Molecular Regulatory Roles of Long Non-coding RNA HOTTIP: An Overview in Gastrointestinal Cancers

Page: [478 - 490] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Gastrointestinal (GI) cancers presented an alarmingly high number of new cancer cases worldwide and are highly characterised by poor prognosis. The poor overall survival is mainly due to late detection and emerging challenges in treatment, particularly chemoresistance. Thus, the identification of novel molecular targets in GI cancer is highly regarded as the main focus. Recently, long non-coding RNAs (lncRNAs) have been discovered as potential novel molecular targets for combating cancer, as they are highly associated with carcinogenesis and have a great impact on cancer progression. Amongst lncRNAs, HOTTIP has demonstrated a prominent oncogenic regulation in cancer progression, particularly in GI cancers, including oesophageal cancer, gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. This review aimed to present a focused update on the regulatory roles of HOTTIP in GI cancer progression and chemoresistance, as well as deciphering the associated molecular mechanisms underlying their impact on cancer phenotypes and chemoresistance and the key molecules involved. It has been reported that it regulates the expression of various genes and proteins in GI cancers that impact cellular functions, including proliferation, adhesion, migration and invasion, apoptosis, chemosensitivity, and tumour differentiation. Furthermore, HOTTIP was also discovered to have a higher diagnostic value as compared to existing diagnostic biomarkers. Overall, HOTTIP has presented itself as a novel therapeutic target and potential diagnostic biomarker in the development of GI cancer treatment.

Keywords: Molecular targets, lncRNA, HOTTIP, gastrointestinal cancer, cancer treatment, drug discovery.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Sung JJ, Ng EK, Lin JT, et al. Digestive cancer management in Asia: Position statements: A report on GI Oncology Summit in 2011. J Gastroenterol Hepatol 2012; 27(9): 1417-22.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07194.x] [PMID: 22694174]
[3]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[4]
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in metastatic breast cancer: Its regulation and implications in diagnosis, prognosis and therapeutics. Curr Cancer Drug Targets 2019; 19(2): 82-100.
[http://dx.doi.org/10.2174/1568009618666180430130248] [PMID: 29714144]
[5]
Ramakrishnan P, Loh WM, Gopinath SCB, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B 2020; 10(3): 399-413.
[http://dx.doi.org/10.1016/j.apsb.2019.11.008] [PMID: 32140388]
[6]
Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108(12): 2419-25.
[http://dx.doi.org/10.1038/bjc.2013.233] [PMID: 23660942]
[7]
Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: Current insights and future perspectives. Nat Rev Cancer 2017; 17(11): 692-704.
[http://dx.doi.org/10.1038/nrc.2017.82] [PMID: 29026206]
[8]
Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 2016; 937: 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1] [PMID: 27573892]
[9]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[10]
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[11]
Ramli S, Sim MS, Guad RM, et al. Long noncoding RNA UCA1 in gastrointestinal cancers: molecular regulatory roles and patterns, mechanisms, and interactions. J Oncol 2021; 2021: 5519720.
[http://dx.doi.org/10.1155/2021/5519720] [PMID: 33936199]
[12]
Lian Y, Ding J, Zhang Z, et al. The long noncoding RNA HOXA transcript at the distal tip promotes colorectal cancer growth partially via silencing of p21 expression. Tumour Biol 2016; 37(6): 7431-40.
[http://dx.doi.org/10.1007/s13277-015-4617-2] [PMID: 26678886]
[13]
Fan Y, Yan T, Chai Y, Jiang Y, Zhu X. Long noncoding RNA HOTTIP as an independent prognostic marker in cancer. Clin Chim Acta 2018; 482: 224-30.
[http://dx.doi.org/10.1016/j.cca.2017.07.031] [PMID: 28778381]
[14]
Li W, Li N, Kang X, Shi K, Chen Q. Prognostic value of the long noncoding RNA HOTTIP in human cancers. Oncotarget 2017; 8(35): 59563-9.
[http://dx.doi.org/10.18632/oncotarget.19166] [PMID: 28938659]
[15]
Chen Z, He A, Wang D, Liu Y, Huang W. Long noncoding RNA HOTTIP as a novel predictor of lymph node metastasis and survival in human cancer: A systematic review and meta-analysis. Oncotarget 2017; 8(8): 14126-32.
[http://dx.doi.org/10.18632/oncotarget.12981] [PMID: 27806342]
[16]
Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 2017; 21(12): 3120-40.
[http://dx.doi.org/10.1111/jcmm.13238] [PMID: 28631377]
[17]
Atkinson SR, Marguerat S, Bähler J. Exploring long non-coding RNAs through sequencing. Semin Cell Dev Biol 2012; 23(2): 200-5.
