Selective Recognition of Caffeine by (3-aminopropyl) Triethoxysilane Based Polymers

Page: [367 - 374] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The metal alkoxides undergo the sol-gel process leads to highly dense polymer networks in nano range size particles. Template-mediated nanomaterial fabrication involves functional monomers, cross binders, catalysis, and other favorable thermal conditions optimized to prepare thermal, mechanical, and chemo-stable tailor-made complimentary recognition sites ceramic materials.

Methods: The present study is focused on imprinting of caffeine by sol-gel method, wherein functional monomer as (3-aminopropyl) triethoxysilane (APTES), crosslinker as tetraethyl orthosilicate (TEOS), and ammonium hydroxide solution as catalyst were considered to prepare materials, and those materials characterized. The catalyzed hydrolysis and condensation were carried with a wide range of composition mixtures in acetonitrile optimized at 60 °C. The imprinted polymers (MIPs) and Non-Imprinted Polymers (NIPs) characterized by FTIR, GC-MS, SEM, and EDS techniques. Further post-polymerization studies were carried to investigate recognizing capacity specificity and the binding capacity of the caffeine and its structurally similar analogs with imprinted / non-imprinted polymers.

Results: The studies revealed that efficiency in the template removal was high in the imprinted polymers in which low concentration of crosslinker and whereas the selectivity of the template was observed to be high compared with polymers with higher concentrations.

Conclusion: In conclusion, high binding affinity was observed in imprinted polymers to that of non- Imprinted polymers.

Keywords: Sol-gel method, functional monomers, crosslinkers, imprinted / non-imprinted polymers, selectivity, recognizing capacity, NIPs.

