siRNA as a Potential Therapy for COVID-19

Page: [731 - 744] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is a highly contagious virus causing COVID-19 disease that severely impacted the world health, education, and economy systems in 2020. The numbers of infection cases and reported deaths are still increasing with no specific treatment identified yet to halt this pandemic. Currently, several proposed treatments are under preclinical and clinical investigations now, alongside the race to vaccinate as many individuals as possible. The genome of SARS-CoV2 shares a similar gene organization as other viruses in the Coronaviridae family. It is a positive-sense, single-stranded RNA. This feature suggests that RNA interference (RNAi) is an attractive prophylactic and therapeutic option for the control of this pandemic and other possible future pandemics of the corona viruses. RNAi utilizes the use of siRNA molecules, which are 21-29 nt duplexes RNA molecules that intervene with targeted gene expression in the cytoplasm by a specific mechanism of complementary destruction of mRNA. Previous experience with SARS-CoV and the Middle East respiratory syndrome (MERS) showed that siRNA molecules were effective against these viruses in vitro and in vivo. Moreover, there have been extensive advances in siRNA technology in the past decade from chemistry and target selection considerations; which concluded with the successful approval of two commercial products based on siRNA technology. In addition, the current knowledge of the genome structure and functionality of the corona viruses enables the recognition of conserved sequences to optimize siRNA targeting and avoid viral escape through mutations, either for the current SARS-CoV2 as well as future corona viruses.

Keywords: SARS-CoV2, Corona viruses, COVID-19, RNA interference, siRNA, respiratory syndrome.

[1]
Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health, 2020, 13(5), 667-673.
[http://dx.doi.org/10.1016/j.jiph.2020.03.019] [PMID: 32340833]
[2]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[3]
Dos Santos, W.G. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed. Pharmacother., 2020, 129, 110493.
[http://dx.doi.org/10.1016/j.biopha.2020.110493] [PMID: 32768971]
[4]
Gaunt, E.R.; Hardie, A.; Claas, E.C.J.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol., 2010, 48(8), 2940-2947.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[5]
Woo, P.C.Y.; Lau, S.K.P.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.K.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[6]
Laha, S.; Chakraborty, J.; Das, S.; Manna, S.K.; Biswas, S.; Chatterjee, R. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infect. Genet. Evol., 2020, 85, 104445.
[http://dx.doi.org/10.1016/j.meegid.2020.104445] [PMID: 32615316]
[7]
Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, 9(1), 382-385.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[8]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[9]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[10]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[11]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[12]
Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J. Med. Virol., 2020, 92(6), 556-563.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[13]
Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect., 2021, 54(2), 159-163.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022] [PMID: 32265180]
[14]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[15]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[16]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[17]
Jogalekar, M.P.; Veerabathini, A.; Gangadaran, P. Novel 2019 coronavirus: Genome structure, clinical trials, and outstanding questions. Exp. Biol. Med. (Maywood), 2020, 245(11), 964-969.
[http://dx.doi.org/10.1177/1535370220920540] [PMID: 32306751]
[18]
Yoshimoto, F.K. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J., 2020, 39(3), 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[19]
Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol., 2015, 2(1), 265-288.
[http://dx.doi.org/10.1146/annurev-virology-100114-055218] [PMID: 26958916]
[20]
Narayanan, K.; Ramirez, S.I.; Lokugamage, K.G.; Makino, S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res., 2015, 202, 89-100.
[http://dx.doi.org/10.1016/j.virusres.2014.11.019] [PMID: 25432065]
[21]
Graham, R.L.; Sims, A.C.; Brockway, S.M.; Baric, R.S.; Denison, M.R. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol., 2005, 79(21), 13399-13411.
[http://dx.doi.org/10.1128/JVI.79.21.13399-13411.2005] [PMID: 16227261]
[22]
Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J. Med. Virol., 2020, 92(6), 584-588.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[23]
Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, 149, 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[24]
Ren, Y.; Shu, T.; Wu, D.; Mu, J.; Wang, C.; Huang, M.; Han, Y.; Zhang, X.Y.; Zhou, W.; Qiu, Y.; Zhou, X. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell. Mol. Immunol., 2020, 17(8), 881-883.
