Boosting Auto-Induction of Recombinant Proteins in Escherichia coli with Glucose and Lactose Additives

Page: [1180 - 1190] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Auto-induction is a convenient way to produce recombinant proteins without inducer addition using lac operon-controlled Escherichia coli expression systems. Auto-induction can occur unintentionally using a complex culture medium prepared by mixing culture substrates. The differences in culture substrates sometimes lead to variations in the induction level.

Objectives: In this study, we investigated the feasibility of using glucose and lactose as boosters of auto-induction with a complex culture medium.

Methods: First, auto-induction levels were assessed by quantifying recombinant GFPuv expression under the control of the T7 lac promoter. Effectiveness of the additive-containing medium was examined using ovine angiotensinogen (tac promoter-based expression) and Thermus thermophilus manganese-catalase (T7 lac promoter-based expression).

Results: Auto-induced GFPuv expression was observed with the enzymatic protein digest Polypepton, but not with another digest tryptone. Regardless of the type of protein digest, supplementing Terrific Broth medium with glucose (at a final concentration of 2.9 g/L) and lactose (at a final concentration of 7.6 g/L) was successful in obtaining an induction level similar to that achieved with a commercially available auto-induction medium. The two recombinant proteins were produced in milligram quantity of purified protein per liter of culture.

Conclusion: The medium composition shown in this study would be practically useful for attaining reliable auto-induction for E. coli-based recombinant protein production.

Keywords: Additive, auto-induction, carbon source, Escherichia coli, lac operon, recombinant protein, recombinant protein production.