Graphical Abstract

[1]
Wulff, G.; Liu, J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: The role of transition state stabilization. Acc. Chem. Res., 2012, 45(2), 239-247.
[http://dx.doi.org/10.1021/ar200146m] [PMID: 21967389]
[2]
Lv, W.; Li, L.; Xu, M.; Hong, J.; Tang, X.; Xu, L.; Wu, Y.; Zhu, R.; Chen, R.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater., 2019, 31(28), e1900682.
[http://dx.doi.org/10.1002/adma.201900682] [PMID: 31090977]
[3]
Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.J. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR. Magn. Reson. Chem., 2017, 55(5), 452-463.
[http://dx.doi.org/10.1002/mrc.4427] [PMID: 26987451]
[4]
Adnet, T.; Groo, A-C.; Picard, C.; Davis, A.; Corvaisier, S.; Since, M.; Bounoure, F.; Rochais, C.; Pluart, L.L.; Dallemagne, P.; Malzert-Fréon, A. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment. Pharmaceutics, 2020, 12(3), E251.
[http://dx.doi.org/10.3390/pharmaceutics12030251] [PMID: 32168767]
[5]
Mehmood, Y.; Khan, I.U.; Shahzad, Y.; Khan, R.U.; Khalid, S.H.; Yousaf, A.M.; Hussain, T.; Asghar, S.; Khalid, I.; Asif, M.; Shah, S.U. Amino-decorated mesoporous silica nanoparticles for controlled sofosbuvir delivery. Eur. J. Pharm. Sci., 2020, 143, 105184.
[http://dx.doi.org/10.1016/j.ejps.2019.105184] [PMID: 31846695]
[6]
Zheng, K.; Kang, J.; Rutkowski, B.; Gawȩda, M.; Zhang, J.; Wang, Y.; Founier, N.; Sitarz, M.; Taccardi, N.; Boccaccini, A.R. Toward highly dispersed mesoporous bioactive glass nanoparticles with high cu concentration using cu/ascorbic acid complex as precursor. Front Chem., 2019, 7, 497.
[http://dx.doi.org/10.3389/fchem.2019.00497] [PMID: 31380344]
[7]
Wu, Y.; Sun, X.; Zhu, J.; Shen, J.; Wang, H.; Zhu, L.; Zhou, Y.; Ke, Y. Monodisperse core-shell silica particles as a high-performance liquid chromatography packing material: Facile In situsilica sol-gel synthesis. J. Chromatogr. A, 2020, 1625, 461282.
[http://dx.doi.org/10.1016/j.chroma.2020.461282] [PMID: 32709333]
[8]
Ansell, R.J.; Meegan, J.E.; Barrett, S.A.; Warrinner, S.L. On the interactions of alkyl 2-hydroxycarboxylic acids with alkoxysilanes 2. Complexation and esterification of di- and tricarboxylic acids. Dalton Trans., 2009, (8), 1460-1470.
[http://dx.doi.org/10.1039/b814488e] [PMID: 19462669]
[9]
Efstathiou, S.; Wemyss, A.M.; Patias, G.; Al-Shok, L.; Grypioti, M.; Coursari, D.; Ma, C.; Atkins, C.J.; Shegiwal, A.; Wan, C.; Haddleton, D.M. Self-healing and mechanical performance of dynamic glycol chitosan hydrogel nanocomposites. J. Mater. Chem. B Mater. Biol. Med., 2020, 9(3), 809-823.
[http://dx.doi.org/10.1039/d0tb02390f] [PMID: 33337461]
[10]
Figueiredo, T.; Cosenza, V.; Ogawa, Y.; Jeacomine, I.; Vallet, A.; Ortega, S.; Michel, R.; Olsson, J.D.M.; Gerfaud, T.; Boiteau, J-G.; Jing, J.; Harris, C.; Auzély-Velty, R. Boronic acid and diol-containing polymers: How to choose the correct couple to form “strong” hydrogels at physiological pH. Soft Matter, 2020, 16(15), 3628-3641.
[http://dx.doi.org/10.1039/D0SM00178C] [PMID: 32222755]
[11]
Ghosh, S.; Das, S.; Mosquera, M.E.G. Conducting polymer-based nanohybrids for fuel cell application. Polymers (Basel), 2020, 12(12), E2993.
[http://dx.doi.org/10.3390/polym12122993] [PMID: 33333881]
[12]
Xu, L.; Li, J.; Zhang, J.; Sun, J.; Gan, T.; Liu, Y. A disposable molecularly imprinted electrochemical sensor for the ultra-trace detection of the organophosphorus insecticide phosalone employing monodisperse Pt-doped UiO-66 for signal amplification. Analyst (Lond.), 2020, 145(9), 3245-3256.
[http://dx.doi.org/10.1039/D0AN00278J] [PMID: 32211645]
[13]
Naik, A.P.; Salkar, A.V.; Majik, M.S.; Morajkar, P.P. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: Evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates. Photochem. Photobiol. Sci., 2017, 16(7), 1126-1138.
[http://dx.doi.org/10.1039/C7PP00090A] [PMID: 28548665]