[http://dx.doi.org/10.1038/s41423-020-0485-9] [PMID: 32555321]
[25]
Hachim, A.; Kavian, N.; Cohen, C.; Chin, A.W.; Chu, D.K.; Mok, C.K.P.; Tsang, O.T.; Yeung, Y.C.; Perera, R.A.; Poon, L.L.; Peiris, M.J.; Valkenburg, S. Beyond the spike: Identification of viral targets of the antibody response to SARS-CoV-2 in COVID-19 patients. 2020.
[http://dx.doi.org/10.1101/2020.04.30.20085670]
[26]
Kopecky-Bromberg, S.A.; Martínez-Sobrido, L.; Frieman, M.; Baric, R.A.; Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol., 2007, 81(2), 548-557.
[http://dx.doi.org/10.1128/JVI.01782-06] [PMID: 17108024]
[27]
Konno, Y.; Kimura, I.; Uriu, K.; Fukushi, M.; Irie, T.; Koyanagi, Y.; Sauter, D.; Gifford, R.J.; Nakagawa, S.; Sato, K. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep., 2020, 32(12), 108185.
[http://dx.doi.org/10.1016/j.celrep.2020.108185] [PMID: 32941788]
[28]
Li, J.Y.; Liao, C.H.; Wang, Q.; Tan, Y.J.; Luo, R.; Qiu, Y.; Ge, X.Y. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res., 2020, 286, 198074.
[http://dx.doi.org/10.1016/j.virusres.2020.198074] [PMID: 32589897]
[29]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.W.; Chan, J.F.W.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[30]
Oostra, M.; de Haan, C.A.M.; Rottier, P.J.M. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J. Virol., 2007, 81(24), 13876-13888.
[http://dx.doi.org/10.1128/JVI.01631-07] [PMID: 17928347]
[31]
Zhang, Y.; Zhang, J.; Chen, Y.; Luo, B.; Yuan, Y.; Huang, F.; Yang, T.; Yu, F.; Liu, J.; Liu, B.; Song, Z.; Chen, J.; Pan, T.; Zhang, X.; Li, Y.; Li, R.; Huang, W.; Xiao, F.; Zhang, H. The ORF8 protein of sars-cov-2 mediates immune evasion through potently downregulating MHC-I. 2020, 118(23)
[http://dx.doi.org/10.1101/2020.05.24.111823]
[32]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[33]
Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res., 2015, 202, 120-134.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[34]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[35]
Karjee, S.; Minhas, A.; Sood, V.; Ponia, S.S.; Banerjea, A.C.; Chow, V.T.K.; Mukherjee, S.K.; Lal, S.K. The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor. J. Virol., 2010, 84(19), 10395-10401.
[http://dx.doi.org/10.1128/JVI.00748-10] [PMID: 20631126]
[36]
Schaecher, S.R.; Pekosz, A. SARS coronavirus accessory gene expression and function; Mol. Biol. SARS-Coronavirus, 2010, pp. 153-166.
[http://dx.doi.org/10.1007/978-3-642-03683-5_10]
[37]
Hardee, C.L.; Arévalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017, 8(2), E65.
[http://dx.doi.org/10.3390/genes8020065] [PMID: 28208635]
[38]
Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids, 2015, 4, e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[39]
Wang, J.; Lu, Z.; Wientjes, M.G.; Au, J.L.S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J., 2010, 12(4), 492-503.
[http://dx.doi.org/10.1208/s12248-010-9210-4] [PMID: 20544328]
[40]
Hu, B.; Weng, Y.; Xia, X.H.; Liang, X.J.; Huang, Y. Clinical advances of siRNA therapeutics. J. Gene Med., 2019, 21(7), e3097.
[http://dx.doi.org/10.1002/jgm.3097] [PMID: 31069898]
[41]
Tai, W.; Gao, X. Functional peptides for siRNA delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 157-168.
[http://dx.doi.org/10.1016/j.addr.2016.08.004] [PMID: 27530388]
[42]
Chen, X.; Mangala, L.S.; Rodriguez-Aguayo, C.; Kong, X.; Lopez-Berestein, G.; Sood, A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev., 2018, 37(1), 107-124.
