Current Neurovascular Research

Author(s): Kenneth Maiese*

DOI: 10.2174/1567202618666210720145728

Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption

Page: [269 - 270] Pages: 2

  • * (Excluding Mailing and Handling)

[1]
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[2]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(1002): 1-18.
[3]
Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017; 23(5): 454-65.
[4]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[5]
Finger AM, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf)2020 2020.e13548
[6]
Odnokoz O, Nakatsuka K, Wright C, et al. Mitochondrial Redox Signaling Is Critical to the Normal Functioning of the Neuronal System. Front Cell Dev Biol 2021[Epub ahead of print]
[7]
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199105595
[8]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[9]
Maiese K. Circadian Clock Genes: Targeting Innate Immunity for Antiviral Strategies Against COVID-19. Curr Neurovasc Res 2020; 17(5): 531-3.
[10]
Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci 2019; 219: 231-7.
[11]
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson’s Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull2021[Epub ahead of print]
[12]
Elnour MAA, Saleh AA, Kalantan MM, Mirghani HO. The relationship between coffee intake, obstructive sleep apnea risk, and type 2 diabetes glycemic control, in Tabuk City, The Kingdom of Saudi Arabia: a case-control study. BMC Res Notes 2019; 12(1): 798.
[13]
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res 2020; 20207489795
[14]
Wang X, Xu Z, Cai Y, et al. Rheostatic balance of circadian rhythm and autophagy in metabolism and disease. Front Cell Dev Biol2020, 2020 24.
[15]
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[16]
Cardinali DP, Brown GM, Reiter RJ, Pandi-Perumal SR. Elderly as a high-risk group during COVID-19 pandemic: Effect of circadian misalignment, sleep dysregulation and melatonin administration Sleep Vigil 2020: 2020; 1-7.
[17]
Morin CM, Carrier J, Bastien C, Godbout R. Sleep and circadian rhythm in response to the COVID-19 pandemic. Can J Public Health 2020; 111(5): 654-7.
[18]
Tamimi F, Abusamak M, Akkanti B, Chen Z, Yoo SH, Karmouty-Quintana H. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome. Br J Pharmacol 2020; 177(21): 4845-50.
[19]
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters Antioxidants (Basel, Switzerland). 2021; 10: p. (2)210.
[20]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[21]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[22]
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15(9): 16848-84.
[23]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. 4th ed. Autophagy 2021 2021; pp. 1-382.
[24]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[25]
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[26]
Qi X, Mitter SK, Yan Y, Busik JV, Grant MB, Boulton ME. Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells 2020; 9(4): 905.
[27]
Rossetti ML, Esser KA, Lee C, Tomko RJ Jr, Eroshkin AM, Gordon BS. Disruptions to the Limb Muscle Core Molecular Clock Coincide with Changes in Mitochondrial Quality Control following Androgen Depletion. Am J Physiol Endocrinol Metab 2019; 17(4)E631-45.
[28]
He Y, Cornelissen-Guillaume GG, He J, Kastin AJ, Harrison LM, Pan W. Circadian rhythm of autophagy proteins in hippocampus is blunted by sleep fragmentation. Chronobiol Int 2016; 33(5): 553-60.
[29]
Rami A, Rawashdeh O. The hippocampal autophagic machinery is depressed in the absence of the circadian clock protein PER1 that may lead to vulnerability during cerebral ischemia. Curr Neurovasc Res 2017; 14(3): 207-14.
[30]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[31]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci(Landmark ed) 2020; 25: 1925-73.
[32]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[33]
Beker MC, Caglayan B, Yalcin E, et al. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT. Mol Neurobiol 2018; 55(3): 2565-76.
[34]
Ramanathan C, Kathale ND, Liu D, et al. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 2018; 14(5)e1007369
[35]
Maiese K. Novel Insights for Multiple Sclerosis and Demyelinating Disorders with Apoptosis, Autophagy, FoxO, and mTOR. Curr Neurovasc Res 2021; 18(2): 1-4.
[36]
Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci(Landmark ed) 2021; 26: 50-96.