H.; Cui, Y.; Shen, R.; Liu, J. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERα expression in estrogen-induced insulin resistance. Endocrinology, 2014, 155(5), 1982-1990.
[http://dx.doi.org/10.1210/en.2013-2046] [PMID: 24601884]
[21]
Carrer, M.; Liu, N.; Grueter, C.E.; Williams, A.H.; Frisard, M.I.; Hulver, M.W.; Bassel-Duby, R.; Olson, E.N. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15330-15335.
[http://dx.doi.org/10.1073/pnas.1207605109] [PMID: 22949648]
[22]
Hussein, G.; Nakamura, M.; Zhao, Q.; Iguchi, T.; Goto, H.; Sankawa, U.; Watanabe, H. Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol. Pharm. Bull., 2005, 28(1), 47-52.
[http://dx.doi.org/10.1248/bpb.28.47] [PMID: 15635162]
[23]
Meng, X.M.; Ma, X.X.; Tian, Y.L.; Jiang, Q.; Wang, L.L.; Shi, R.; Ding, L.; Pang, S.G. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(9), 2232-2237.
[PMID: 28537659]
[24]
Speakman, J.R. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes., 2019, 43(8), 1491-1492.
[http://dx.doi.org/10.1038/s41366-019-0363-7] [PMID: 30967607]
[25]
Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem., 1969, 6, 24-32.
[http://dx.doi.org/10.1177/00045632690060010]
[26]
Findlay, J.W.; Dillard, R.F. Appropriate calibration curve fitting in ligand binding assays. AAPS J., 2007, 9(2), E260-E267.
[http://dx.doi.org/10.1208/aapsj0902029] [PMID: 17907767]
[27]
Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 1982, 28(10), 2077-2080.
[http://dx.doi.org/10.1093/clinchem/28.10.2077] [PMID: 6812986]
[28]
Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[29]
Feng, D.; Ling, W.H.; Duan, R.D. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm. Res., 2010, 59(2), 115-121.
[http://dx.doi.org/10.1007/s00011-009-0077-8] [PMID: 19693648]
[30]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[31]
Bray, G.A.; Lovejoy, J.C.; Smith, S.R.; DeLany, J.P.; Lefevre, M.; Hwang, D.; Ryan, D.H.; York, D.A. The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J. Nutr., 2002, 132(9), 2488-2491.
[http://dx.doi.org/10.1093/jn/132.9.2488] [PMID: 12221198]
[32]
Estadella, D.; Oyama, L.M.; Dâmaso, A.R.; Ribeiro, E.B.; Oller Do Nascimento, C.M. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition, 2004, 20(2), 218-224.
[http://dx.doi.org/10.1016/j.nut.2003.10.008] [PMID: 14962690]
[33]
Weigle, D.S. Pharmacological therapy of obesity: Past, present, and future. J. Clin. Endocrinol. Metab., 2003, 88(6), 2462-2469.
[http://dx.doi.org/10.1210/jc.2003-030151] [PMID: 12788841]
[34]
Hayashi, K.; Ito, M. Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol. Pharm. Bull., 2002, 25(2), 188-192.
[http://dx.doi.org/10.1248/bpb.25.188] [PMID: 11853163]
[35]
Tsuchida, A.; Yamauchi, T.; Takekawa, S.; Hada, Y.; Ito, Y.; Maki, T.; Kadowaki, T. Peroxisome proliferator-activated receptor (PPAR)α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: Comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes, 2005, 54(12), 3358-3370.
[http://dx.doi.org/10.2337/diabetes.54.12.3358] [PMID: 16306350]
[36]
Hildebrandt, A.L.; Kelly-Sullivan, D.M.; Black, S.C. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur. J. Pharmacol., 2003, 462(1-3), 125-132.
[http://dx.doi.org/10.1016/S0014-2999(03)01343-8] [PMID: 12591104]
[37]
Wondmkun, Y.T. Obesity, insulin resistance, and Type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes., 2020, 13, 3611-3616.
[http://dx.doi.org/10.2147/DMSO.S275898] [PMID: 33116712]
[38]
Hussein, M.A.; Abdel-Gawad, S.M. Protective effect of Jasonia montana against ethinylestradiol-induced cholestasis in rats. Saudi Pharm. J., 2010, 18(1), 27-33.
[http://dx.doi.org/10.1016/j.jsps.2009.12.002] [PMID: 23960717]
[39]
Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential anti atherosclerotic properties of astaxanthin. Mar. Drugs, 2016, 14(2), 1-13.