[http://dx.doi.org/10.1007/s10555-017-9717-6] [PMID: 29243000]
[43]
Angart, P.; Vocelle, D.; Chan, C.; Walton, S.P. Design of siRNA therapeutics from the molecular scale. Pharmaceuticals (Basel), 2013, 6(4), 440-468.
[http://dx.doi.org/10.3390/ph6040440] [PMID: 23976875]
[44]
Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target Ther., 2020, 5(1), 101.
[http://dx.doi.org/10.1038/s41392-020-0207-x] [PMID: 32561705]
[45]
Müller, S.; Günther, S. Broad-spectrum antiviral activity of small interfering RNA targeting the conserved RNA termini of Lassa virus. Antimicrob. Agents Chemother., 2007, 51(6), 2215-2218.
[http://dx.doi.org/10.1128/AAC.01368-06] [PMID: 17371814]
[46]
Pyrc, K.; Bosch, B.J.; Berkhout, B.; Jebbink, M.F.; Dijkman, R.; Rottier, P.; van der Hoek, L. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother., 2006, 50(6), 2000-2008.
[http://dx.doi.org/10.1128/AAC.01598-05] [PMID: 16723558]
[47]
Nur, S.M.; Hasan, M.A.; Amin, M.A.; Hossain, M.; Sharmin, T. Design of potential RNAi (miRNA and siRNA) molecules for middle east respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip. Sci., 2015, 7(3), 257-265.
[http://dx.doi.org/10.1007/s12539-015-0266-9] [PMID: 26223545]
[48]
Khantasup, K.; Kopermsub, P.; Chaichoun, K.; Dharakul, T. Targeted small interfering RNA-immunoliposomes as a promising therapeutic agent against highly pathogenic Avian Influenza A (H5N1) virus infection. Antimicrob. Agents Chemother., 2014, 58(5), 2816-2824.
[http://dx.doi.org/10.1128/AAC.02768-13] [PMID: 24614365]
[49]
Steinbach, J.M.; Weller, C.E.; Booth, C.J.; Saltzman, W.M. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J. Control. Release, 2012, 162(1), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.008] [PMID: 22705461]
[50]
Moon, J.S.; Lee, S.H.; Kim, E.J.; Cho, H.; Lee, W.; Kim, G.W.; Park, H.J.; Cho, S.W.; Lee, C.; Oh, J.W. Inhibition of hepatitis C virus in mice by a small interfering RNA targeting a highly conserved sequence in viral IRES pseudoknot. PLoS One, 2016, 11(1), e0146710.
[http://dx.doi.org/10.1371/journal.pone.0146710] [PMID: 26751678]
[51]
Boyapalle, S.; Xu, W.; Raulji, P.; Mohapatra, S.; Mohapatra, S.S. A multiple siRNA-based anti-HIV/SHIV Microbicide shows protection in both in vitro and in vivo models. PLoS One, 2015, 10(9), e0135288.
[http://dx.doi.org/10.1371/journal.pone.0135288] [PMID: 26407080]
[52]
Zheng, B.J.; Guan, Y.; Tang, Q.; Du, C.; Xie, F.Y.; He, M.L.; Chan, K.W.; Wong, K.L.; Lader, E.; Woodle, M.C.; Lu, P.Y.; Li, B.; Zhong, N. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir. Ther., 2004, 9(3), 365-374.
[http://dx.doi.org/10.1177/135965350400900310] [PMID: 15259899]
[53]
Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res., 2008, 25(5), 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[54]
Elmén, J.; Thonberg, H.; Ljungberg, K.; Frieden, M.; Westergaard, M.; Xu, Y.; Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; Wahlestedt, C. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res., 2005, 33(1), 439-447.
[http://dx.doi.org/10.1093/nar/gki193] [PMID: 15653644]
[55]
Akerström, S.; Mirazimi, A.; Tan, Y.J. Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res., 2007, 73(3), 219-227.
[http://dx.doi.org/10.1016/j.antiviral.2006.10.008] [PMID: 17112601]
[56]
Yount, B.; Roberts, R.S.; Sims, A.C.; Deming, D.; Frieman, M.B.; Sparks, J.; Denison, M.R.; Davis, N.; Baric, R.S. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol., 2005, 79(23), 14909-14922.