[http://dx.doi.org/10.1016/j.semcdb.2011.12.003] [PMID: 22202731]
[18]
Liu T, Yu T, Hu H, He K. Knockdown of the long non-coding RNA HOTTIP inhibits colorectal cancer cell proliferation and migration and induces apoptosis by targeting SGK1. Biomed Pharmacother 2018; 98: 286-96.
[http://dx.doi.org/10.1016/j.biopha.2017.12.064] [PMID: 29274585]
[19]
Botti G, De Chiara A, Di Bonito M, et al. Noncoding RNAs within the HOX gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234(1): 395-413.
[http://dx.doi.org/10.1002/jcp.27036] [PMID: 30132877]
[20]
Li B, Huang Q, Wei GH. The role of HOX transcription factors in cancer predisposition and progression. Cancers (Basel) 2019; 11(4): E528.
[http://dx.doi.org/10.3390/cancers11040528] [PMID: 31013831]
[21]
Burgess DJ. Non-coding RNA: HOTTIP goes the distance. Nat Rev Genet 2011; 12(5): 300.
[http://dx.doi.org/10.1038/nrg2992] [PMID: 21483457]
[22]
Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472(7341): 120-4.
[http://dx.doi.org/10.1038/nature09819] [PMID: 21423168]
[23]
Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014; 39(4): 170-82.
[http://dx.doi.org/10.1016/j.tibs.2014.02.007] [PMID: 24674738]
[24]
Su M, Xiao Y, Ma J, et al. Long non-coding RNAs in esophageal cancer: Molecular mechanisms, functions, and potential applications. J Hematol Oncol 2018; 11(1): 118.
[http://dx.doi.org/10.1186/s13045-018-0663-8] [PMID: 30223861]
[25]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[26]
Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013; 381(9864): 400-12.
[http://dx.doi.org/10.1016/S0140-6736(12)60643-6] [PMID: 23374478]
[27]
Siti-Azrin AH, Wan-Nor-Asyikeen WA, Norsa’adah B. Review of the burden of esophageal cancer in Malaysia. Asian Pac J Cancer Prev 2016; 17(8): 3705-9.
[PMID: 27644604]
[28]
Kelsen DP, Winter KA, Gunderson LL, et al. Long-term results of RTOG trial 8911 (USA Intergroup 113): A random assignment trial comparison of chemotherapy followed by surgery compared with surgery alone for esophageal cancer. J Clin Oncol 2007; 25(24): 3719-25.
[http://dx.doi.org/10.1200/JCO.2006.10.4760] [PMID: 17704421]
[29]
Lau MC, Ng KY, Wong TL, et al. FSTL1 promotes metastasis and chemoresistance in esophageal squamous cell carcinoma through NFκB-BMP signaling cross-talk. Cancer Res 2017; 77(21): 5886-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1411] [PMID: 28883005]
[30]
Chen X, Han H, Li Y, Zhang Q, Mo K, Chen S. Upregulation of long noncoding RNA HOTTIP promotes metastasis of esophageal squamous cell carcinoma via induction of EMT. Oncotarget 2016; 7(51): 84480-5.
[http://dx.doi.org/10.18632/oncotarget.12995] [PMID: 27806322]
[31]
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med 2015; 4: 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[32]
Lin C, Wang Y, Wang Y, et al. Transcriptional and posttranscriptional regulation of HOXA13 by lncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene 2017; 36(38): 5392-406.
[http://dx.doi.org/10.1038/onc.2017.133] [PMID: 28534516]
[33]
Xu J, Lv H, Zhang B, et al. miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis 2019; 11(7): 3015-29.
[http://dx.doi.org/10.21037/jtd.2019.07.50] [PMID: 31463131]
[34]
Piazuelo MB, Correa P. Gastric cáncer: Overview. Colomb Med (Cali) 2013; 44(3): 192-201.
[PMID: 24892619]
[35]
Correa P. Gastric cancer: Overview. Gastroenterol Clin North Am 2013; 42(2): 211-7.
[http://dx.doi.org/10.1016/j.gtc.2013.01.002] [PMID: 23639637]
[36]
Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016; 388(10060): 2654-64.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3] [PMID: 27156933]
[37]
Rawla P, Barsouk A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol 2019; 14(1): 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001] [PMID: 30944675]
[38]
Zhao R, Zhang Y, Zhang X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 2018; 17(1): 68.
[http://dx.doi.org/10.1186/s12943-018-0817-x] [PMID: 29486794]
[39]
Ye H, Liu K, Qian K. Overexpression of long noncoding RNA HOTTIP promotes tumor invasion and predicts poor prognosis in gastric cancer. OncoTargets Ther 2016; 9: 2081-8.