Graphical Abstract

[1]
Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2006, 72(2), 211-222.
[http://dx.doi.org/10.1007/s00253-006-0465-8] [PMID: 16791589]
[2]
Rosano, G.L.; Morales, E.S.; Ceccarelli, E.A. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci., 2019, 28(8), 1412-1422.
[http://dx.doi.org/10.1002/pro.3668] [PMID: 31219641]
[3]
Grossman, T.H.; Kawasaki, E.S.; Punreddy, S.R.; Osburne, M.S. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene, 1998, 209(1-2), 95-103.
[http://dx.doi.org/10.1016/S0378-1119(98)00020-1] [PMID: 9524234]
[4]
Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif., 2005, 41(1), 207-234.
[http://dx.doi.org/10.1016/j.pep.2005.01.016] [PMID: 15915565]
[5]
Krause, M.; Neubauer, A.; Neubauer, P. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb. Cell Fact., 2016, 15(1), 110.
[http://dx.doi.org/10.1186/s12934-016-0513-8] [PMID: 27317421]
[6]
Crowley, E.L.; Rafferty, S.P. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr. Purif., 2019, 157, 70-85.
[http://dx.doi.org/10.1016/j.pep.2019.01.007] [PMID: 30708035]
[7]
Blommel, P.G.; Becker, K.J.; Duvnjak, P.; Fox, B.G. Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol. Prog., 2007, 23(3), 585-598.
[http://dx.doi.org/10.1021/bp070011x] [PMID: 17506520]
[8]
Hwang, D.; Kim, S.A.; Yang, E.G.; Song, H.K.; Chung, H.S. A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain. Protein Expr. Purif., 2016, 126, 104-108.
[http://dx.doi.org/10.1016/j.pep.2016.06.004] [PMID: 27320415]
[9]
Lu, J.; Zhang, C.; Leong, H.Y.; Show, P.L.; Lu, F.; Lu, Z. Overproduction of lipoxygenase from Pseudomonas aeruginosa in Escherichia coli by auto-induction expression and its application in triphenylmethane dyes degradation. J. Biosci. Bioeng., 2020, 129(3), 327-332.
[http://dx.doi.org/10.1016/j.jbiosc.2019.09.006] [PMID: 31585857]
[10]
Ding, N.; Yang, C.; Sun, S.; Han, L.; Ruan, Y.; Guo, L.; Hu, X.; Zhang, J. Increased glycosylation efficiency of recombinant proteins in Escherichia coli by auto-induction. Biochem. Biophys. Res. Commun., 2017, 485(1), 138-143.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.037] [PMID: 28188786]
[11]
Li, Z.; Kessler, W.; van den Heuvel, J.; Rinas, U. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl. Microbiol. Biotechnol., 2011, 91(4), 1203-1213.
[http://dx.doi.org/10.1007/s00253-011-3407-z] [PMID: 21698378]
[12]
Yokoyama, S.; Hirota, H.; Kigawa, T.; Yabuki, T.; Shirouzu, M.; Terada, T.; Ito, Y.; Matsuo, Y.; Kuroda, Y.; Nishimura, Y.; Kyogoku, Y.; Miki, K.; Masui, R.; Kuramitsu, S. Structural genomics projects in Japan. Nat. Struct. Biol, 2000, 7(Suppl(11)), 943-945.
[http://dx.doi.org/10.1016/S0079-6107(00)00012-2]
[13]
Cava, F.; Hidalgo, A.; Berenguer, J. Thermus thermophilus as biological model. Extremophiles, 2009, 13(2), 213-231.
[http://dx.doi.org/10.1007/s00792-009-0226-6] [PMID: 19156357]
[14]
Ohtani, N.; Nakagawa, N.; Hoseki, J.; Ebihara, A.; Satoh, S.; Agari, Y.; Kobayashi, S.; Agari, K.; Maoka, N.; Masui, R.; Miki, K.; Yokoyama, S.; Kuramitsu, S. An exhaustive overproduction of bacterial proteins. Tanpakushitsu Kakusan Koso, 2002, 47(8)(Suppl.), 1009-1013.
[PMID: 12099015]
[15]
Structural and functional whole-cell project of Thermus thermophilus HB8.Available from: http://www.thermus.org/e_index.htm [Accessed 20 June, 2021]
[16]
Hoseki, J.; Okamoto, A.; Masui, R.; Shibata, T.; Inoue, Y.; Yokoyama, S.; Kuramitsu, S. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. J. Mol. Biol., 2003, 333(3), 515-526.
[http://dx.doi.org/10.1016/j.jmb.2003.08.030] [PMID: 14556741]
[17]
Ebihara, A.; Yao, M.; Masui, R.; Tanaka, I.; Yokoyama, S.; Kuramitsu, S. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci., 2006, 15(6), 1494-1499.
[http://dx.doi.org/10.1110/ps.062131106] [PMID: 16672237]
[18]
Bagautdinov, B.; Kunishima, N. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism. J. Mol. Biol., 2007, 373(2), 424-438.
[http://dx.doi.org/10.1016/j.jmb.2007.08.017] [PMID: 17825835]
[19]
Agari, Y.; Kashihara, A.; Yokoyama, S.; Kuramitsu, S.; Shinkai, A. Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol. Microbiol., 2008, 70(1), 60-75.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06388.x] [PMID: 18699868]
[20]
Kichise, T.; Hisano, T.; Takeda, K.; Miki, K. Crystal structure of phenylacetic acid degradation protein PaaG from Thermus thermophilus HB8. Proteins, 2009, 76(4), 779-786.
[http://dx.doi.org/10.1002/prot.22455] [PMID: 19452559]
[21]