[http://dx.doi.org/10.1128/JVI.79.23.14909-14922.2005] [PMID: 16282490]
[57]
Wu, C.J.; Chan, Y.L. Antiviral applications of RNAi for coronavirus. Expert Opin. Investig. Drugs, 2006, 15(2), 89-97.
[http://dx.doi.org/10.1517/13543784.15.2.89] [PMID: 16433589]
[58]
Chang, Z.; Babiuk, L.A.; Hu, J. Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: Progress to date. BioDrugs, 2007, 21(1), 9-15.
[http://dx.doi.org/10.2165/00063030-200721010-00002] [PMID: 17263585]
[59]
Uludağ, H.; Parent, K.; Aliabadi, H.M.; Haddadi, A. Prospects for RNAi Therapy of COVID-19. Front. Bioeng. Biotechnol., 2020, 8, 916.
[http://dx.doi.org/10.3389/fbioe.2020.00916] [PMID: 32850752]
[60]
Chernikov, I.V.; Vlassov, V.V.; Chernolovskaya, E.L. Current development of siRNA bioconjugates: From research to the clinic. Front. Pharmacol., 2019, 10, 444.
[http://dx.doi.org/10.3389/fphar.2019.00444] [PMID: 31105570]
[61]
Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem. Biol. Drug Des., 2017, 90(5), 665-678.
[http://dx.doi.org/10.1111/cbdd.12993] [PMID: 28378934]
[62]
Berk, C.; Civenni, G.; Wang, Y.; Steuer, C.; Catapano, C.V.; Hall, J. Pharmacodynamic and pharmacokinetic properties of full phosphorothioate small interfering rnas for gene silencing in vivo. Nucleic Acid Ther., 2020.
[http://dx.doi.org/10.1089/nat.2020.0852] [PMID: 32311310]
[63]
Gao, S.; Dagnaes-Hansen, F.; Nielsen, E.J.B.; Wengel, J.; Besenbacher, F.; Howard, K.A.; Kjems, J. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol. Ther., 2009, 17(7), 1225-1233.
[http://dx.doi.org/10.1038/mt.2009.91] [PMID: 19401674]
[64]
Broering, R.; Real, C.I.; John, M.J.; Jahn-Hofmann, K.; Ickenstein, L.M.; Kleinehr, K.; Paul, A.; Gibbert, K.; Dittmer, U.; Gerken, G.; Schlaak, J.F. Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro. Int. Immunol., 2014, 26(1), 35-46.
[http://dx.doi.org/10.1093/intimm/dxt040] [PMID: 24065781]
[65]
Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67.
[http://dx.doi.org/10.1038/nrd3010] [PMID: 20043028]
[66]
Neumeier, J.; Meister, G. siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects. Front. Plant Sci., 2021, 11, 526455.
[http://dx.doi.org/10.3389/fpls.2020.526455] [PMID: 33584737]
[67]
Mashel, T.V.; Tarakanchikova, Y.V.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S.; Lepik, K.V.; Fehse, B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120282] [PMID: 32798742]
[68]
Tai, W. Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules, 2019, 24(12), E2211.
[http://dx.doi.org/10.3390/molecules24122211] [PMID: 31200490]
[69]
Debacker, A.J.; Voutila, J.; Catley, M.; Blakey, D.; Habib, N. Delivery of oligonucleotides to the liver with galnac: From research to registered therapeutic drug. Mol. Ther., 2020, 28(8), 1759-1771.
[http://dx.doi.org/10.1016/j.ymthe.2020.06.015] [PMID: 32592692]
[70]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[71]
Trypsteen, W.; Van Cleemput, J.; Snippenberg, W.V.; Gerlo, S.; Vandekerckhove, L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog., 2020, 16(10), e1009037.
[http://dx.doi.org/10.1371/journal.ppat.1009037] [PMID: 33125439]
[72]
Jayaraman, M.; Ansell, S.M.; Mui, B.L.; Tam, Y.K.; Chen, J.; Du, X.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J.K.; Rajeev, K.G.; Hafez, I.M.; Akinc, A.; Maier, M.A.; Tracy, M.A.; Cullis, P.R.; Madden, T.D.; Manoharan, M.; Hope, M.J. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chemie-Int., 2012, 124(34), 8657-8661.
