Natural Products with Tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 Effects: A Drug Discovery Perspective against SARS-CoV-2

Page: [2530 - 2564] Pages: 35

  • * (Excluding Mailing and Handling)

Abstract

Background: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be important in the search for drug candidates with antiviral effects against SARS-CoV-2.

Objective: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds.

Methods: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages.

Results: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed immunomodulatory effects in previous studies. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature.

Conclusion: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidates for the search of antibiotics against COVID-19.

Keywords: Natural products, COVID-19, 3CLpro and PLpro inhibitory effect, anti-inflammatory effect, immunomodulatory effect, drug discovery.

[1]
Islam, M.M.; Jannat, A.; Al Rafi, D.A.; Aruga, K. Potential economic impacts of the covid-19 pandemic on south asian economies: A review. World, 2020, 1(3), 283-299.
[http://dx.doi.org/10.3390/world1030020]
[2]
Romano, C.M.; Chebabo, A.; Levi, J.E. Past, present, and future of COVID-19: A review. Braz. J. Med. Biol. Res., 2020, 53(9)e10475
[http://dx.doi.org/10.1590/1414-431x202010475] [PMID: 32725080]
[3]
Worldometer. COVID-19 coronavirus pandemic. Available from:. https://www.worldometers.info/coronavirus/[Accessed February 17, 2021]
[4]
Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg., 2020, 61(3), E304-E312.
[PMID: 33150219]
[5]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (covid-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[6]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med., 2020, 58(7), 1021-1028.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[8]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical appraisal. Int. J. Antimicrob. Agents, 2020, 56(3)106101
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101] [PMID: 32687949]
[9]
Sodani, P.; Mucci, L.; Girolimetti, R.; Tedesco, S.; Monaco, F.; Campanozzi, D.; Brunori, M.; Maltoni, S.; Bedetta, S.; Di Carlo, A.M.; Candoli, P.; Mancini, M.; Rebonato, A.; D’Adamo, F.; Capalbo, M.; Frausini, G. Successful recovery from COVID-19 pneumonia after receiving baricitinib, tocilizumab, and remdesivir. A case report: Review of treatments and clinical role of computed tomography analysis. Respir. Med. Case Rep., 2020, 31101115
[http://dx.doi.org/10.1016/j.rmcr.2020.101115] [PMID: 32670785]
[10]
Hung, I.F.; Lung, K.C.; Tso, E.Y.; Liu, R.; Chung, T.W.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; Shum, H.P.; Chan, V.; Wu, A.K.L.; Sin, K.M.; Leung, W.S.; Law, W.L.; Lung, D.C.; Sin, S.; Yeung, P.; Yip, C.C.Y.; Zhang, R.R.; Fung, A.Y.F.; Yan, E.Y.W.; Leung, K.H.; Ip, J.D.; Chu, A.W.H.; Chan, W.M.; Ng, A.C.K.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.C.; Chan, J.W.M.; Yan, W.W.; Chan, W.M.; Chan, J.F.W.; Lie, A.K.W.; Tsang, O.T.Y.; Cheng, V.C.C.; Que, T.L.; Lau, C.S.; Chan, K.H.; To, K.K.W.; Yuen, K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238), 1695-1704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[11]
Neuman, B.W.; Adair, B.D.; Yoshioka, C.; Quispe, J.D.; Orca, G.; Kuhn, P.; Milligan, R.A.; Yeager, M.; Buchmeier, M.J. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J. Virol., 2006, 80(16), 7918-7928.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[12]
Goldsmith, C.S.; Tatti, K.M.; Ksiazek, T.G.; Rollin, P.E.; Comer, J.A.; Lee, W.W.; Rota, P.A.; Bankamp, B.; Bellini, W.J.; Zaki, S.R. Ultrastructural characterization of SARS coronavirus. Emerg. Infect. Dis., 2004, 10(2), 320-326.
[http://dx.doi.org/10.3201/eid1002.030913] [PMID: 15030705]
[13]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses. Methods and protocols; Maier, H.; Bickerton, E.; Britton, P., Eds.; Humana Press: New York, , 2015; 1282, pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[14]
Martin, S. Homology models of Wuhan coronavirus 3CLpro protease; ChemRxi, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11637294.v3]
[15]
Fani, M.; Teimoori, A.; Ghafari, S. Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol., 2020, 15(5), 317-323.
[http://dx.doi.org/10.2217/fvl-2020-0050]
[16]
Lee, E.; Shin, S.; Kim, J.K.; Woo, E.R.; Kim, Y. Anti-inflammatory effects of amentoflavone on modulation of signal pathways in lps-stimulated raw264.7 cells. Bull. Korean Chem. Soc., 2012, 33(9), 2878-2882.
[http://dx.doi.org/10.5012/bkcs.2012.33.9.2878]
[17]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[18]
Park, C.H.; Min, S.Y.; Yu, H.W.; Kim, K.; Kim, S.; Lee, H.J.; Kim, J.H.; Park, Y.J. Effects of apigenin on rbl-2h3, raw264.7, and hacat cells: Anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci., 2020, 21(13), 4620.
[http://dx.doi.org/10.3390/ijms21134620] [PMID: 32610574]
[19]
Atal, S.; Fatima, Z. IL-6 inhibitors in the treatment of serious covid-19: A promising therapy? Pharmaceut. Med., 2020, 34(4), 223-231.
[http://dx.doi.org/10.1007/s40290-020-00342-z] [PMID: 32535732]
[20]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[21]
Wang, B.; Li, L.; Jin, P.; Li, M.; Li, J. Hesperetin protects against inflammatory response and cardiac fibrosis in postmyocardial infarction mice by inhibiting nuclear factor κB signaling pathway. Exp. Ther. Med., 2017, 14(3), 2255-2260.
[http://dx.doi.org/10.3892/etm.2017.4729] [PMID: 28962151]
[22]
Ryan, P.M.; Caplice, N. COVID-19 and relative angiotensin-converting enzyme 2 deficiency: role in disease severity and therapeutic response. Open Heart, 2020, 7(1)001302
[http://dx.doi.org/10.1136/openhrt-2020-001302] [PMID: 32532804]
[23]
Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell. Longev., 2019, 20195484138
[http://dx.doi.org/10.1155/2019/5484138] [PMID: 30962863]
[24]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[25]
Cho, B.O.; Yin, H.H.; Park, S.H.; Byun, E.B.; Ha, H.Y.; Jang, S.I. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci. Biotechnol. Biochem., 2016, 80(8), 1520-1530.