[14]
Bürglová, K.; Noureddine, A.; Hodačová, J.; Toquer, G.; Cattoën, X.; Wong Chi Man, M. A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas. Chemistry, 2014, 20(33), 10371-10382.
[http://dx.doi.org/10.1002/chem.201403136] [PMID: 25044077]
[15]
Nikoorazm, M.; Khanmoradi, M.; Sayadian, M. Withdrawal notice: Nickel (II) and oxovanadium (IV) complexes supported on MCM-41 mesoporous and their application in catalytic selective sulfide and thiol oxidation. Comb. Chem. High Throughput Screen., 2020.
[http://dx.doi.org/10.2174/1386207323999201111192649] [PMID: 33183195]
[16]
Butler, K.S.; Durfee, P.N.; Theron, C.; Ashley, C.E.; Carnes, E.C.; Brinker, C.J. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small, 2016, 12(16), 2173-2185.
[http://dx.doi.org/10.1002/smll.201502119] [PMID: 26780591]
[17]
Karamikamkar, S.; Fashandi, M.; Naguib, H.E.; Park, C.B. In situ interface design in graphene-embedded polymeric silica aerogel with organic/inorganic hybridization. ACS Appl. Mater. Interfaces, 2020, 12(23), 26635-26648.
[http://dx.doi.org/10.1021/acsami.0c04531] [PMID: 32352754]
[18]
Shin, M.J.; Shin, J.S. A molecularly imprinted polymer undergoing a color change depending on the concentration of bisphenol A. Mikrochim. Acta, 2019, 187(1), 44.
[http://dx.doi.org/10.1007/s00604-019-4050-0] [PMID: 31832783]
[19]
Kysil, D.V.; Vasin, A.V.; Sevostianov, S.V.; Degoda, V.Y.; Strelchuk, V.V.; Naseka, V.M.; Piryatinski, Y.P.; Tertykh, V.A.; Nazarov, A.N.; Lysenko, V.S. Formation and luminescent properties of Al2O3:SiOC nanocomposites on the base of alumina nanoparticles modified by phenyltrimethoxysilane. Nanoscale Res. Lett., 2017, 12(1), 477.
[http://dx.doi.org/10.1186/s11671-017-2245-z] [PMID: 28774156]
[20]
Hu, C.; Deng, J.; Zhao, Y.; Xia, L.; Huang, K.; Ju, S.; Xiao, N. A novel core-shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole. Food Chem., 2014, 158, 366-373.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.143] [PMID: 24731356]
[21]
Hao, N.; Neranon, K.; Ramström, O.; Yan, M. Glyconanomaterials for biosensing applications. Biosens. Bioelectron., 2016, 76, 113-130.
[http://dx.doi.org/10.1016/j.bios.2015.07.031] [PMID: 26212205]
[22]
Ben-Nissan, B.; Choi, A.H. Sol-gel production of bioactive nanocoatings for medical applications. Part 1: An introduction. Nanomedicine (Lond.), 2006, 1(3), 311-319.
[http://dx.doi.org/10.2217/17435889.1.3.311] [PMID: 17716161]
[23]
Ajazuddin; Alexander, A.; Khan, J.; Giri, T.K.; Tripathi, D.K.; Saraf, S.; Saraf, S. Advancement in stimuli triggered In situ gelling delivery for local and systemic route. Expert Opin. Drug Deliv., 2012, 9(12), 1573-1592.
[http://dx.doi.org/10.1517/17425247.2013.734806] [PMID: 23075325]
[24]
Ye, L.; Ramström, O.; Ansell, R.J.; Månsson, M.O.; Mosbach, K. Use of molecularly imprinted polymers in a biotransformation process. Biotechnol. Bioeng., 1999, 64(6), 650-655.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990920)64:6<650:AID-BIT3>3.0.CO;2-7] [PMID: 10417213]
[25]
Feichtenschlager, B.; Pabisch, S.; Peterlik, H.; Kickelbick, G. Nanoparticle assemblies as probes for self-assembled monolayer characterization: Correlation between surface functionalization and agglomeration behavior. Langmuir, 2012, 28(1), 741-750.
[http://dx.doi.org/10.1021/la2023067] [PMID: 22085020]
[26]
Albinati, A.; Faccini, F.; Gross, S.; Kickelbick, G.; Rizzato, S.; Venzo, A. New methacrylate-functionalized ba and ba-ti oxoclusters as potential nanosized building blocks for inorganic-organic hybrid materials: Synthesis and characterization. Inorg. Chem., 2007, 46(9), 3459-3466.
[http://dx.doi.org/10.1021/ic0615630] [PMID: 17402727]
[27]
Wang, X.; Ramström, O.; Yan, M. Glyconanomaterials: Synthesis, characterization, and ligand presentation. Adv. Mater., 2010, 22(17), 1946-1953.
[http://dx.doi.org/10.1002/adma.200903908] [PMID: 20301131]