Anti-Cancer Agents in Medicinal Chemistry

Author(s): Fatma Kubra Ata and Serap Yalcin*

DOI: 10.2174/1871520621666210727105431

The Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine Treatment in Resistant 2D and 3D Model Triple Negative Breast Cancer Cell Line: ABCG2 Expression Data

Page: [371 - 377] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Chemotherapeutics have been commonly used in cancer treatment.

Objective: In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB- 231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment.

Methods: The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts, we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay.

Results: Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment.

Conclusion: More resistance to chemotherapeutics and altered gene expression profile were shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs to explore the mechanisms of MDR in the 3D spheroid forms.

Keywords: Cisplatin, 5-Fu, irinotecan, gemcitabine, drug resistance, 3D spheroid formation, gene expression, breast cancer.

Graphical Abstract

[1]
Geay, J.F. Physiopathologie, diagnostic et thérapeutique du cancer du sein. Soins, 2013, 776(776), 25-29.
[http://dx.doi.org/10.1016/j.soin.2013.04.004] [PMID: 23878881]
[2]
Mayer, E.L.; Burstein, H.J. Chemotherapy for metastatic breast cancer. Hematol. Oncol. Clin. North Am., 2007, 21(2), 257-272.
[http://dx.doi.org/10.1016/j.hoc.2007.03.001] [PMID: 17512448]
[3]
Zeichner, S.B.; Terawaki, H.; Gogineni, K. Review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl.), 2016, 10, 25-36.
[http://dx.doi.org/10.4137/BCBCR.S32783] [PMID: 27042088]
[4]
O’Shaughnessy, J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist, 2005, 10(Suppl. 3), 20-29.
[http://dx.doi.org/10.1634/theoncologist.10-90003-20] [PMID: 16368868]
[5]
Crozier, J.A.; Swaika, A.; Moreno-Aspitia, A. Adjuvant chemotherapy in breast cancer: To use or not to use, the anthracyclines. World J. Clin. Oncol., 2014, 5(3), 529-538.
[http://dx.doi.org/10.5306/wjco.v5.i3.529] [PMID: 25114866]
[6]
Ahmad, A. Breast cancer metastasis and drug resistance. Adv. Exp. Med. Biol., 2019, 1152, 51-62.
[7]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[8]
Isakoff, S.J.; Mayer, E.L.; He, L.; Traina, T.A.; Carey, L.A.; Krag, K.J.; Rugo, H.S.; Liu, M.C.; Stearns, V.; Come, S.E.; Timms, K.M.; Hartman, A.R.; Borger, D.R.; Finkelstein, D.M.; Garber, J.E.; Ryan, P.D.; Winer, E.P.; Goss, P.E.; Ellisen, L.W. TBCRC009: A multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J. Clin. Oncol., 2015, 33(17), 1902-1909.
[http://dx.doi.org/10.1200/JCO.2014.57.6660] [PMID: 25847936]
[9]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[10]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[11]
Curreri, A.R.; Ansfield, F.J. McIVER, F.A.; Waisman, H.A.; Heidelberger, C. Clinical studies with 5-fluorouracil. Cancer Res., 1958, 18(4), 478-484.
[PMID: 13537000]
[12]
Albain, K.S.; Barlow, W.E.; Ravdin, P.M.; Farrar, W.B.; Burton, G.V.; Ketchel, S.J.; Cobau, C.D.; Levine, E.G.; Ingle, J.N.; Pritchard, K.I.; Lichter, A.S.; Schneider, D.J.; Abeloff, M.D.; Henderson, I.C.; Muss, H.B.; Green, S.J.; Lew, D.; Livingston, R.B.; Martino, S.; Osborne, C.K. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: A phase 3, open-label, randomised controlled trial. Lancet, 2009, 374(9707), 2055-2063.
[http://dx.doi.org/10.1016/S0140-6736(09)61523-3] [PMID: 20004966]
[13]
Kümler, I.; Balslev, E.; Stenvang, J.; Brünner, N.; Nielsen, D. A phase II study of weekly irinotecan in patients with locally advanced or metastatic HER2- negative breast cancer and increased copy numbers of the topoisomerase 1 (TOP1) gene: A study protocol. BMC Cancer, 2015, 15, 78.
[http://dx.doi.org/10.1186/s12885-015-1072-9] [PMID: 25885574]