[http://dx.doi.org/10.1080/09168451.2016.1171697] [PMID: 27068250]
[26]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[27]
Chen, X.; Wen, T.; Wei, J.; Wu, Z.; Wang, P.; Hong, Z.; Zhao, L.; Wang, B.; Flavell, R.; Gao, S.; Wang, M.; Yin, Z. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs. Cell. Mol. Immunol., 2013, 10(6), 497-505.
[http://dx.doi.org/10.1038/cmi.2013.27] [PMID: 24013845]
[28]
Turianová, L.; Lachová, V.; Svetlíkova, D.; Kostrábová, A.; Betáková, T. Comparison of cytokine profiles induced by nonlethal and lethal doses of influenza A virus in mice. Exp. Ther. Med., 2019, 18(6), 4397-4405.
[http://dx.doi.org/10.3892/etm.2019.8096] [PMID: 31777543]
[29]
Gupta, A. Is immuno-modulation the key to covid-19 pandemic? Indian J. Orthop., 2020, 54(3), 394-397.
[http://dx.doi.org/10.1007/s43465-020-00121-7] [PMID: 32341599]
[30]
Chen, H.L.; Jia, W.J.; Li, H.E.; Han, H.; Li, F.; Zhang, X.L.N.; Li, J.J.; Yuan, Y.; Wu, C.Y. Scutellarin exerts anti-inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated bv-2 microglia through regulation of mapks signaling pathway. Neuromolecular Med., 2020, 22(2), 264-277.
[http://dx.doi.org/10.1007/s12017-019-08582-2] [PMID: 31792810]
[31]
Tremblay, M.E.; Madore, C.; Bordeleau, M.; Tian, L.; Verkhratsky, A. Neuropathobiology of covid-19: The role for glia. Front. Cell. Neurosci., 2020, 14592214
[http://dx.doi.org/10.3389/fncel.2020.592214] [PMID: 33304243]
[32]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[33]
Tang, X.L.; Liu, J.X.; Dong, W.; Li, P.; Li, L.; Hou, J.C.; Zheng, Y.Q.; Lin, C.R.; Ren, J.G. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation, 2015, 38(1), 94-101.
[http://dx.doi.org/10.1007/s10753-014-0011-2] [PMID: 25189464]
[34]
Ryu, J.H.; Ahn, H.; Jin Lee, H. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia, 2003, 74(4), 350-354.
[http://dx.doi.org/10.1016/S0367-326X(03)00062-5] [PMID: 12781805]
[35]
Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[36]
Nishitani, Y.; Yamamoto, K.; Yoshida, M.; Azuma, T.; Kanazawa, K.; Hashimoto, T.; Mizuno, M. Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 2013, 39(5), 522-533.
[http://dx.doi.org/10.1002/biof.1091] [PMID: 23460110]
[37]
Villapol, S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl. Res., 2020, 226, 57-69.
[http://dx.doi.org/10.1016/j.trsl.2020.08.004] [PMID: 32827705]
[38]
Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules, 2012, 18(1), 322-353.
[http://dx.doi.org/10.3390/molecules18010322] [PMID: 23271469]
[39]
Müller, C.; Hardt, M.; Schwudke, D.; Neuman, B.W.; Pleschka, S.; Ziebuhr, J. Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture. J. Virol., 2018, 92(4), 01463-17.
[http://dx.doi.org/10.1128/JVI.01463-17] [PMID: 29167338]
[40]
Hoxha, M. What about COVID-19 and arachidonic acid pathway? Eur. J. Clin. Pharmacol., 2020, 76(11), 1501-1504.
[http://dx.doi.org/10.1007/s00228-020-02941-w] [PMID: 32583353]
[41]
Funk, C.D.; Ardakani, A. A novel strategy to mitigate the hyperinflammatory response to covid-19 by targeting leukotrienes. Front. Pharmacol., 2020, 11(11), 1214.
[http://dx.doi.org/10.3389/fphar.2020.01214] [PMID: 32848802]
[42]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[43]
Jin, Q.; Lee, C.; Lee, J.W.; Lee, D.; Kim, Y.; Hong, J.T.; Kim, J.S.; Kim, J.H.; Lee, M.K.; Hwang, B.Y. Geranylated flavanones from Paulownia coreana and their inhibitory effects on nitric oxide production. Chem. Pharm. Bull. (Tokyo), 2015, 63(5), 384-387.
[http://dx.doi.org/10.1248/cpb.c14-00839] [PMID: 25948332]
[44]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health, 2013, 10(9), 3886-3907.
[http://dx.doi.org/10.3390/ijerph10093886] [PMID: 23985773]
[45]
Hanáková, Z.; Hošek, J.; Babula, P.; Dall’Acqua, S.; Václavík, J.; Šmejkal, K. C-geranylated flavanones from paulownia tomentosa fruits as potential anti-inflammatory compounds acting via inhibition of tnf-α production. J. Nat. Prod., 2015, 78(4), 850-863.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00005] [PMID: 25735399]
[46]
Duret, P.M.; Sebbag, E.; Mallick, A.; Gravier, S.; Spielmann, L.; Messer, L. Recovery from COVID-19 in a patient with spondyloarthritis treated with TNF-alpha inhibitor etanercept. Ann. Rheum. Dis., 2020, 79(9), 1251-1252.
[http://dx.doi.org/10.1136/annrheumdis-2020-217362] [PMID: 32354772]
[47]
Yousaf, A.; Gayam, S.; Feldman, S.; Zinn, Z.; Kolodney, M. Clinical outcomes of COVID-19 in patients taking tumor necrosis factor inhibitors or methotrexate: A multicenter research network study. J. Am. Acad. Dermatol., 2021, 84(1), 70-75.
[http://dx.doi.org/10.1016/j.jaad.2020.09.009] [PMID: 32926977]
[48]
Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P.; Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; Šmejkal, K. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J. Nat. Prod., 2017, 80(4), 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[49]
Zhao, D.; Zhang, S.; Igawa, T.; Frishman, W. Use of nonsteroidal anti-inflammatory drugs for covid-19 infection: Adjunct therapy? Cardiol. Rev., 2020, 28(6), 303-307.
[http://dx.doi.org/10.1097/CRD.0000000000000340] [PMID: 33017365]
[50]
Cheng, C.L.; Jia, X.H.; Xiao, C.M.; Tang, W.Z. Paulownia C-geranylated flavonoids: Their structural variety, biological activity and application prospects. Phytochem. Rev., 2019, 18(3), 549-570.
[http://dx.doi.org/10.1007/s11101-019-09614-2] [PMID: 32214921]
[51]
Hosek, J.; Závalová, V.; Smejkal, K.; Bartos, M. Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. Folia Biol. (Praha), 2010, 56(3), 124-130.
