Unsupervised End-to-End Brain Tumor Magnetic Resonance Image Registration Using RBCNN: Rigid Transformation, B-Spline Transformation and Convolutional Neural Network

Article ID: e060821195375 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Image registration is the process of aligning two or more images in a single coordinate. Nowadays, medical image registration plays a significant role in computer-assisted disease diagnosis, treatment, and surgery. The different modalities available in the medical image make medical image registration an essential step in Computer Assisted Diagnosis (CAD), Computer- Aided Therapy (CAT) and Computer-Assisted Surgery (CAS).

Problem Definition: Recently, many learning-based methods were employed for disease detection and classification, but those methods were not suitable for real-time due to delayed response and the need for pre-alignment and labeling.

Methods: The proposed research constructed a deep learning model with Rigid transform and B-Spline transform for medical image registration for an automatic brain tumour finding. The proposed research consists of two steps. The first step uses Rigid transformation based Convolutional Neural Network and the second step uses B-Spline transform-based Convolutional Neural Network. The model is trained and tested with 3624 MR (Magnetic Resonance) images to assess the performance. The researchers believe that MR images help in the success of the treatment of patients with brain tumour.

Results: The result of the proposed method is compared with the Rigid Convolutional Neural Network (CNN), Rigid CNN + Thin-Plat Spline (TPS), Affine CNN, Voxel morph, ADMIR (Affine and Deformable Medical Image Registration) and ANT(Advanced Normalization Tools) using DICE score, Average Symmetric surface Distance (ASD), and Hausdorff distance.

Conclusion: The RBCNN model will help the physician to automatically detect and classify the brain tumor quickly (18 Sec) and efficiently without doing pre-alignment and labeling.

Keywords: Medical Image Registrations, deep learning, rigid transformation, B-spline transform, convolutional neural network, brain tumor magnetic resonance images, advanced normalization tools.