[http://dx.doi.org/10.3390/md14020035] [PMID: 26861359]
[40]
Garcés-Rimón, M.; González, C.; Uranga, J.A.; López-Miranda, V.; López-Fandiño, R.; Miguel, M. Pepsin egg white hydrolysate ameliorates obesity-related oxidative stress, inflammation and steatosis in Zucker Fatty Rats. PLoS One, 2016, 11(3)e0151193
[http://dx.doi.org/10.1371/journal.pone.0151193] [PMID: 26985993]
[41]
Aslam, M.; Madhu, S.V. Development of metabolic syndrome in high-sucrose diet fed rats is not associated with decrease in adiponectin levels. Endocrine, 2017, 58(1), 59-65.
[http://dx.doi.org/10.1007/s12020-017-1403-5] [PMID: 28879415]
[42]
Singh, P.; Sharma, P.; Sahakyan, K.R.; Davison, D.E.; Sert-Kuniyoshi, F.H.; Romero-Corral, A.; Swain, J.M.; Jensen, M.D.F.; Lopez-Jimenez, F.; Kara, T.; Somers, V.K. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int. J. Obes., 2016, 40(2), 266-274.
[http://dx.doi.org/10.1038/ijo.2015.181] [PMID: 26374448]
[43]
Tsuchida, A.; Yamauchi, T.; Ito, Y.; Hada, Y.; Maki, T.; Takekawa, S.; Kamon, J.; Kobayashi, M.; Suzuki, R.; Hara, K.; Kubota, N.; Terauchi, Y.; Froguel, P.; Nakae, J.; Kasuga, M.; Accili, D.; Tobe, K.; Ueki, K.; Nagai, R.; Kadowaki, T. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem., 2004, 279(29), 30817-30822.
[http://dx.doi.org/10.1074/jbc.M402367200] [PMID: 15123605]
[44]
Wasim, M. Role of leptin in obesity. J. Obes. Weight Loss Ther., 2016, 5(2), 1-3.
[PMID: 27313173]
[45]
Kesh, S.B.; Sarkar, D.; Manna, K. High-fat diet-induced oxidative stress and its impact on metabolic syndrome: A review. Asian J Pharm Clin Res, 2016, 9(1), 47-52.
[46]
Alvarez-Blasco, F.; Martínez-García, M.A.; Luque-Ramírez, M.; Parraza, N.; San Millán, J.L.; Escobar-Morreale, H.F. Role of haptoglobin in polycystic ovary syndrome (PCOS), obesity and disorders of glucose tolerance in premenopausal women. PLoS One, 2009, 4(5)e5606
[http://dx.doi.org/10.1371/journal.pone.0005606] [PMID: 19440331]
[47]
Adeghate, E. Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem., 2008, 15(18), 1851-1862.
[http://dx.doi.org/10.2174/092986708785133004] [PMID: 18691043]
[48]
Ohgami, K.; Shiratori, K.; Kotake, S.; Nishida, T.; Mizuki, N.; Yazawa, K.; Ohno, S. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest. Ophthalmol. Vis. Sci., 2003, 44(6), 2694-2701.
[http://dx.doi.org/10.1167/iovs.02-0822] [PMID: 12766075]
[49]
Daemen, S.; Schilling, J.D. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Front. Immunol., 2020, 10, 3133.
[http://dx.doi.org/10.3389/fimmu.2019.03133] [PMID: 32038642]
[50]
Kanda, H.; Tateya, S.; Tamori, Y.; Kotani, K.; Hiasa, K.; Kitazawa, R.; Kitazawa, S.; Miyachi, H.; Maeda, S.; Egashira, K.; Kasuga, M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest., 2006, 116(6), 1494-1505.
[http://dx.doi.org/10.1172/JCI26498] [PMID: 16691291]
[51]
Strissel, K.J.; Stancheva, Z.; Miyoshi, H.; Perfield, J.W., II; DeFuria, J.; Jick, Z.; Greenberg, A.S.; Obin, M.S. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes, 2007, 56(12), 2910-2918.
[http://dx.doi.org/10.2337/db07-0767] [PMID: 17848624]
[52]
Shibata, A.; Kiba, Y.; Akati, N.; Fukuzawa, K.; Terada, H. Molecular characteristics of astaxanthin and beta-carotene in the phospholipid monolayer and their distributions in the phospholipid bilayer. Chem. Phys. Lipids, 2001, 113(1-2), 11-22.
[http://dx.doi.org/10.1016/S0009-3084(01)00136-0] [PMID: 11687223]
[53]
Choi, S.K.; Park, Y.S.; Choi, D.K.; Chang, H.I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol., 2008, 18(12), 1990-1996.