[PMID: 20653997]
[52]
Hirawat, R.; Saifi, M.A.; Godugu, C. Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci., 2021, 267118923
[http://dx.doi.org/10.1016/j.lfs.2020.118923] [PMID: 33358906]
[53]
Lee, C.; Lee, J.M.; Lee, N.R.; Kim, D.E.; Jeong, Y.J.; Chong, Y. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett., 2009, 19(16), 4538-4541.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.009] [PMID: 19625187]
[54]
Nguyen, T.T.H.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[55]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[56]
Liu, H.; Ye, F.; Sun, Q.; Liang, H.; Li, C.; Li, S.; Lu, R.; Huang, B.; Tan, W.; Lai, L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 497-503.
[http://dx.doi.org/10.1080/14756366.2021.1873977] [PMID: 33491508]
[57]
Nguyen, T.T.H.; Jung, J-H.; Kim, M-K.; Lim, S.; Choi, J-M.; Chung, B.; Kim, D-W.; Kim, D. The inhibitory effects of plant derivate polyphenols on the Main Protease of SARS Coronavirus 2 and their structure–activity relationship. Molecules, 2021, 26(7), 1924.
[http://dx.doi.org/10.3390/molecules26071924] [PMID: 33808054]
[58]
Soromou, L.W.; Chen, N.; Jiang, L.; Huo, M.; Wei, M.; Chu, X.; Millimouno, F.M.; Feng, H.; Sidime, Y.; Deng, X. Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway. Biochem. Biophys. Res. Commun., 2012, 419(2), 256-261.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.005] [PMID: 22342978]
[59]
Borghi, S.M.; Carvalho, T.T.; Staurengo-Ferrari, L.; Hohmann, M.S.; Pinge-Filho, P.; Casagrande, R.; Verri, W.A. Jr Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod., 2013, 76(6), 1141-1149.
[http://dx.doi.org/10.1021/np400222v] [PMID: 23742617]
[60]
Henss, L.; Auste, A.; Schürmann, C.; Schmidt, C.; von Rhein, C.; Mühlebach, M.D.; Schnierle, B.S. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J. Gen. Virol., in press
[http://dx.doi.org/10.1099/jgv.0.001574] [PMID: 33830908]
[61]
Li, J.; Ye, L.; Wang, X.; Liu, J.; Wang, Y.; Zhou, Y.; Ho, W. (-)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells. J. Neuroinflammation, 2012, 9, 161.
[http://dx.doi.org/10.1186/1742-2094-9-161] [PMID: 22768975]
[62]
Xu, B.; Huang, S.; Wang, C.; Zhang, H.; Fang, S.; Zhang, Y. Anti-inflammatory effects of dihydromyricetin in a mouse model of asthma. Mol Med Rep, 2017, 1I5, 3674-3680.
[http://dx.doi.org/10.3892/mmr.2017.6428]
[63]
Kang, G.J.; Han, S.C.; Ock, J.W.; Kang, H.K.; Yoo, E.S. Anti-inflammatory effect of quercetagetin, an active component of immature citrus unshiu, in hacat human keratinocytes. Biomol. Ther. (Seoul), 2013, 21(2), 138-145.
[http://dx.doi.org/10.4062/biomolther.2013.001] [PMID: 24009872]
[64]
Gutiérrez-Venegas, G.; Torras-Ceballos, A.; Gómez-Mora, J.A.; Fernández-Rojas, B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell. Mol. Biol. Lett., 2017, 22, 19.
[http://dx.doi.org/10.1186/s11658-017-0047-z] [PMID: 28878808]
[65]
Clementi, N.; Scagnolari, C.; D’Amore, A.; Palombi, F.; Criscuolo, E.; Frasca, F.; Pierangeli, A.; Mancini, N.; Antonelli, G.; Clementi, M.; Carpaneto, A.; Filippini, A. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol. Res., 2021, 163105255
[http://dx.doi.org/10.1016/j.phrs.2020.105255] [PMID: 33096221]
[66]
Manchope, M.F.; Casagrande, R.; Verri, W.A. Jr Naringenin: An analgesic and anti-inflammatory citrus flavanone. Oncotarget, 2017, 8(3), 3766-3767.
[http://dx.doi.org/10.18632/oncotarget.14084] [PMID: 28030851]
[67]
Zandi, K.; Musall, K.; Oo, A.; Cao, D.; Liang, B.; Hassandarvish, P.; Lan, S.; Slack, R.L.; Kirby, K.A.; Bassit, L.; Amblard, F.; Kim, B.; AbuBakar, S.; Sarafianos, S.G.; Schinazi, R.F. Baicalein and baicalin inhibit sars-cov-2 rna-dependent-rna polymerase. Microorganisms, 2021, 9(5), 893.
[http://dx.doi.org/10.3390/microorganisms9050893] [PMID: 33921971]
[68]
Song, J.; Zhang, L.; Xu, Y.; Yang, D.; Zhang, L.; Yang, S.; Zhang, W.; Wang, J.; Tian, S.; Yang, S.; Yuan, T.; Liu, A.; Lv, Q.; Li, F.; Liu, H.; Hou, B.; Peng, X.; Lu, Y.; Du, G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem. Pharmacol., 2021, 183114302
[http://dx.doi.org/10.1016/j.bcp.2020.114302] [PMID: 33121927]
[69]
Sharifi-Rad, J.; Kamiloglu, S.; Yeskaliyeva, B.; Beyatli, A.; Alfred, M.A.; Salehi, B.; Calina, D.; Docea, A.O.; Imran, M.; Anil Kumar, N.V.; Romero-Román, M.E.; Maroyi, A.; Martorell, M. Pharmacological activities of psoralidin: A comprehensive review of the molecular mechanisms of action. Front. Pharmacol., 2020, 11571459
[http://dx.doi.org/10.3389/fphar.2020.571459] [PMID: 33192514]
[70]
Szliszka, E.; Skaba, D.; Czuba, Z.P.; Krol, W. Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages. Molecules, 2011, 16(5), 3701-3712.
[http://dx.doi.org/10.3390/molecules16053701] [PMID: 21540797]
[71]
Tian, X.; Liu, T.; Li, L.; Shao, B.; Yao, D.; Feng, L.; Cui, J.; James, T.D.; Ma, X. Visual high-throughput screening for developing a fatty acid amide hydrolase natural inhibitor based on an enzyme-activated fluorescent probe. Anal. Chem., 2020, 92(14), 9493-9500.