Padmanabhan, B.; Bessho, Y.; Ebihara, A.; Antonyuk, S.V.; Ellis, M.J.; Strange, R.W.; Kuramitsu, S.; Watanabe, N.; Hasnain, S.S.; Yokoyama, S. Structure of putative 4-amino-4-deoxychorismate lyase from Thermus thermophilus HB8. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2009, 65(Pt 12), 1234-1239.
[http://dx.doi.org/10.1107/S1744309109050052] [PMID: 20054118]
[22]
Sakamoto, K.; Agari, Y.; Agari, K.; Kuramitsu, S.; Shinkai, A. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiol. (Reading), 2010, 156(Pt 7), 1993-2005.
[http://dx.doi.org/10.1099/mic.0.037382-0] [PMID: 20395270]
[23]
Kanaujia, S.P.; Jeyakanthan, J.; Shinkai, A.; Kuramitsu, S.; Yokoyama, S.; Sekar, K. Crystal structures, dynamics and functional implications of molybdenum-cofactor biosynthesis protein MogA from two thermophilic organisms. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2011, 67(Pt 1), 2-16.
[http://dx.doi.org/10.1107/S1744309110035037] [PMID: 21206014]
[24]
Suzuki, S.; Yanai, H.; Kanagawa, M.; Tamura, S.; Watanabe, Y.; Fuse, K.; Baba, S.; Sampei, G.; Kawai, G. Structure of N-formylglycinamide ribonucleotide amidotransferase II (PurL) from Thermus thermophilus HB8. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012, 68(Pt 1), 14-19.
[http://dx.doi.org/10.1107/S1744309111048184] [PMID: 22232163]
[25]
Ogawa, A.; Sampei, G.I.; Kawai, G. Crystal structure of the flavin-dependent thymidylate synthase Thy1 from Thermus thermophilus with an extra C-terminal domain. Acta Crystallogr. F Struct. Biol. Commun., 2019, 75(Pt 6), 450-454.
[http://dx.doi.org/10.1107/S2053230X19007192] [PMID: 31204692]
[26]
Crameri, A.; Whitehorn, E.A.; Tate, E.; Stemmer, W.P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol., 1996, 14(3), 315-319.
[http://dx.doi.org/10.1038/nbt0396-315] [PMID: 9630892]
[27]
Grabski, A.; Mehler, M.; Drott, D. The overnight express autoinduction system: high-density cell growth and protein expression while you sleep. Nat. Methods, 2005, 2, 233-235.
[http://dx.doi.org/10.1038/nmeth0305-233]
[28]
Yamashita, S.; Shibata, N.; Boku-Ikeda, A.; Abe, E.; Inayama, A.; Yamaguchi, T.; Higuma, A.; Inagaki, K.; Tsuyuzaki, T.; Iwamoto, S.; Ohno, S.; Yokogawa, T.; Nishikawa, K.; Biswas, K.B.; Nabi, A.H.; Nakagawa, T.; Suzuki, F.; Ebihara, A. Escherichia coli-based production of recombinant ovine angiotensinogen and its characterization as a renin substrate. BMC Biotechnol., 2016, 16(1), 33.
[http://dx.doi.org/10.1186/s12896-016-0265-x] [PMID: 27052373]
[29]
Mizobata, T.; Kagawa, M.; Murakoshi, N.; Kusaka, E.; Kameo, K.; Kawata, Y.; Nagai, J. Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli production of soluble apoenzyme and in vitro formation of active holoenzyme. Eur. J. Biochem., 2000, 267(13), 4264-4271.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01474.x] [PMID: 10866831]
[30]
Kuramitsu, S.; Hiromi, K.; Hayashi, H.; Morino, Y.; Kagamiyama, H. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Biochem., 1990, 29(23), 5469-5476.
[http://dx.doi.org/10.1021/bi00475a010] [PMID: 2201406]
[31]
Beers, R.F., Jr; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 1952, 195(1), 133-140.
[http://dx.doi.org/10.1016/S0021-9258(19)50881-X] [PMID: 14938361]
[32]
Te Riet, L.; van Esch, J.H.; Roks, A.J.; van den Meiracker, A.H.; Danser, A.H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res., 2015, 116(6), 960-975.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303587] [PMID: 25767283]
[33]
Akther, J.; Nabi, A.H.M.N.; Ohno, S.; Yokogawa, T.; Nakagawa, T.; Suzuki, F.; Ebihara, A. Establishing a novel assay system for measuring renin concentration using cost effective recombinant ovine angiotensinogen. Heliyon, 2019, 5(4), e01409.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01409] [PMID: 30997427]
[34]
Palanikumar, I.; Katla, S.; Tahara, N.; Yui, M.; Zhang, R.; Ebihara, A.; Sivaprakasam, S. Heterologous expression, purification, and functional characterization of recombinant ovine angiotensinogen in the methylotrophic yeast Pichia pastoris. Biotechnol. Prog., 2019, 35(5), e2866.
[http://dx.doi.org/10.1002/btpr.2866] [PMID: 31187608]
[35]
Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 2004, 61(2), 192-208.
[http://dx.doi.org/10.1007/s00018-003-3206-5] [PMID: 14745498]
[36]
Ebihara, A.; Manzoku, M.; Fukui, K.; Shimada, A.; Morita, R.; Masui, R.; Kuramitsu, S. Roles of Mn-catalase and a possible heme peroxidase homologue in protection from oxidative stress in Thermus thermophilus. Extremophiles, 2015, 19(4), 775-785.
[http://dx.doi.org/10.1007/s00792-015-0753-2] [PMID: 25997395]