[14]
Kuchler, K. The ABC of ABCs: Multidrug resistance and genetic diseases. FEBS J., 2011, 278(18), 3189.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08234.x] [PMID: 21740520]
[15]
Glavinas, H.; Krajcsi, P.; Cserepes, J.; Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv., 2004, 1(1), 27-42.
[http://dx.doi.org/10.2174/1567201043480036] [PMID: 16305368]
[16]
Cuperus, F.J.; Claudel, T.; Gautherot, J.; Halilbasic, E.; Trauner, M. The role of canalicular ABC transporters in cholestasis. Drug Metab. Dispos., 2014, 42(4), 546-560.
[http://dx.doi.org/10.1124/dmd.113.056358] [PMID: 24474736]
[17]
Jiang, Y.; He, Y.; Li, H.; Li, H.N.; Zhang, L.; Hu, W.; Sun, Y.M.; Chen, F.L.; Jin, X.M. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer, 2012, 15(4), 440-450.
[http://dx.doi.org/10.1007/s10120-012-0140-y] [PMID: 22395309]
[18]
Diestra, J.E.; Scheffer, G.L.; Català, I.; Maliepaard, M.; Schellens, J.H.; Scheper, R.J.; Germà-Lluch, J.R.; Izquierdo, M.A. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J. Pathol., 2002, 198(2), 213-219.
[http://dx.doi.org/10.1002/path.1203] [PMID: 12237881]
[19]
Sharom, F.J. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics, 2008, 9(1), 105-127.
[http://dx.doi.org/10.2217/14622416.9.1.105] [PMID: 18154452]
[20]
Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp., 2011, 51(51), 2720.
[http://dx.doi.org/10.3791/2720] [PMID: 21587162]
[21]
Kim, J.Y.; Dao, T.T.P.; Song, K.; Park, S.B.; Jang, H.; Park, M.K.; Gan, S.U.; Kim, Y.S. Annona muricata leaf extract triggered ıntrinsic apoptotic pathway to attenuate cancerous features of triple negative breast cancer MDA-MB-231 cells. Evid. Based Complement. Alternat. Med., 2018, 20187972916
[http://dx.doi.org/10.1155/2018/7972916] [PMID: 30105068]
[22]
Długosz-Pokorska, A.; Pięta, M.; Janecki, T.; Janecka, A. New uracil analogs as downregulators of ABC transporters in 5-fluorouracil-resistant human leukemia HL-60 cell line. Mol. Biol. Rep., 2019, 46(6), 5831-5839.
[http://dx.doi.org/10.1007/s11033-019-05017-w] [PMID: 31741260]
[23]
Staud, F.; Pavek, P. Breast cancer resistance protein (BCRP/ABCG2). Int. J. Biochem. Cell Biol., 2005, 37(4), 720-725.
[http://dx.doi.org/10.1016/j.biocel.2004.11.004] [PMID: 15694832]
[24]
Polgar, O.; Robey, R.W.; Bates, S.E. ABCG2: structure, function and role in drug response. Expert Opin. Drug Metab. Toxicol., 2008, 4(1), 1-15.
[http://dx.doi.org/10.1517/17425255.4.1.1] [PMID: 18370855]
[25]
Natarajan, K.; Xie, Y.; Baer, M.R.; Ross, D.D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem. Pharmacol., 2012, 83(8), 1084-1103.
[http://dx.doi.org/10.1016/j.bcp.2012.01.002] [PMID: 22248732]
[26]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[27]
Gurski, L.; Petrelli, N.; Jia, X.; Farach-Carson, M. Three-dimensional matrices for anti-cancer drug testing and development. Oncol. Issues, 2010, 25, 20-25.
[http://dx.doi.org/10.1080/10463356.2010.11883480]
[28]
Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng., 2009, 103(4), 655-663.
[http://dx.doi.org/10.1002/bit.22361] [PMID: 19472329]
[29]
Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
[30]
Haycock, J.W. 3D cell culture: Methods and protocols. Methods Mol. Biol., 2011, 695, 1-15.
[http://dx.doi.org/10.1007/978-1-60761-984-0_1] [PMID: 21042962]
[31]
Härmä, V.; Virtanen, J.; Mäkelä, R.; Happonen, A.; Mpindi, J.P.; Knuuttila, M.; Kohonen, P.; Lötjönen, J.; Kallioniemi, O.; Nees, M. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One, 2010, 5(5)e10431
[http://dx.doi.org/10.1371/journal.pone.0010431] [PMID: 20454659]
[32]
Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsura, T.; Minami, H. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep., 2015, 33(4), 1837-1843.
[http://dx.doi.org/10.3892/or.2015.3767] [PMID: 25634491]