[http://dx.doi.org/10.1021/acs.analchem.9b05826] [PMID: 32456414]
[72]
Lissoni, P.; Rovelli, F.; Pelizzoni, F.; Lissoni, A.; Fede, G.D. Coronavirus-induced severe acute respiratory syndrome (SARS) as a possible expression of fatty acid amide hydrolase (FAAH) hyper-activation and possible therapeutic role of FAAH inhibitors in COVID 19-induced SARS. J. Clin. Res. Reports, 2020, 5(2)
[73]
Lee, S.W.; Yun, B.R.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H.M.; Rho, M.C. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med., 2012, 78(9), 903-906.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[74]
Hirano, T.; Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[75]
Abbasifard, M.; Khorramdelazad, H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci., 2020, 257118097
[http://dx.doi.org/10.1016/j.lfs.2020.118097] [PMID: 32679148]
[76]
Mokuda, S.; Tokunaga, T.; Masumoto, J.; Sugiyama, E. Angiotensin-converting enzyme 2, a sars-cov-2 receptor, is upregulated by interleukin 6 through stat3 signaling in synovial tissues. J. Rheumatol., 2020, 47(10), 1593-1595.
[http://dx.doi.org/10.3899/jrheum.200547] [PMID: 32611670]
[77]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[78]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feldman, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L.E.; Barbry, P.; Leslie, A.; Kiem, H.P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J. HCA SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[79]
Jeon, Y.D.; Lee, J.H.; Lee, Y.M.; Kim, D.K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother., 2020, 124109847
[http://dx.doi.org/10.1016/j.biopha.2020.109847] [PMID: 31981944]
[80]
Cheng, Z.; Lin, C.; Hwang, T.; Teng, C. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol., 2001, 61(8), 939-946.
[http://dx.doi.org/10.1016/S0006-2952(01)00543-3] [PMID: 11286985]
[81]
Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med., 1993, 329(27), 2002-2012.
[http://dx.doi.org/10.1056/NEJM199312303292706] [PMID: 7504210]
[82]
Ramachandran, R.A.; Lupfer, C.; Zaki, H. The inflammasome: regulation of nitric oxide and antimicrobial host defence. Adv. Microb. Physiol., 2018, 72, 65-115.
[http://dx.doi.org/10.1016/bs.ampbs.2018.01.004] [PMID: 29778217]
[83]
Stoclet, J.C.; Muller, B.; Andriantsitohaina, R.; Kleschyov, A. Overproduction of nitric oxide in pathophysiology of blood vessels. Biochemistry (Mosc.), 1998, 63(7), 826-832.
[PMID: 9721335]
[84]
Jing, H.; Wang, S.; Wang, M.; Fu, W.; Zhang, C.; Xu, D. Isobavachalcone attenuates mptp induced parkinson’s disease in mice by inhibition of microglial activation through nf-κb pathway. PLoS One, 2017, 12(1)0169560
[http://dx.doi.org/10.1371/journal.pone.0169560]
[85]
Kwon, H.M.; Choi, Y.J.; Choi, J.S.; Kang, S.W.; Bae, J.Y.; Kang, I.J.; Jun, J.G.; Lee, S.S.; Lim, S.S.; Kang, Y.H. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. (Maywood), 2007, 232(2), 235-245.
[PMID: 17259331]
[86]
Lee, S.H.; Kim, J.Y.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm. Res., 2009, 58(5), 257-262.
[http://dx.doi.org/10.1007/s00011-008-8183-6] [PMID: 19169644]
[87]
Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.S.; Kim, Y.H. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res., 2014, 37(2), 186-192.
[http://dx.doi.org/10.1007/s12272-013-0174-7] [PMID: 23771500]
[88]
Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res., 2013, 27(9), 1381-1391.
[http://dx.doi.org/10.1002/ptr.4862] [PMID: 23165939]
[89]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[90]
Chang, H.R.; Lee, H.J.; Ryu, J.H. Chalcones from Angelica keiskei attenuate the inflammatory responses by suppressing nuclear translocation of NF-κB. J. Med. Food, 2014, 17(12), 1306-1313.
[http://dx.doi.org/10.1089/jmf.2013.3037] [PMID: 25369132]
[91]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[92]
Tang, S.; Wen, Q.; Liu, P.; Zhu, Z.; Li, N.; Zhang, X.; Kan, Q. Effects of cryptotanshinone on the expression levels of inflammatory factors in myocardial cells caused by Ang II and its mechanism. Int. J. Clin. Exp. Med., 2015, 8(8), 12617-12623.
[PMID: 26550173]
[93]
Cao, S.G.; Chen, R.; Wang, H.; Lin, L.M.; Xia, X.P. Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells. Microb. Pathog., 2018, 116, 313-317.
[http://dx.doi.org/10.1016/j.micpath.2017.12.027] [PMID: 29353005]
[94]
Wu, Y.H.; Wu, Y.R.; Li, B.; Yan, Z.Y. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia, 2020, 145104633
[http://dx.doi.org/10.1016/j.fitote.2020.104633] [PMID: 32445662]
[95]
Fan, S.Y.; Zeng, H.W.; Pei, Y.H.; Li, L.; Ye, J.; Pan, Y.X.; Zhang, J.G.; Yuan, X.; Zhang, W.D. The anti-inflammatory activities of an extract and compounds isolated from Platycladus orientalis (Linnaeus) Franco in vitro and ex vivo. J. Ethnopharmacol., 2012, 141(2), 647-652.
[http://dx.doi.org/10.1016/j.jep.2011.05.019] [PMID: 21619922]
[96]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[97]
Zhu, X.Y.; Zhang, C.L.; Lin, Y.; Dang, M.Y. Ferruginol alleviates inflammation in dextran sulfate sodium-induced colitis in mice through inhibiting COX-2, MMP-9 and NF-κB signaling. Asian Pac. J. Trop. Biomed., 2020, 10, 308-315.
[http://dx.doi.org/10.4103/2221-1691.284945]
[98]
Atkinson, J.J.; Senior, R.M. Matrix metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol., 2003, 28(1), 12-24.
[http://dx.doi.org/10.1165/rcmb.2002-0166TR] [PMID: 12495928]
[99]
Ueland, T.; Holter, J.C.; Holten, A.R.; Müller, K.E.; Lind, A.; Bekken, G.K.; Dudman, S.; Aukrust, P.; Dyrhol-Riise, A.M.; Heggelund, L. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J. Infect., 2020, 81(3), e41-e43.
[http://dx.doi.org/10.1016/j.jinf.2020.06.061] [PMID: 32603675]
[100]
Wei, Y.; Li, K.; Wang, N.; Cai, G.D.; Zhang, T.; Lin, Y.; Gui, B.S.; Liu, E.Q.; Li, Z.F.; Zhou, W. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli. Am. J. Pathol., 2015, 185(2), 472-484.
[http://dx.doi.org/10.1016/j.ajpath.2014.10.007] [PMID: 25478807]
[101]
Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the Kidneys: An Update. Front. Med. (Lausanne), 2020, 7, 423.