[PMID: 27103834]
[40]
Chang S, Liu J, Guo S, et al. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 2016; 35(6): 3577-85.
[http://dx.doi.org/10.3892/or.2016.4743] [PMID: 27108607]
[41]
Wang SS, Wuputra K, Liu CJ, et al. Oncogenic function of the homeobox A13-long noncoding RNA HOTTIP-insulin growth factor-binding protein 3 axis in human gastric cancer. Oncotarget 2016; 7(24): 36049-64.
[http://dx.doi.org/10.18632/oncotarget.9102] [PMID: 27144338]
[42]
Tan H, Zhang S, Zhang J, et al. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics 2020; 10(19): 8880-902.
[http://dx.doi.org/10.7150/thno.47548] [PMID: 32754285]
[43]
He YX, Song XH, Zhao ZY, Zhao H. HOXA13 upregulation in gastric cancer is associated with enhanced cancer cell invasion and epithelial-to-mesenchymal transition. Eur Rev Med Pharmacol Sci 2017; 21(2): 258-65.
[PMID: 28165563]
[44]
Kim ST, Jang HL, Lee J, et al. Clinical significance of IGFBP-3 methylation in patients with early stage gastric cancer. Transl Oncol 2015; 8(4): 288-94.
[http://dx.doi.org/10.1016/j.tranon.2015.06.001] [PMID: 26310375]
[45]
Johnson MA, Firth SM. IGFBP-3: A cell fate pivot in cancer and disease. J Growth Hormone Res 2014; 24(5): 164-73.
[46]
Baxter RC. Nuclear actions of insulin-like growth factor binding protein-3. Gene 2015; 569(1): 7-13.
[http://dx.doi.org/10.1016/j.gene.2015.06.028] [PMID: 26074086]
[47]
Zielinska HA, Bahl A, Holly JM, Perks CM. Epithelial-to-mesenchymal transition in breast cancer: A role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? Breast Cancer (Dove Med Press) 2015; 7: 9-19.
[PMID: 25632238]
[48]
Li Z, Lü M, Zhou Y, et al. Role of long non-coding RNAs in the chemoresistance of gastric cancer: a systematic review. OncoTargets Ther 2021; 14: 503-18.
[http://dx.doi.org/10.2147/OTT.S294378] [PMID: 33500626]
[49]
Wang J, Lv B, Su Y, Wang X, Bu J, Yao L. Exosome-mediated transfer of lncRNA HOTTIP promotes cisplatin resistance in gastric cancer cells by regulating HMGA1/miR-218 axis. OncoTargets Ther 2019; 12: 11325-38.
[http://dx.doi.org/10.2147/OTT.S231846] [PMID: 31908497]
[50]
Zhao R, Zhang X, Zhang Y, et al. HOTTIP predicts poor survival in gastric cancer patients and contributes to cisplatin resistance by sponging miR-216a-5p. Front Cell Dev Biol 2020; 8(348): 348.
[http://dx.doi.org/10.3389/fcell.2020.00348] [PMID: 32457911]
[51]
Zhao Z, Malhotra A, Seng WY. Curcumin modulates hepatocellular carcinoma by reducing UNC119 expression. J Environ Pathol Toxicol Oncol 2019; 38(3): 195-203.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2019029549]
[52]
Motola-Kuba D, Zamora-Valdés D, Uribe M, Méndez-Sánchez N. Hepatocellular carcinoma. An overview. Ann Hepatol 2006; 5(1): 16-24.
[http://dx.doi.org/10.1016/S1665-2681(19)32034-4] [PMID: 16531960]
[53]
Ozakyol A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer 2017; 48(3): 238-40.
[http://dx.doi.org/10.1007/s12029-017-9959-0] [PMID: 28626852]
[54]
Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: Consider the population. J Clin Gastroenterol 2013; 47(Suppl. 1): S2-6.
[55]
Balogh J, Victor D III, Asham EH, et al. Hepatocellular carcinoma: A review. J Hepatocell Carcinoma 2016; 3: 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[56]
Zhang Y, Huang JC, Cai KT, et al. Long non coding RNA HOTTIP promotes hepatocellular carcinoma tumorigenesis and development: A comprehensive investigation based on bioinformatics, qRT PCR and meta analysis of 393 cases. Int J Oncol 2017; 51(6): 1705-21.
[http://dx.doi.org/10.3892/ijo.2017.4164] [PMID: 29039502]
[57]
Tsang FH, Au SL, Wei L, et al. Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver Int 2015; 35(5): 1597-606.