[PMID: 19131704]
[54]
Priyadarshini, L.; Aggarwal, A. Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IκB kinase-dependent nuclear factor κB activation in pre and postpartum Murrah buffaloes during different seasons. Vet. World, 2018, 11(6), 782-788.
[http://dx.doi.org/10.14202/vetworld.2018.782-788] [PMID: 30034170]
[55]
Rahardjo, S.P.; Rola, A.A.; Punagi, A.Q.; Perkasa, M.F. The effect of astaxanthin administration on plasma levels of TNF-α and palative tonsil swab in chronic tonsillitis patients. Med.-Leg. Update, 2020, 20, 2.
[56]
Xu, L.L.; Shi, C.M.; Xu, G.F.; Chen, L.; Zhu, L.L.; Zhu, L.; Guo, X.R.; Xu, M.Y.; Ji, C.B. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem. Biophys., 2014, 70(2), 771-776.
[http://dx.doi.org/10.1007/s12013-014-9980-x] [PMID: 24771406]
[57]
Lodge, R.; Ferreira Barbosa, J.A.; Lombard-Vadnais, F.; Gilmore, J.C.; Deshiere, A.; Gosselin, A.; Wiche Salinas, T.R.; Bego, M.G.; Power, C.; Routy, J.P.; Ancuta, P.; Tremblay, M.J.; Cohen, É.A. Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep., 2017, 21(1), 141-153.
[http://dx.doi.org/10.1016/j.celrep.2017.09.030] [PMID: 28978468]
[58]
Mortensen, O.H.; Nielsen, A.R.; Erikstrup, C.; Plomgaard, P.; Fischer, C.P.; Krogh-Madsen, R.; Lindegaard, B.; Petersen, A.M.; Taudorf, S.; Pedersen, B.K. Calprotectin--a novel marker of obesity. PLoS One, 2009, 4(10)e7419
[http://dx.doi.org/10.1371/journal.pone.0007419] [PMID: 19823685]
[59]
Rowicka, G.; Dyląg, H.; Chełchowska, M.; Weker, H.; Ambroszkiewicz, J. Serum Calprotectin and Chemerin Concentrations as Markers of Low-Grade Inflammation in Prepubertal Children with Obesity. Int. J. Environ. Res. Public Health, 2020, 17(20), 1-10.
[http://dx.doi.org/10.3390/ijerph17207575] [PMID: 33081030]
[60]
Hasan, A.; Kochumon, S.P.; Alkandari, H. Plasma calprotectin is associated with obesity and systemic in children. Diabetes, 2020, 69, 1.
[http://dx.doi.org/10.2337/db20-1271-]
[61]
Kennell, J.A.; Gerin, I.; MacDougald, O.A.; Cadigan, K.M. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15417-15422.
[http://dx.doi.org/10.1073/pnas.0807763105] [PMID: 18824696]
[62]
Trümbach, D.; Prakash, N. The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res., 2015, 359(1), 161-177.
[http://dx.doi.org/10.1007/s00441-014-1911-z] [PMID: 24875007]
[63]
Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr., 2017, 12, 23-32.
[http://dx.doi.org/10.1186/s12263-017-0577-z] [PMID: 28974990]
[64]
Withers, S.B.; Dewhurst, T.; Hammond, C.; Topham, C.H. MiRNAs as novel adipokines: Obesity-related circulating MiRNAs influence chemosensitivity in cancer patients. Noncoding RNA, 2020, 6(1), 5.
[http://dx.doi.org/10.3390/ncrna6010005] [PMID: 31979312]
[65]
Yamashita, R.; Sato, M.; Kakumu, T.; Hase, T.; Yogo, N.; Maruyama, E.; Sekido, Y.; Kondo, M.; Hasegawa, Y. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells. Cancer Med., 2015, 4(4), 551-564.
[http://dx.doi.org/10.1002/cam4.412] [PMID: 25641933]
[66]
Debnath, T.; Deb Nath, N.C.; Kim, E.K.; Lee, K.G. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct., 2017, 8(10), 3432-3442.
[http://dx.doi.org/10.1039/C7FO00739F] [PMID: 28782785]
[67]
Bouyssou, J.M.; Manier, S.; Huynh, D.; Issa, S.; Roccaro, A.M.; Ghobrial, I.M. Regulation of microRNAs in cancer metastasis. Biochim. Biophys. Acta, 2014, 1845(2), 255-265.
[PMID: 24569228]
[68]
Boshra, S.A. Resveratrol Modulates miR-34a in Cardiotoxicity Induced by Isoproterenol. J. Med. Food, 2020, 23(6), 593-599.
[http://dx.doi.org/10.1089/jmf.2019.0209] [PMID: 31794687]