[http://dx.doi.org/10.1002/anie.201203263] [PMID: 22782619]
[73]
Belliveau, N.M.; Huft, J.; Lin, P.J.; Chen, S.; Leung, A.K.; Leaver, T.J.; Wild, A.W.; Lee, J.B.; Taylor, R.J.; Tam, Y.K.; Hansen, C.L.; Cullis, P.R. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids, 2012, 1, e37.
[http://dx.doi.org/10.1038/mtna.2012.28] [PMID: 23344179]
[74]
Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; Mui, B.L.; Semple, S.C.; Tam, Y.K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol., 2019, 14(12), 1084-1087.
[http://dx.doi.org/10.1038/s41565-019-0591-y] [PMID: 31802031]
[75]
Li, B.J.; Tang, Q.; Cheng, D.; Qin, C.; Xie, F.Y.; Wei, Q.; Xu, J.; Liu, Y.; Zheng, B.J.; Woodle, M.C.; Zhong, N.; Lu, P.Y. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med., 2005, 11(9), 944-951.
[http://dx.doi.org/10.1038/nm1280] [PMID: 16116432]
[76]
Ni, B.; Shi, X.; Li, Y.; Gao, W.; Wang, X.; Wu, Y. Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir. Ther., 2005, 10(4), 527-533.
[http://dx.doi.org/10.1177/135965350501000401] [PMID: 16038478]
[77]
Zhao, P.; Qin, Z.L.; Ke, J.S.; Lu, Y.; Liu, M.; Pan, W.; Zhao, L.J.; Cao, J.; Qi, Z.T. Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in cultured cells and mouse muscles. FEBS Lett., 2005, 579(11), 2404-2410.
[http://dx.doi.org/10.1016/j.febslet.2005.02.080] [PMID: 15848179]
[78]
Meng, B.; Lui, Y.W.; Meng, S.; Cao, C.; Hu, Y. Identification of effective siRNA blocking the expression of SARS viral envelope E and RDRP genes. Mol. Biotechnol., 2006, 33(2), 141-148.
[http://dx.doi.org/10.1385/MB:33:2:141] [PMID: 16757801]
[79]
Shi, Y.; Yang, D.H.; Xiong, J.; Jia, J.; Huang, B.; Jin, Y.X. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res., 2005, 15(3), 193-200.
[http://dx.doi.org/10.1038/sj.cr.7290286] [PMID: 15780182]
[80]
Dua, K.; Wadhwa, R.; Singhvi, G.; Rapalli, V.; Shukla, S.D.; Shastri, M.D.; Gupta, G.; Satija, S.; Mehta, M.; Khurana, N.; Awasthi, R.; Maurya, P.K.; Thangavelu, L.; S, R.; Tambuwala, M.M.; Collet, T.; Hansbro, P.M.; Chellappan, D.K. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev. Res., 2019, 80(6), 714-730.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[81]
Durcan, N.; Murphy, C.; Cryan, S.A. Inhalable siRNA: Potential as a therapeutic agent in the lungs. Mol. Pharm., 2008, 5(4), 559-566.
[http://dx.doi.org/10.1021/mp070048k] [PMID: 18491918]
[82]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[83]
Zheng, M.; Librizzi, D.; Kılıç, A.; Liu, Y.; Renz, H.; Merkel, O.M.; Kissel, T. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials, 2012, 33(27), 6551-6558.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.055] [PMID: 22710127]
[84]
Lam, J.K.W.; Liang, W.; Chan, H.K. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev., 2012, 64(1), 1-15.
[http://dx.doi.org/10.1016/j.addr.2011.02.006] [PMID: 21356260]
[85]
Qiu, Y.; Lam, J.K.W.; Leung, S.W.S.; Liang, W. Delivery of RNAi therapeutics to the airways - From bench to bedside. Molecules, 2016, 21(9), E1249.
[http://dx.doi.org/10.3390/molecules21091249] [PMID: 27657028]
[86]
Thomas, M.; Lu, J.J.; Chen, J.; Klibanov, A.M. Non-viral siRNA delivery to the lung. Adv. Drug Deliv. Rev., 2007, 59(2-3), 124-133.