[http://dx.doi.org/10.3389/fmed.2020.00423] [PMID: 32793615]
[102]
Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int., 2020, 97(5), 829-838.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[103]
Kang, S.; Zhang, J.; Yuan, Y. Abietic acid attenuates IL-1β-induced inflammation in human osteoarthritis chondrocytes. Int. Immunopharmacol., 2018, 64, 110-115.
[http://dx.doi.org/10.1016/j.intimp.2018.07.014] [PMID: 30172103]
[104]
Chen, X.; Yu, J.; Zhong, B.; Lu, J.; Lu, J.J.; Li, S.; Lu, Y. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol. Res., 2019, 145104254
[http://dx.doi.org/10.1016/j.phrs.2019.104254] [PMID: 31054311]
[105]
Tang, J.; Zhou, S.; Zhou, F.; Wen, X. Inhibitory effect of tanshinone IIA on inflammatory response in rheumatoid arthritis through regulating β-arrestin 2. Exp. Ther. Med., 2019, 17(5), 3299-3306.
[http://dx.doi.org/10.3892/etm.2019.7371] [PMID: 30988705]
[106]
Ma, S.; Zhang, D.; Lou, H.; Sun, L.; Ji, J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J. Ethnopharmacol., 2016, 188, 193-199.
[http://dx.doi.org/10.1016/j.jep.2016.05.018] [PMID: 27178632]
[107]
Kim, S.Y.; Moon, T.C.; Chang, H.W.; Son, K.H.; Kang, S.S.; Kim, H.P. Effects of tanshinone I isolated from Salvia miltiorrhiza bunge on arachidonic acid metabolism and in vivo inflammatory responses. Phytother. Res., 2002, 16(7), 616-620.
[http://dx.doi.org/10.1002/ptr.941] [PMID: 12410540]
[108]
Kang, B.Y.; Chung, S.W.; Kim, S.H.; Ryu, S.Y.; Kim, T.S. Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology, 2000, 49(3), 355-361.
[http://dx.doi.org/10.1016/S0162-3109(00)00256-3] [PMID: 10996033]
[109]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[110]
Park, J.Y.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, S.J.; Kim, D.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull., 2012, 35(11), 2036-2042.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[111]
Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol., 2018, 9, 386.
[http://dx.doi.org/10.3389/fphar.2018.00386] [PMID: 29731715]
[112]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[113]
Jacob, A.; Wu, R.; Zhou, M.; Wang, P. Mechanism of the anti-inflammatory effect of curcumin: ppar-gamma activation. PPAR Res., 2007, 2007, 89369.
[http://dx.doi.org/10.1155/2007/89369] [PMID: 18274631]
[114]
Fain, J.N.; Kanu, A.; Bahouth, S.W.; Cowan, G.S.M., Jr; Hiler, M.L.; Leffler, C.W. Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 67(6), 467-473.
[http://dx.doi.org/10.1054/plef.2002.0430] [PMID: 12468269]
[115]
Lee, C.S.; Jang, E.R.; Kim, Y.J.; Lee, M.S.; Seo, S.J.; Lee, M.W. Hirsutenone inhibits lipopolysaccharide-activated NF-kappaB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int. Immunopharmacol., 2010, 10(4), 520-525.
[http://dx.doi.org/10.1016/j.intimp.2010.01.015] [PMID: 20138154]
[116]
Lee, C.S.; Ko, H.H.; Seo, S.J.; Choi, Y.W.; Lee, M.W.; Myung, S.C.; Bang, H. Diarylheptanoid hirsutenone prevents tumor necrosis factor-alpha-stimulated production of inflammatory mediators in human keratinocytes through NF-kappaB inhibition. Int. Immunopharmacol., 2009, 9(9), 1097-1104.
[http://dx.doi.org/10.1016/j.intimp.2009.05.006] [PMID: 19464389]
[117]
Jin, W.; Cai, X.F.; Na, M.; Lee, J.J.; Bae, K. Diarylheptanoids from Alnus hirsuta inhibit the NF-kB activation and NO and TNF-α production. Biol. Pharm. Bull., 2007, 30(4), 810-813.
[http://dx.doi.org/10.1248/bpb.30.810] [PMID: 17409527]
[118]
Chi, J.H.; Seo, G.S.; Lee, S.H. Oregonin inhibits inflammation and protects against barrier disruption in intestinal epithelial cells. Int. Immunopharmacol., 2018, 59, 134-140.
[http://dx.doi.org/10.1016/j.intimp.2018.04.006] [PMID: 29655054]
[119]
Tong, M.; Jiang, Y.; Xia, D.; Xiong, Y.; Zheng, Q.; Chen, F.; Zou, L.; Xiao, W.; Zhu, Y. Elevated expression of serum endothelial cell adhesion molecules in covid-19 patients. J. Infect. Dis., 2020, 222(6), 894-898.
[http://dx.doi.org/10.1093/infdis/jiaa349] [PMID: 32582936]
[120]
Wang, H.S.; Hwang, Y.J.; Yin, J.; Lee, M.W. Inhibitory effects on no production and dpph radicals and nbt superoxide activities of diarylheptanoid isolated from enzymatically hydrolyzed ethanolic extract of alnus sibirica. Molecules, 2019, 24, 1938.
[http://dx.doi.org/10.3390/molecules24101938]
[121]
Le, T.T.; Yin, J.; Lee, M. Anti-inflammatory and anti-oxidative activities of phenolic compounds from alnus sibirica stems fermented by lactobacillus plantarum subsp. argentoratensis. Molecules, 2017, 22(9), 1566.
[http://dx.doi.org/10.3390/molecules22091566] [PMID: 28927000]
[122]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[123]
Yamazaki, Y.; Kawano, Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem. Pharm. Bull. (Tokyo), 2011, 59(3), 388-391.
[http://dx.doi.org/10.1248/cpb.59.388] [PMID: 21372424]
[124]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[125]
Yang, C.W.; Chen, W.L.; Wu, P.L.; Tseng, H.Y.; Lee, S.J. Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol., 2006, 69(3), 749-758.
[http://dx.doi.org/10.1124/mol.105.017764] [PMID: 16332992]
[126]
Liu, N.; Zhang, G.X.; Niu, Y.T.; Wang, Q.; Zheng, J.; Yang, J.M.; Sun, T.; Niu, J.G.; Yu, J.Q. Anti-inflammatory and analgesic activities of indigo through regulating the IKKβ/IκB/NF-κB pathway in mice. Food Funct., 2020, 11(10), 8537-8546.
[http://dx.doi.org/10.1039/C9FO02574J] [PMID: 33084638]
[127]
Qi, T.; Li, H.; Li, S. Indirubin improves antioxidant and anti-inflammatory functions in lipopolysaccharide-challenged mice. Oncotarget, 2017, 8(22), 36658-36663.
