Appraisal of Felodipine Nanocrystals for Solubility Enhancement and Pharmacodynamic Parameters on Cadmium Chloride Induced Hypertension in Rats

Page: [625 - 634] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aim: Felodipine (FDP), an antihypertensive drug possesses low water solubility and extensive first-pass metabolism leading to poor bioavailability. This impelled us to improve its solubility, bioavailability, and pharmacodynamic properties through the Nanocrystal (NC) approach.

Methods: FDP-NC were prepared with Poloxamer F125 (PXM) by the antisolvent precipitation method. The experimental setup aimed at fine-tuning polymer concentration, the proportion of antisolvent to solvent, and the duration of ultrasonication for NC formulation.

Results: Optimized formulation was characterized for particle size, solubility, and PDI. Particle reduction of 74.96 times was achieved with a 9X solubility enhancement as equated to pure FDP. The morphology of NC was found to be crystalline through scanning electron microscopy observation. The formation of the crystal lattice in FDP-NC was further substantiated by the XRD and DSC results. Lowering of the heat of fusion of FDP-NC is a clear indication of size reduction. The stability studies showed no substantial change in physical parameters of the FDP-NC as assessed by particle size, zeta potential, and drug content.

Conclusion: The crystalline nature and improved solubility of FDP-NC improve the dissolution profile and pharmacodynamic data. The stability study data ensure that FDP-NC can be safely stored at 25°C. It is revealed that FDP-NC had a better release profile and improved pharmacodynamic effects as evident from better control over heart rate than FDP.

Keywords: Antisolvent precipitation, cadmium chloride, felodipine, heart rate variability, heat of fusion, crystallinity.