[http://dx.doi.org/10.1111/liv.12746] [PMID: 25424744]
[58]
Wu L, Yang Z, Zhang J, Xie H, Zhou L, Zheng S. Long noncoding RNA HOTTIP expression predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Hepatobiliary Surg Nutr 2018; 7(6): 429-39.
[http://dx.doi.org/10.21037/hbsn.2018.10.07] [PMID: 30652087]
[59]
Quagliata L, Matter MS, Piscuoglio S, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 2014; 59(3): 911-23.
[http://dx.doi.org/10.1002/hep.26740] [PMID: 24114970]
[60]
Quagliata L, Quintavalle C, Lanzafame M, et al. High expression of HOXA13 correlates with poorly differentiated hepatocellular carcinomas and modulates sorafenib response in in vitro models. Lab Invest 2018; 98(1): 95-105.
[http://dx.doi.org/10.1038/labinvest.2017.107] [PMID: 29035381]
[61]
Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I. Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget 2016; 7(24): 36719-32.
[http://dx.doi.org/10.18632/oncotarget.9165] [PMID: 27167341]
[62]
Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Biophys Acta, Gen Subj 2017; 1861(2): 296-306.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.006] [PMID: 27750041]
[63]
Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol 2013; 6(4): 321-37.
[http://dx.doi.org/10.1177/1756283X13478680] [PMID: 23814611]
[64]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016; 2(1): 16022.
[http://dx.doi.org/10.1038/nrdp.2016.22] [PMID: 27158978]
[65]
Han T, Hu H, Zhuo M, et al. Long non-coding RNA: an emerging paradigm of pancreatic cancer. Curr Mol Med 2016; 16(8): 702-9.
[http://dx.doi.org/10.2174/1566524016666160927095812] [PMID: 27686798]
[66]
Cheng Y, Jutooru I, Chadalapaka G, Corton JC, Safe S. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget 2015; 6(13): 10840-52.
[http://dx.doi.org/10.18632/oncotarget.3450] [PMID: 25912306]
[67]
Katsha A, Belkhiri A, Goff L, El-Rifai W. Aurora kinase A in gastrointestinal cancers: Time to target. Mol Cancer 2015; 14(1): 106.
[http://dx.doi.org/10.1186/s12943-015-0375-4] [PMID: 25987188]
[68]
Xie Y, Zhu S, Zhong M, et al. Inhibition of aurora kinase A induces necroptosis in pancreatic carcinoma. Gastroenterology 2017; 153(5): 1429-1443.e5.
[http://dx.doi.org/10.1053/j.gastro.2017.07.036] [PMID: 28764929]
[69]
Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med 2015; 13: 84.
[http://dx.doi.org/10.1186/s12967-015-0442-z] [PMID: 25889214]
[70]
Prion S, Haerling KA. Making sense of methods and measurement: spearman-Rho ranked-order correlation coefficient. Clin Simul Nurs 2014; 10(10): 535-6.
[http://dx.doi.org/10.1016/j.ecns.2014.07.005]
[71]
Zhang H, Lv L, Liu H, et al. Profiling the potential biomarkers for cell differentiation of pancreatic cancer using iTRAQ and 2-D LC-MS/MS. Proteomics Clin Appl 2009; 3(7): 862-71.
[http://dx.doi.org/10.1002/prca.200800029] [PMID: 21136992]
[72]
Gradiz R, Silva HC, Carvalho L, Botelho MF, Mota-Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep 2016; 6: 21648.
[http://dx.doi.org/10.1038/srep21648] [PMID: 26884312]
[73]
Fu Z, Chen C, Zhou Q, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett 2017; 410: 68-81.
[http://dx.doi.org/10.1016/j.canlet.2017.09.019] [PMID: 28947139]
[74]
Ye Y, Li Y, Wei Y, et al. Anticancer effect of HOTTIP regulates human pancreatic cancer via the metabotropic glutamate receptor 1 pathway. Oncol Lett 2018; 16(2): 1937-42.
[http://dx.doi.org/10.3892/ol.2018.8870] [PMID: 30008887]
[75]
Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50: 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[76]
Prickett TD, Samuels Y. Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res 2012; 18(16): 4240-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1217] [PMID: 22648273]
[77]
Yin F, Zhang Q, Dong Z, Hu J, Ma Z. LncRNA HOTTIP participates in cisplatin resistance of tumor cells by regulating miR-137 expression in pancreatic cancer. OncoTargets Ther 2020; 13: 2689-99.