[http://dx.doi.org/10.18632/oncotarget.17560] [PMID: 28525368]
[128]
He, C.L.; Huang, L.Y.; Wang, K.; Gu, C.J.; Hu, J.; Zhang, G.J.; Xu, W.; Xie, Y.H.; Tang, N.; Huang, A.L. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduct. Target. Ther., 2021, 6(1), 131.
[http://dx.doi.org/10.1038/s41392-021-00531-5] [PMID: 33758167]
[129]
Guolan, D.; Lingli, W.; Wenyi, H.; Wei, Z.; Baowei, C.; Sen, B. Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-κβ pathways. Pharmazie, 2018, 73(9), 541-544.
[PMID: 30223939]
[130]
Wu, S.J.; Ng, L.T. Tetrandrine inhibits proinflammatory cytokines, iNOS and COX-2 expression in human monocytic cells. Biol. Pharm. Bull., 2007, 30(1), 59-62.
[http://dx.doi.org/10.1248/bpb.30.59] [PMID: 17202660]
[131]
Huang, H.; Hu, G.; Wang, C.; Xu, H.; Chen, X.; Qian, A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation, 2014, 37(1), 235-246.
[http://dx.doi.org/10.1007/s10753-013-9734-8] [PMID: 24045962]
[132]
Li, P.; Li, X.; Wu, Y.; Li, M.; Wang, X. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production. Oncotarget, 2017, 8(40), 67218-67226.
[http://dx.doi.org/10.18632/oncotarget.18365] [PMID: 28978028]
[133]
Qiao, B.; Wang, H.; Wang, C.; Liang, M.; Huang, K.; Li, Y. Dauricine negatively regulates lipopolysaccharide- or cecal ligation and puncture-induced inflammatory response via NF-κB inactivation. Arch. Biochem. Biophys., 2019, 666, 99-106.
[http://dx.doi.org/10.1016/j.abb.2019.03.018] [PMID: 30946805]
[134]
Jun, M.Y.; Karki, R.; Paudel, K.R.; Panth, N.; Devkota, H.P.; Kim, D-W. Liensinine prevents vascular inflammation by attenuating inflammatory mediators and modulating vsmc function. Appl. Sci. (Basel), 2021, 11, 386.
[http://dx.doi.org/10.3390/app11010386]
[135]
Meng, X-L.; Chen, M-L.; Chen, C-L.; Gao, C-C.; Li, C.; Wang, D.; Liu, H-S.; Xu, C-B. Bisbenzylisoquinoline alkaloids of lotus (Nelumbo nucifera Gaertn.) seed embryo inhibit lipopolysaccharide-induced macrophage activation via suppression of Ca2+-CaM/CaMKII pathway. Food Agric. Immunol., 2019, 30, 878-896.
[http://dx.doi.org/10.1080/09540105.2019.1638889]
[136]
Ryu, Y.B.; Park, S.J.; Kim, Y.M.; Lee, J.Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 2010, 20(6), 1873-1876.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[137]
Allison, A.C.; Cacabelos, R.; Lombardi, V.R.M.; Álvarez, X.A.; Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(7), 1341-1357.
[http://dx.doi.org/10.1016/S0278-5846(01)00192-0] [PMID: 11513350]
[138]
He, P.; Ye, F.; Huang, S.; Guo, Y.; Wang, H.; Wu, Y. Anti-inflammatory effect of pristimerin on TNFα-induced inflammatory responses in murine macrophages. Int. J. Clin. Exp. Pathol., 2016, 9(2), 1186-1194.
[139]
Tsai, J.C.; Peng, W.H.; Chiu, T.H.; Lai, S.C.; Lee, C.Y. Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid. Am. J. Chin. Med., 2011, 39(5), 943-956.
[http://dx.doi.org/10.1142/S0192415X11009329] [PMID: 21905284]
[140]
Valtueña, J.; Ruiz-Sánchez, D.; Volo, V.; Manchado-López, P.; Garayar-Cantero, M. Acral edema during the COVID-19 pandemic. Int. J. Dermatol., 2020, 59(9), 1155-1157.
[http://dx.doi.org/10.1111/ijd.15025] [PMID: 32608503]
[141]
Fujimoto, L.B.M.; Ferreira, S.A.D.; Santos, F.B.D.; Talhari, C. Petechial lesions in a patient with COVID-19. An. Bras. Dermatol., 2021, 96(1), 111-113.
[http://dx.doi.org/10.1016/j.abd.2020.08.007] [PMID: 33293229]
[142]
Sun, Y.; Gao, L.; Hou, W.; Wu, J. β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF-κB Pathways in LPS-Exposed BV2 Cells. BioMed Res. Int., 2020, 20207532306
[http://dx.doi.org/10.1155/2020/7532306] [PMID: 32596368]
[143]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[144]
Zhu, J.; Luo, C.; Wang, P.; He, Q.; Zhou, J.; Peng, H. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells. Exp. Ther. Med., 2013, 5(5), 1345-1350.
[http://dx.doi.org/10.3892/etm.2013.988] [PMID: 23737876]
[145]
Shin, J.S. Im, H.T.; Lee, K.T. Saikosaponin B2 suppresses inflammatory responses through ikk/iκbα/nf-κb signaling inactivation in lps-induced raw 264.7 macrophages. Inflammation, 2019, 42(1), 342-353.
[http://dx.doi.org/10.1007/s10753-018-0898-0] [PMID: 30251218]
[146]
Lu, C.N.; Yuan, Z.G.; Zhang, X.L.; Yan, R.; Zhao, Y.Q.; Liao, M.; Chen, J.X. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int. Immunopharmacol., 2012, 14(1), 121-126.
[http://dx.doi.org/10.1016/j.intimp.2012.06.010] [PMID: 22728095]
[147]
Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Zhuang, N.; Lee, K.H.; Jeon, K.S.; Park, K.H. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull., 2014, 37(6), 1021-1028.
[http://dx.doi.org/10.1248/bpb.b14-00026] [PMID: 24882413]
[148]
Zhou, Y.; Wang, S.; Lou, H.; Fan, P. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem. Lett., 2018, 23, 6157-6158.
[http://dx.doi.org/10.1016/j.phytol.2017.11.013]
[149]
Nchiozem-Ngnitedem, V.A.; Omosa, L.K.; Bedane, K.G.; Derese, S.; Brieger, L.; Strohmann, C.; Spiteller, M. Anti-inflammatory steroidal sapogenins and a conjugated chalcone-stilbene from Dracaena usambarensis Engl. Fitoterapia, 2020, 146104717
[http://dx.doi.org/10.1016/j.fitote.2020.104717] [PMID: 32877711]
[150]
Kim, H.S.; Lee, J.W.; Jang, H.; Le, T.P.L.; Kim, J.G.; Lee, M.S.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res., 2018, 41(2), 192-195.