[http://dx.doi.org/10.1016/j.addr.2007.03.003] [PMID: 17459519]
[87]
Sanders, N.; Rudolph, C.; Braeckmans, K.; De Smedt, S.C.; Demeester, J. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev., 2009, 61(2), 115-127.
[http://dx.doi.org/10.1016/j.addr.2008.09.011] [PMID: 19146894]
[88]
Roy, I.; Vij, N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomedicine, 2010, 6(2), 237-244.
[http://dx.doi.org/10.1016/j.nano.2009.07.001] [PMID: 19616124]
[89]
Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci., 2014, 15(4), 5852-5873.
[http://dx.doi.org/10.3390/ijms15045852] [PMID: 24717409]
[90]
Sakagami, M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv. Drug Deliv. Rev., 2006, 58(9-10), 1030-1060.
[http://dx.doi.org/10.1016/j.addr.2006.07.012] [PMID: 17010473]
[91]
Patton, J.S.; Byron, P.R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov., 2007, 6(1), 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[92]
Merkel, O.M.; Rubinstein, I.; Kissel, T. siRNA delivery to the lung: What’s new? Adv. Drug Deliv. Rev., 2014, 75, 112-128.
[http://dx.doi.org/10.1016/j.addr.2014.05.018] [PMID: 24907426]
[93]
Mayor, S.; Parton, R.G.; Donaldson, J.G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol., 2014, 6(6), a016758.
[http://dx.doi.org/10.1101/cshperspect.a016758] [PMID: 24890511]
[94]
Wong, A.W.; Scales, S.J.; Reilly, D.E. DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus. J. Biol. Chem., 2007, 282(31), 22953-22963.
[http://dx.doi.org/10.1074/jbc.M611015200] [PMID: 17562704]
[95]
Savva, M.; Aljaberi, A.; Feig, J.; Stolz, D.B. Correlation of the physicochemical properties of symmetric 1,3-dialkoylamidopropane-based cationic lipids containing single primary and tertiary amine polar head groups with in vitro transfection activity. Colloids Surf. B Biointerfaces, 2005, 43(1), 43-56.
[http://dx.doi.org/10.1016/j.colsurfb.2005.03.008] [PMID: 15916888]
[96]
Vercauteren, D.; Rejman, J.; Martens, T.F.; Demeester, J.; De Smedt, S.C.; Braeckmans, K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. J. Control. Release, 2012, 161(2), 566-581.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.020] [PMID: 22613879]
[97]
Zaki, N.M.; Tirelli, N. Gateways for the intracellular access of nanocarriers: A review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin. Drug Deliv., 2010, 7(8), 895-913.
[http://dx.doi.org/10.1517/17425247.2010.501792] [PMID: 20629604]
[98]
Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol., 2013, 31(7), 638-646.
[http://dx.doi.org/10.1038/nbt.2612] [PMID: 23792630]
[99]
Dominska, M.; Dykxhoorn, D.M. Breaking down the barriers: SiRNA delivery and endosome escape. J. Cell Sci., 2010, 123(Pt 8), 1183-1189.
[http://dx.doi.org/10.1242/jcs.066399] [PMID: 20356929]
[100]
Ma, D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale, 2014, 6(12), 6415-6425.
[http://dx.doi.org/10.1039/c4nr00018h] [PMID: 24837409]
[101]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[102]
Kim, D.H.; Rossi, J. RNAi mechanisms and applications. Biotechniques, 2008, 44(5), 613-616.
[http://dx.doi.org/10.2144/000112792] [PMID: 18474035]
[103]
Aljaberi, A.; Spelios, M.; Kearns, M.; Selvi, B.; Savva, M. Physicochemical properties affecting lipofection potency of a new series of 1,2-dialkoylamidopropane-based cationic lipids. Colloids Surf. B Biointerfaces, 2007, 57(1), 108-117.
[http://dx.doi.org/10.1016/j.colsurfb.2007.01.012] [PMID: 17336044]
[104]
Aljaberi, A.; Saleh, S.; Abu Khadra, K.M.; Kearns, M.; Savva, M. Physicochemical and biological characterization of 1,2-dialkoylamidopropane-based lipoplexes for gene delivery. Biophys. Chem., 2015, 199, 9-16.