[http://dx.doi.org/10.2147/OTT.S234924] [PMID: 32280243]
[78]
Xiao J, Peng F, Yu C, et al. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy. Int J Clin Exp Pathol 2014; 7(11): 7442-50.
[PMID: 25550779]
[79]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[80]
Vega P, Valentín F, Cubiella J. Colorectal cancer diagnosis: Pitfalls and opportunities. World J Gastrointest Oncol 2015; 7(12): 422-33.
[http://dx.doi.org/10.4251/wjgo.v7.i12.422] [PMID: 26690833]
[81]
Granados-Romero J, Valderrama-Treviño A, Contreras Flores E, Barrera-Mera B, Herrera M, Uriarte-Ruíz K. Colorectal cancer: A review. Int J Res Med Sci 2017; 5: 4667.
[http://dx.doi.org/10.18203/2320-6012.ijrms20174914]
[82]
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019; 394(10207): 1467-80.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[83]
Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8(12): 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[84]
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18(1): E197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[85]
Liu T, Wang H, Yu H, et al. The long non-coding RNA HOTTIP is highly expressed in colorectal cancer and enhances cell proliferation and invasion. Mol Ther Nucleic Acids 2020; 19: 612-8.
[http://dx.doi.org/10.1016/j.omtn.2019.12.008] [PMID: 31945724]
[86]
Ren YK, Xiao Y, Wan XB, et al. Association of long non-coding RNA HOTTIP with progression and prognosis in colorectal cancer. Int J Clin Exp Pathol 2015; 8(9): 11458-63.
[PMID: 26617875]
[87]
Rui Y, Hu M, Wang P, et al. LncRNA HOTTIP mediated DKK1 downregulation confers metastasis and invasion in colorectal cancer cells. Histol Histopathol 2019; 34(6): 619-30.
[PMID: 30229808]
[88]
Reabroi S, Saeeng R, Boonmuen N, et al. The anti-cancer activity of an andrographolide analogue functions through a GSK-3β-independent Wnt/β-catenin signaling pathway in colorectal cancer cells. Sci Rep 2018; 8(1): 7924.
[http://dx.doi.org/10.1038/s41598-018-26278-8] [PMID: 29784906]
[89]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[90]
Luo H, Yang Y, Duan J, Wu P, Jiang Q, Xu C. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis 2013; 4(2): e481.
[91]
Liang X, Lan C, Jiao G, Fu W, Long X, An Y. Therapeutic inhibition of SGK1 suppresses colorectal cancer. Exp Mol Med 2017; 49(11): e399.
[http://dx.doi.org/10.1038/emm.2017.184]
[92]
Lang F, Perrotti N, Stournaras C. Colorectal carcinoma cells--regulation of survival and growth by SGK1. Int J Biochem Cell Biol 2010; 42(10): 1571-5.
[http://dx.doi.org/10.1016/j.biocel.2010.05.016] [PMID: 20541034]
[93]
Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol 2017; 10(1): 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[94]
Laissue P. The forkhead-box family of transcription factors: Key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18(1): 5.
[http://dx.doi.org/10.1186/s12943-019-0938-x] [PMID: 30621735]
[95]
Zhu R, Yang G, Cao Z, et al. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: A rising star. Ther Adv Med Oncol 2020; 12: 1758835920940946.
[http://dx.doi.org/10.1177/1758835920940946] [PMID: 32728395]
[96]
Schatoff EM, Leach BI, Dow LE. Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep 2017; 13(2): 101-10.
[http://dx.doi.org/10.1007/s11888-017-0354-9] [PMID: 28413363]
[97]
Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4(5): a008052.
[http://dx.doi.org/10.1101/cshperspect.a008052] [PMID: 22438566]
[98]
Wang W, Smits R, Hao H, He C. Wnt/β-catenin signaling in liver cancers. Cancers (Basel) 2019; 11(7): E926.
[http://dx.doi.org/10.3390/cancers11070926] [PMID: 31269694]
[99]
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5(2): 84-102.
[http://dx.doi.org/10.5493/wjem.v5.i2.84] [PMID: 25992323]
[100]
Oliveira LA, Oshima CTF, Soffner PA, et al. The canonical wnt pathway in gastric carcinoma. Arq Bras Cir Dig 2019; 32(1): e1414.
[http://dx.doi.org/10.1590/0102-672020180001e1414] [PMID: 30624523]
[101]
Aguilera Ó, González-Sancho JM, Zazo S, et al. Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget 2015; 6(8): 5903-17.
[http://dx.doi.org/10.18632/oncotarget.3464] [PMID: 25788273]
[102]
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309(8): C511-21.
[http://dx.doi.org/10.1152/ajpcell.00117.2015] [PMID: 26289750]