[http://dx.doi.org/10.1007/s12272-017-0984-0] [PMID: 29177586]
[151]
Park, M.Y.; Kwon, H.J.; Sung, M.K. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem., 2009, 73(4), 828-832.
[http://dx.doi.org/10.1271/bbb.80714] [PMID: 19352036]
[152]
Lee, H.W.; Lee, C.G.; Rhee, D.K.; Um, S.H.; Pyo, S. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages. Int. Immunopharmacol., 2017, 45, 163-173.
[http://dx.doi.org/10.1016/j.intimp.2017.01.032] [PMID: 28219839]
[153]
Li, X.J.; Kim, K.W.; Oh, H.; Liu, X.Q.; Kim, Y.C. Chemical Constituents and an Antineuroinflammatory Lignan, Savinin from the Roots of Acanthopanax henryi. Evid. Based Complement. Alternat. Med., 2019, 20191856294
[http://dx.doi.org/10.1155/2019/1856294] [PMID: 30915141]
[154]
Lee, J.; Jung, E.; Park, J.; Jung, K.; Lee, S.; Hong, S.; Park, J.; Park, E.; Kim, J.; Park, S.; Park, D. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med., 2005, 71(4), 338-343.
[http://dx.doi.org/10.1055/s-2005-864100] [PMID: 15856410]
[155]
Su, H.X.; Yao, S.; Zhao, W.F.; Li, M.J.; Liu, J.; Shang, W.J.; Xie, H.; Ke, C.Q.; Hu, H.C.; Gao, M.N.; Yu, K.Q.; Liu, H.; Shen, J.S.; Tang, W.; Zhang, L.K.; Xiao, G.F.; Ni, L.; Wang, D.W.; Zuo, J.P.; Jiang, H.L.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y.C. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177.
[http://dx.doi.org/10.1038/s41401-020-0483-6] [PMID: 32737471]
[156]
Jiang, W.L.; Fu, F.H.; Xu, B.M.; Tian, J.W.; Zhu, H.B. Jian-Hou, Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury: relation to inflammation response. Phytomedicine, 2010, 17(8-9), 635-639.
[http://dx.doi.org/10.1016/j.phymed.2009.10.017] [PMID: 19959348]
[157]
Chen, Z. Cui1, Q.; Cooper, L.; Zhang, P.; Lee, H.; Chen, Z.; Wang, Y.; Liu, X.; Rong, L.; Du, R. Ginkgolic acid and anacardic acid are specifc covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci., 2021, 11, 45.
[http://dx.doi.org/10.1186/s13578-021-00564-x] [PMID: 33640032]
[158]
Zhang, J.; Yan, J. Protective effect of ginkgolic acid in attenuating ldl induced inflammation human peripheral blood mononuclear cells via altering the nf-κb signaling pathway. Front. Pharmacol., 2019, 10, 1241.
[http://dx.doi.org/10.3389/fphar.2019.01241] [PMID: 31780924]
[159]
Önal, B.; Özen, D.; Demir, B.; Gezen Ak, D.; Dursun, E.; Demir, C.; Akkan, A.G.; Özyazgan, S. The anti-inflammatory effects of anacardic acid on a tnf-α - induced human saphenous vein endothelial cell culture model. Curr. Pharm. Biotechnol., 2020, 21(8), 710-719.
[http://dx.doi.org/10.2174/1389201020666191105154619] [PMID: 31692436]
[160]
Yu, H.P.; Chaudry, I.H.; Choudhry, M.A.; Hsing, C.H.; Liu, F.C.; Xia, Z. Inflammatory response to traumatic injury: clinical and animal researches in inflammation. Mediators Inflamm., 2015, 2015729637
[http://dx.doi.org/10.1155/2015/729637] [PMID: 26290624]
[161]
Vaillant, J.A.A.; Sabir, S.; Jan, A. Physiology, immune response.StatPearls Publishing: Treasure Island, FL, 2021. Updated 2020 Sep 27 Internet [Updated 2020 Sep 27] Available from:, https://www.ncbi.nlm.nih.gov/books/NBK539801/[Accessed March 4, 2021]
[162]
Černý, J.; Stříž, I. Adaptive innate immunity or innate adaptive immunity? Clin. Sci. (Lond.), 2019, 133(14), 1549-1565.
[http://dx.doi.org/10.1042/CS20180548] [PMID: 31315948]
[163]
Hosseini, A.; Hashemi, V.; Shomali, N.; Asghari, F.; Gharibi, T.; Akbari, M.; Gholizadeh, S.; Jafari, A. Innate and adaptive immune responses against coronavirus. Biomed. Pharmacother., 2020, 132110859
[http://dx.doi.org/10.1016/j.biopha.2020.110859] [PMID: 33120236]
[164]
Varchetta, S.; Mele, D.; Oliviero, B.; Mantovani, S.; Ludovisi, S.; Cerino, A.; Bruno, R.; Castelli, A.; Mosconi, M.; Vecchia, M.; Roda, S.; Sachs, M.; Klersy, C.; Mondelli, M.U. Unique immunological profile in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(3), 604-612.
[http://dx.doi.org/10.1038/s41423-020-00557-9] [PMID: 33060840]
[165]
Zhou, R.; To, K.K.; Wong, Y.C.; Liu, L.; Zhou, B.; Li, X.; Huang, H.; Mo, Y.; Luk, T.Y.; Lau, T.T.; Yeung, P.; Chan, W.M.; Wu, A.K.; Lung, K.C.; Tsang, O.T.; Leung, W.S.; Hung, I.F.; Yuen, K.Y.; Chen, Z. Acute sars-cov-2 infection impairs dendritic cell and t cell responses. Immunity, 2020, 53(4), 864-877.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.07.026] [PMID: 32791036]
[166]
Yoon, M.S.; Lee, J.S.; Choi, B.M.; Jeong, Y.I.; Lee, C.M.; Park, J.H.; Moon, Y.; Sung, S.C.; Lee, S.K.; Chang, Y.H.; Chung, H.Y.; Park, Y.M. Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant. Mol. Pharmacol., 2006, 70(3), 1033-1044.
[http://dx.doi.org/10.1124/mol.106.024547] [PMID: 16782805]
[167]
Kilani-Jaziri, S.; Mustapha, N.; Mokdad-Bzeouich, I.; El Gueder, D.; Ghedira, K.; Ghedira-Chekir, L. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: A structure-activity relationship study. Tumour Biol., 2016, 37(5), 6571-6579.