Graphical Abstract

[1]
Bastami, Z.; Taheri, A.; Soltanpour, S. Formulation, optimization and characterization of gemfibrozil nanocrystals prepared by wet milling technique. Asian J. Pharm., 2015, 9(1), 19-22.
[http://dx.doi.org/10.4103/0973-8398.150032]
[2]
Lu, Y.; Wang, Z.H.; Li, T.; McNally, H.; Park, K.; Sturek, M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J. Control. Release, 2014, 176(1), 76-85.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.018] [PMID: 24378441]
[3]
Nepal, P.R.; Han, H-K.; Choi, H-K. Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int. J. Pharm., 2010, 383(1-2), 147-153.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.031] [PMID: 19781608]
[4]
Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[http://dx.doi.org/10.2147/IJN.S595] [PMID: 18990939]
[5]
Butnariu, M.; Sarac, I.; Samfira, I. Spectrophotometric and chromatographic strategies for exploring of the nanostructure pharmaceutical formulations which contains testosterone undecanoate. Sci. Rep., 2020, 10(1), 3569.
[http://dx.doi.org/10.1038/s41598-020-60657-4] [PMID: 32107451]
[6]
Butu, A.; Rodino, S.; Golea, D.; Bucu, M.; Butnariu, M.; Negoescu, C.; Dinu-Pîrvu, C. Liposomal nanodelivery system for protease inhibitor anticancer drug bortezomib 2015, 63(2), 224-229.
[7]
Coltescu, A.R.; Butnariu, M.; Sarac, I. The importance of solubility for new drug molecules. Biomed. Pharmacol. J., 2020, 13(2), 577-583.
[http://dx.doi.org/10.13005/bpj/1920]
[8]
Butu, M.; Butnariu, M.; Rodino, S.; Butu, A. Study of zingiberene from lycopersicon esculentum fruit by mass spectometry. Dig. J. Nanomater. Biostruct., 2014, 9(3), 935-941.
[9]
Jiang, T.; Han, N.; Zhao, B.; Xie, Y.; Wang, S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev. Ind. Pharm., 2012, 38(10), 1230-1239.
[http://dx.doi.org/10.3109/03639045.2011.645830] [PMID: 22229827]
[10]
Yaqoubi, S.; Barzegar-Jalali, M.; Adibkia, K.; Hamishehkar, H. Dry powder inhalation of celecoxib nanoparticles: Formulation and in vitro characterization. Pharm. Ind., 2015, 77(11), 1652-1659.
[11]
Sarnes, A.; Østergaard, J.; Jensen, S.S.; Aaltonen, J.; Rantanen, J.; Hirvonen, J.; Peltonen, L. Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods. Eur. J. Pharm. Sci., 2013, 50(3-4), 511-519.
[http://dx.doi.org/10.1016/j.ejps.2013.08.030] [PMID: 23999036]
[12]
Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int. J. Pharm., 2013, 453(1), 126-141.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[13]
de Waard, H.; Hinrichs, W.L.J.; Frijlink, H.W. A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J. Control. Release, 2008, 128(2), 179-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.002] [PMID: 18423767]
[14]
Shariare, M.H.; Sharmin, S.; Jahan, I.; Reza, H.M.; Mohsin, K. The impact of process parameters on carrier free paracetamol nanosuspension prepared using different stabilizers by antisolvent precipitation method. J. Drug Deliv. Sci. Technol., 2018, 43, 122-128.
[http://dx.doi.org/10.1016/j.jddst.2017.10.001]
[15]
Sajeev Kumar, B.; Saraswathi, R.; Dhanaraj, S.A. Solid-state characterization studies and effect of PEG 20000 and P90G on particle size reduction and stability of complexed glimepiride nanocrystals. J. Young Pharm., 2013, 5(3), 83-89.
[http://dx.doi.org/10.1016/j.jyp.2013.08.002] [PMID: 24396247]
[16]
Parashar, P.; Diwaker, N.; Kanoujia, J.; Singh, M.; Yadav, A.; Singh, I.; Saraf, S.A. In situ gel of lamotrigine for augmented brain delivery: development characterization and pharmacokinetic evaluation. J. Pharm. Investig., 2020, 50(1), 95-105.
[http://dx.doi.org/10.1007/s40005-019-00436-0]
[17]
Pal, R.R.; Maurya, A.K.; Parashar, P.; Saraf, S.A. A Comparative Study of Levocetirizine Loaded Vesicular and Matrix Type System for Topical Application: Appraisal of Therapeutic Potential against Atopic Dermatitis. J. Pharm. Innov., 2020, 16, 469-480.
[http://dx.doi.org/10.1007/s12247-020-09465-x]
[18]
Sharma, S.; Aggarwal, G. Novel technologies for oral delivery of poorly soluble drugs. Res. J. Pharm. Biol. Chem. Sci., 2010, 1(4), 293-295.
[19]
Semalty, A.; Semalty, M.; Singh, D.; Rawat, M.S.M. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J. Incl. Phenom. Macrocycl. Chem., 2010, 67(3-4), 253-260.
[http://dx.doi.org/10.1007/s10847-009-9705-8]
[20]
Kumar, S.; Gokhale, R.; Burgess, D.J. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int. J. Pharm., 2014, 471(1-2), 303-311.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.060] [PMID: 24939612]
[21]
Yen, F-L.; Wu, T-H.; Lin, L-T.; Cham, T-M.; Lin, C-C. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure. Pharm. Res., 2009, 26(4), 893-902.
[http://dx.doi.org/10.1007/s11095-008-9791-0] [PMID: 19034626]
[22]
Hussein, A.A.; Mahmood, H.S. Preparation and evaluation of cefixime nanocrystals. Iraqi J. Pharm. Sci. (P-ISSN 1683-3597, E-ISSN 2521-3512), 2014, 23(2), 1-12.
[23]
Youn, Y-S.; Oh, J.H.; Ahn, K.H.; Kim, M.; Kim, J.; Lee, Y-W. Dissolution Rate Improvement of Valsartan by Low Temperature Recrystallization in Compressed CO2: Prevention of Excessive Agglomeration. J. Supercrit. Fluids, 2011, 59, 117-123.
[http://dx.doi.org/10.1016/j.supflu.2011.07.008]
[24]
Singh, M.; Kanoujia, J.; Parashar, P.; Arya, M.; Tripathi, C.B.; Sinha, V.R.; Saraf, S.K.; Saraf, S.A. Augmented bioavailability of felodipine through an α-linolenic acid-based microemulsion. Drug Deliv. Transl. Res., 2018, 8(1), 204-225.
[http://dx.doi.org/10.1007/s13346-017-0453-9] [PMID: 29204927]
[25]
Bhattacharjee, S. DLS and zeta potential - What they are and what they are not? J. Control. Release, 2016, 235, 337-351.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[26]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[http://dx.doi.org/10.4314/tjpr.v12i2.20]
[27]
Munyalo, J.M.; Zhang, X. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: a review. J. Mol. Liq., 2017, 2018(265), 77-87.
[http://dx.doi.org/10.1016/j.molliq.2018.05.129]
[28]
Rönn, O.; Bengtsson, B.; Edgar, B.; Raner, S. Acute haemodynamic effects of felodipine and verapamil in man, singly and with metoprolol. Drugs, 1985, 29(2)(Suppl. 2), 16-25.
[http://dx.doi.org/10.2165/00003495-198500292-00005] [PMID: 3987543]
[29]
Bonaduce, D.; Petretta, M.; Ianniciello, A.; Apicella, C.; Cavallaro, V.; Marciano, F. Comparison of verapamil versus felodipine on heart rate variability after acute myocardial infarction. Am. J. Cardiol., 1997, 79(5), 564-569.
[http://dx.doi.org/10.1016/S0002-9149(96)00816-8] [PMID: 9068509]
[30]
Klimas, J.; Kruzliak, P.; Rabkin, S.W. Modulation of the QT interval duration in hypertension with antihypertensive treatment. Hypertens. Res., 2015, 38(7), 447-454.
[http://dx.doi.org/10.1038/hr.2015.30] [PMID: 25787045]