Graphical Abstract

[1]
Nivetha R, Senthilselvi A. Hybrid feature matching for image forgery detection. Int J Engin Sci Comput 2017; 7(3): 5075-80.
[3]
Renith G, Senthilselvi A. Accuracy improvement in diabetic retinopathy detection using DLIA. J Adv Res Dynamic Contr Sys 2020; 12: (7).
[4]
Jothiramalingam R, Jude A, Patan R, Ramachandran M, Duraisamy JH, Gandomi AH. Machine learning-based left ventricular hypertrophy detection using multi-lead ECG signal. Neural Comput Appl 2020; 1-1.
[http://dx.doi.org/10.1007/s00521-020-05238-2]
[5]
Kasinathan G, Jayakumar S, Gandomi AH, Ramachandran M, Fong SJ, Patan R. Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier. Expert Syst Appl 2019; 134: 112-9.
[http://dx.doi.org/10.1016/j.eswa.2019.05.041]
[6]
Thaha MM, Kumar KPM, Murugan BS, Dhanasekeran S, Vijayakarthick P, Selvi AS. Brain tumor segmentation using convolutional neural networks in mri images. J Med Syst 2019; 43(9): 294.
[http://dx.doi.org/10.1007/s10916-019-1416-0] [PMID: 31342192]
[7]
Govindarajan P, Soundarapandian RK, Gandomi AH, Patan R, Jayaraman P, Manikandan R. Classification of stroke disease using machine learning algorithms. Neural Comput Appl 2020; 32(3): 817-28.
[http://dx.doi.org/10.1007/s00521-019-04041-y]
[8]
Kumar A, Ramachandran M, Gandomi AH, Patan R, Lukasik S, Soundarapandian RK. A deep neural network based classifier for brain tumor diagnosis. Appl Soft Comput 2019; 82: 105528.
[http://dx.doi.org/10.1016/j.asoc.2019.105528]
[9]
Surya V, Senthilselvi A. A qualitative analysis of the machine learning methods in food adultery: a focus on milk adulteration detection. Journal of Advanced Research in Dynamical and Control Systems 2020; 12(4)
[10]
Senthilselvi A, Sellam V, Saad Ali Alahmari, Sivaram Rajeyyagari. Accuracy enhancement in mobile phone recycling process using machine learning technique and MEPH process. Environmental Technology & Innovation 2020; 20
[11]
Senthilselvi A, Sukumar R. Removal of salt and pepper noise from images using Hybrid Filter (HF) and Fuzzy Logic Noise Detector (FLND). Concurr Comput 2019; 31(12)
[12]
Senthilselvi. A, Pradeep mohankumar. K, Dhanasekar. S, Uma Maheswari. P, Ramesh. S, Senthil Pandi. S “Denoising of images from salt and pepper noise using hybrid filter,fuzzy logic noise detector and genetic optimization algorithm (HFGOA)”. Multimedia Tools Appl 2019; 78(14)
[13]
13. Senthilselvi.A , Sukumar. R &Senthil Pandi S. Hybrid fuzzy logic and gravitational search algorithm based multiple filters for image restoration. International journal of data analysis Techniques and strategies 2020; 12(1): 76-97.
[14]
Senthilselvi A, Sukumar R. A survey on image restoration technique. International Journal of Emerging Engineering Research and Technology 2014; 2(8)
[15]
Liu C, Ma L, Lu Z, Jin X, Xu J. Multimodal medical image registration via common representations learning and differentiable geometric constraints. Electron Lett 2019; 55(6): 316-8.
[http://dx.doi.org/10.1049/el.2018.6713]
[16]
Foote MD, Zimmerman BE, Sawant A, Joshi SC. Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting. Inf Process Med Imaging 2019; 265-76.
[http://dx.doi.org/10.1007/978-3-030-20351-1_20]
[17]
Sun S, Hu J, Yao M, et al. Robust multimodal image registration using deep recurrent reinforcement learning. Lect Notes Comput Sci 2019; 511-26.
[http://dx.doi.org/10.1007/978-3-030-20890-5_33]
[18]
de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Išgum I. A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 2019; 52: 128-43.
[http://dx.doi.org/10.1016/j.media.2018.11.010] [PMID: 30579222]
[19]
Fan J, Cao X, Yap P-T, Shen D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med Image Anal 2019; 54: 193-206.
[http://dx.doi.org/10.1016/j.media.2019.03.006] [PMID: 30939419]
[20]
Zhao S, Lau T, Luo J, Chang E I-C, Xu Y. Unsupervised 3D end- to-end medical image registration with volume tweening network. IEEE J Biomed Health Informat 2019.
[http://dx.doi.org/10.1109/JBHI.2019.2951024]
[21]
Smith S, Bannister PR, Beckmann C, et al. FSL: New tools for functional and structural brain image analysis. Neuroimage 2001; 13(6): 249.
[http://dx.doi.org/10.1016/S1053-8119(01)91592-7]
[22]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Proc Med Image Comput-Assist Intervent (MICCAI). 234-41.
[23]
Balakrishnan G, Zhao A, Sabuncu M R, Guttag J, Dalca A V. VoxelMorph: A learning framework for deformable medical image registration. IEEE Trans Med Imag 2019; 38(8): 1788-800.
[http://dx.doi.org/10.1109/TMI.2019.2897538]
[24]
Wu G, Kim M, Wang Q, Munsell B C, Shen D. Scalable high performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng 2015; 63(7): 1505-16.
[25]
de Vos BD, Berendsen FF, Viergever MA, Staring M, Isgum I. End-to-end unsupervised deformable image registration with a Convolutional neural network.Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer 2017; pp. 204-12.
[http://dx.doi.org/10.1007/978-3-319-67558-9_24]
[26]
Yang X, Kwitt R, Styner M, Niethammer M. Fast predictive multimodal image registration. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).
[http://dx.doi.org/10.1109/ISBI.2017.7950652]
[27]
Hering A, Kuckertz S, Heldmann S, Heinrich MP. Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking. Bildverarbeitungfür die Medizin 2019; 2019: 309-14.