[http://dx.doi.org/10.1007/s13277-015-4541-5] [PMID: 26638168]
[168]
Sassi, A.; Mokdad Bzéouich, I.; Mustapha, N.; Maatouk, M.; Ghedira, K.; Chekir-Ghedira, L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur. J. Pharmacol., 2017, 812, 91-96.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.017] [PMID: 28690190]
[169]
Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[170]
Huang, R.Y.; Yu, Y.L.; Cheng, W.C.; OuYang, C.N.; Fu, E.; Chu, C.L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol., 2010, 184(12), 6815-6821.
[http://dx.doi.org/10.4049/jimmunol.0903991] [PMID: 20483746]
[171]
Zhang, R.; Li, Y.; Wang, W. Enhancement of immune function in mice fed high doses of soy daidzein. Nutr. Cancer, 1997, 29(1), 24-28.
[http://dx.doi.org/10.1080/01635589709514597] [PMID: 9383780]
[172]
Wang, J.P.; Tsao, L.T.; Raung, S.L.; Lin, C.N. Investigation of the inhibitory effect of broussochalcone A on respiratory burst in neutrophils. Eur. J. Pharmacol., 1997, 320(2-3), 201-208.
[http://dx.doi.org/10.1016/S0014-2999(96)00888-6] [PMID: 9059855]
[173]
Lim, P.S.; Sutton, C.R.; Rao, S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology, 2015, 146(4), 508-522.
[http://dx.doi.org/10.1111/imm.12510] [PMID: 26194700]
[174]
Guo, A.; He, D.; Xu, H.B.; Geng, C.A.; Zhao, J. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci. Rep., 2015, 5, 14046.
[http://dx.doi.org/10.1038/srep14046] [PMID: 26370586]
[175]
Wei, W.J.; Zhou, P.P.; Lin, C.J.; Wang, W.F.; Li, Y.; Gao, K. Diterpenoids from Salvia miltiorrhiza and Their Immune-Modulating Activity. J. Agric. Food Chem., 2017, 65(29), 5985-5993.
[http://dx.doi.org/10.1021/acs.jafc.7b02384] [PMID: 28679204]
[176]
Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol., 2011, 11(3), 331-341.
[http://dx.doi.org/10.1016/j.intimp.2010.08.014] [PMID: 20828642]
[177]
Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F.Y. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules, 2017, 22(2), 299.
[http://dx.doi.org/10.3390/molecules22020299] [PMID: 28212342]
[178]
Liu, J.J.; Liu, X.K. Chemical constituents from edible part of Pistacia chinensis. Chin. Tradit. Herbal Drugs, 2009, 40, 186-189.
[179]
Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep., 2017, 3(6), 423-446.
[http://dx.doi.org/10.1007/s40495-017-0113-2] [PMID: 29399439]
[180]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[181]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[182]
Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502] [PMID: 28509871]
[183]
Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta, 2003, 327(1-2), 129-137.
[http://dx.doi.org/10.1016/S0009-8981(02)00344-3] [PMID: 12482628]
[184]
Barzegar, A. Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems. Mol. Biol. Res. Commun., 2016, 5(2), 87-95.
[PMID: 28097162]
[185]
Lee, K.M.; Kang, N.J.; Han, J.H.; Lee, K.W.; Lee, H.J. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J. Agric. Food Chem., 2007, 55(23), 9678-9684.
[http://dx.doi.org/10.1021/jf0717945] [PMID: 17944529]
[186]
Li, W.D.; Yan, C.P.; Wu, Y.; Weng, Z.B.; Yin, F.Z.; Yang, G.M.; Cai, B.C.; Chen, Z.P. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine, 2014, 21(4), 400-405.
[http://dx.doi.org/10.1016/j.phymed.2013.09.015] [PMID: 24220018]
[187]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence. review. Fitoterapia, 2013, 90, 44-56. [Review]
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[188]
Gao, J.; Chen, G.; He, H.; Liu, C.; Xiong, X.; Li, J.; Wang, J. Therapeutic effects of breviscapine in cardiovascular diseases: A review. Front. Pharmacol., 2017, 8, 289.
[http://dx.doi.org/10.3389/fphar.2017.00289] [PMID: 28588491]
[189]
Tang, H.; Tang, Y.; Li, N.; Shi, Q.; Guo, J.; Shang, E.; Duan, J.A. Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol. Biochem. Behav., 2014, 118, 51-59.
[http://dx.doi.org/10.1016/j.pbb.2014.01.003] [PMID: 24423938]
[190]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[191]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[192]
Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem., 1999, 47(6), 2274-2279.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[193]
Yang, R.Y.; Lin, S.; Kuo, G. Content and distribution of flavonoids among 91 edible plant species. Asia Pac. J. Clin. Nutr., 2008, 17(Suppl. 1), 275-279.
[PMID: 18296355]
[194]
Lee, D.; Bhat, K.P.; Fong, H.H.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod., 2001, 64(10), 1286-1293.
[http://dx.doi.org/10.1021/np010288l] [PMID: 11678652]
[195]
Feng, W.S.; Li, H.W.; Zheng, X.K.; Kuang, H.X.; Chen, S.Q.; Wang, Y.Z.; Zang, X.Y. Chemical constituents from the leaves of Broussonetia papyrifera. Yao Xue Xue Bao, 2008, 43(2), 173-180.
[PMID: 18507345]
[196]
Mencherini, T.; Picerno, P.; Scesa, C.; Aquino, R. Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J. Nat. Prod., 2007, 70(12), 1889-1894.
[http://dx.doi.org/10.1021/np070351s] [PMID: 18004816]
[197]
Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci. Rep., 2020, 10(1), 4808.
[http://dx.doi.org/10.1038/s41598-020-61709-5] [PMID: 32179776]
[198]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[199]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[200]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[201]
Sargis, D.; Arthur, J. Small-Molecule Library Screening by Docking with PyRx. Chem. Biol., 2014, 1263, 243-250.
[202]
Rut, W.; Lv, Z.; Zmudzinski, M.; Patchett, S.; Nayak, D.; Snipas, S.J.; El Oualid, F.; Huang, T.T.; Bekes, M.; Drag, M.; Olsen, S.K. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Sci. Adv., 2020, 6(42), 4596.
[http://dx.doi.org/10.1126/sciadv.abd4596] [PMID: 33067239]
[203]
Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[204]
Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T.D.; Dunnett, L.; Fairhead, M.; Firth, J.D.; Jones, S.P.; Keeley, A.; Keserü, G.M.; Klein, H.F.; Martin, M.P.; Noble, M.E.M.; O’Brien, P.; Powell, A.; Reddi, R.N.; Skyner, R.; Snee, M.; Waring, M.J.; Wild, C.; London, N.; von Delft, F.; Walsh, M.A. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun., 2020, 11(1), 5047.
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]