[http://dx.doi.org/10.1016/j.bpc.2015.02.004] [PMID: 25704508]
[105]
Bardoliwala, D.; Patel, V.; Javia, A.; Ghosh, S.; Patel, A.; Misra, A. Nanocarriers in effective pulmonary delivery of siRNA: Current approaches and challenges. Ther. Deliv., 2019, 10(5), 311-332.
[http://dx.doi.org/10.4155/tde-2019-0012] [PMID: 31116099]
[106]
Hong, S.H.; Minai-Tehrani, A.; Chang, S.H.; Jiang, H.L.; Lee, S.; Lee, A.Y.; Seo, H.W.; Chae, C.; Beck, G.R., Jr; Cho, M.H. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis. PLoS One, 2013, 8(10), e77121.
[http://dx.doi.org/10.1371/journal.pone.0077121] [PMID: 24194864]
[107]
Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release, 2013, 171(3), 349-357.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.018] [PMID: 23648833]
[108]
Alvarez, R.; Elbashir, S.; Borland, T.; Toudjarska, I.; Hadwiger, P.; John, M.; Roehl, I.; Morskaya, S.S.; Martinello, R.; Kahn, J.; Van Ranst, M.; Tripp, R.A.; DeVincenzo, J.P.; Pandey, R.; Maier, M.; Nechev, L.; Manoharan, M.; Kotelianski, V.; Meyers, R. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob. Agents Chemother., 2009, 53(9), 3952-3962.
[http://dx.doi.org/10.1128/AAC.00014-09] [PMID: 19506055]
[109]
Jamali, A.; Mottaghitalab, F.; Abdoli, A.; Dinarvand, M.; Esmailie, A.; Kheiri, M.T.; Atyabi, F. Inhibiting influenza virus replication and inducing protection against lethal influenza virus challenge through chitosan nanoparticles loaded by siRNA. Drug Deliv. Transl. Res., 2018, 8(1), 12-20.
[http://dx.doi.org/10.1007/s13346-017-0426-z] [PMID: 29063498]
[110]
Zafra, M.P.; Mazzeo, C.; Gámez, C.; Rodriguez Marco, A.; de Zulueta, A.; Sanz, V.; Bilbao, I.; Ruiz-Cabello, J.; Zubeldia, J.M.; del Pozo, V. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS One, 2014, 9(3), e91996.
[http://dx.doi.org/10.1371/journal.pone.0091996] [PMID: 24637581]
[111]
Khaitov, M.R.; Shilovskiy, I.P.; Nikonova, A.A.; Shershakova, N.N.; Kamyshnikov, O.Y.; Babakhin, A.A.; Zverev, V.V.; Johnston, S.L.; Khaitov, R.M. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Hum. Gene Ther., 2014, 25(7), 642-650.
[http://dx.doi.org/10.1089/hum.2013.142] [PMID: 24655063]
[112]
Healey, G.D.; Lockridge, J.A.; Zinnen, S.; Hopkin, J.M.; Richards, I.; Walker, W. Development of pre-clinical models for evaluating the therapeutic potential of candidate siRNA targeting STAT6. PLoS One, 2014, 9(2), e90338.
[http://dx.doi.org/10.1371/journal.pone.0090338] [PMID: 24587331]
[113]
Tomaru, A.; Kobayashi, T.; Hinneh, J.A.; Baffour Tonto, P.; D’Alessandro-Gabazza, C.N.; Fujimoto, H.; Fujiwara, K.; Takahashi, Y.; Ohnishi, M.; Yasuma, T.; Nishihama, K.; Yoshino, M.; Takao, K.; Toda, M.; Totoki, T.; Takei, Y.; Yoshikawa, K.; Taguchi, O.; Gabazza, E.C. Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther., 2017, 24(11), 706-716.
[http://dx.doi.org/10.1038/gt.2017.80] [PMID: 28820502]
[114]
Jomah, S.; Asdaq, S.M.B.; Al-Yamani, M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J. Infect. Public Health, 2020, 13(9), 1187-1195.
[http://dx.doi.org/10.1016/j.jiph.2020.07.013] [PMID: 32773212]
[115]
Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, diagnostics and drug development. J. Hepatol., 2020, 2019, 1-17.
[http://dx.doi.org/10.1016/j.jhep.2020.09.031] [PMID: 33038433]