[http://dx.doi.org/10.1007/978-3-658-25326-4_69]
[28]
Sun L, Zhang S. Deformable MRI-ultrasound registration using 3d convolutional neural network. Lect Notes Comput Sci 2018; 152-8.
[http://dx.doi.org/10.1007/978-3-030-01045-4_18]
[29]
Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 2013; 16(Pt 2): 649-56.
[http://dx.doi.org/10.1007/978-3-642-40763-5_80] [PMID: 24579196]
[30]
Sokooti H, de Vos B, Berendsen F, Lelieveldt BPF, Išgum I, Staring M. Nonrigid image registration using multi-scale 3D convolutional neural networks. Lect Notes Comput Sci 2017; 232-9.
[http://dx.doi.org/10.1007/978-3-319-66182-7_27]
[31]
Pei Y, Zhang Y, Qin H, et al. Non-rigid craniofacial 2D-3D registration using cnn-based regression. Lect Notes Comput Sci 2017; 117-25.
[http://dx.doi.org/10.1007/978-3-319-67558-9_14]
[32]
Eppenhof KAJ, Pluim JPW. Supervised local error estimation for nonlinear image registration using convolutional neural networks. In: Styner M A, Angelini E D, Eds. Proceedings of SPIE. 10133 (Progress in Biomedical Optics and Imaging; Vol. 18, No. 47)
[33]
Cao X, Yang J, Zhang J, et al. Deformable image registration based on similarity-steered cnn regression. Medical Image Computing and Computer-assisted InterventionInternational Conference on Medical Image Computing and Computer-assisted Intervention. 300-8.
[http://dx.doi.org/10.1007/978-3-319-66182-7_35]
[34]
Simonovsky M, Gutiérrez-Becker B, Mateus D, Navab N, Komodakis N. A deep metric for multimodal registration.Medical Image Computing and Computer-Assisted Intervention - MICCAI. 2016; pp. 10-8.
[http://dx.doi.org/10.1007/978-3-319-46726-9_2]
[35]
Li H, Fan Y. Non-rigid image registration using self-supervised fully convolutional networks without training data. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).
[http://dx.doi.org/10.1109/ISBI.2018.8363757]
[36]
Sloan JM, Goatman KA, Siebert JP. Learning rigid image registration - utilizing convolutional neural networks for medical image registration. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies.
[http://dx.doi.org/10.5220/0006543700890099]
[37]
Srimathi S, Yamuna G, Nanmaran R. An efficient cancer classification model for CT/MRI/PET fused images. Curr Med Imaging 2021; 17(3): 319-30.
[http://dx.doi.org/10.2174/1573405616666200628134800] [PMID: 32598263]
[38]
Babu KR, Nagajaneyulu PV, Prasad KS. Brain tumor segmentation of t1w mri images based on clustering using dimensionality reduction random projection technique. Curr Med Imaging 2021; 17(3): 331-41.
[http://dx.doi.org/10.2174/1573405616666200712180521] [PMID: 32652918]
[39]
Deng M, Zhenhao J, Yu R, Zeng Q. The learning-based automatic segmentation algorithm of brain mr images based on 7T. Curr Med Imaging 2021; 17(3): 342-51.
[http://dx.doi.org/10.2174/1573405616666200806171509] [PMID: 32767946]
[40]
Li G, Liu J, Wu J, et al. Diagnosis of renal diseases based on machine learning methods using ultrasound images. Curr Med Imaging 2021; 17(3): 425-32.
[http://dx.doi.org/10.2174/1573405616999200918150259] [PMID: 32957890]
[41]
Latif G, Iskandar DNFA, Alghazo J, Butt MM. Brain MR image classification for glioma tumor detection using deep convolutional neural network features. Curr Med Imaging 2021; 17(1): 56-63.
[http://dx.doi.org/10.2174/1573405616666200311122429] [PMID: 32160848]
[42]
Isik A, Ramanathan R. Approaches to the treatment of pilonidal sinus disease, clinical practice in 2019. Int Wound J 2020; 17(2): 508-9.
[http://dx.doi.org/10.1111/iwj.13265] [PMID: 31710171]
[43]
Isik A, Isik N, Kurnaz E. Complete breast autoamputation: Clinical image. Breast J 2020; 26(11): 2265-6.
[http://dx.doi.org/10.1111/tbj.14072] [PMID: 33037830]
[44]
Precup R-E, Preitl S, Petriu EM, et al. Model-based fuzzy control results for networked control systems. Reports in Mechanical Engineering 2020; 1(1): 10-25.
[http://dx.doi.org/10.31181/rme200101010p]
[45]
Messinis SC, George-C. V. An agent-based flexible manufacturing system controller with petri-net enabled algebraic deadlock avoidance. Reports in Mechanical Engineering 2020; 1(1): 77-92.
[http://dx.doi.org/10.31181/rme200101077m]
[46]
Stojčić M, Stjepanović A. ANFIS model for the prediction of generated electricity of photovoltaic modules. Decision Making: Applications in Management and Engineering 2019; 2(1): 35-48.
[http://dx.doi.org/10.31181/dmame1901035s]
[47]
Ghosh I, Datta Chaudhuri T. FEB-stacking and feb-dnn models for stock trend prediction: a performance analysis for pre and post covid-19 periods. Decision Making: Applications in Management and Engineering 2021; 4(1): 51-84.
[http://dx.doi.org/10.31181/dmame2104051g]
[48]
Senthilselvi A, Shiny Duela JS, Prabavathi R, et al. Performance evaluation of adaptive neuro fuzzy system (ANFIS) over fuzzy inference system (FIS) with optimization algorithm in de-noising of images from salt and pepper noise.J Ambient Intell Human Comput. 2021.
[49]
Kun Tang, ZhiLi,Lili Titan, LihuiWang and Yuemin Zhu. ADMIR- Affine and deformable medical image registration for drug-addicted brain images.IEEE 2020; 8.
[50]
Avants B B, Tustison N, Song G. Advanced normalization tools (ANTs). Insight J 2009; 2(365): 1-35.