Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition

Page: [1083 - 1089] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Phytic acid acts as anti-nutritional factor in food and feed ingredients for monogastric animals as they lack phytases.

Objective: Phytase production by Bacillus subtilis subsp. subtilis JJBS250 was studied in solid-state fermentation and its applicability in dephytinization of food.

Methods: Bacterial culture was grown in solid state fermentation using wheat bran and various culture conditions were optimized using ‘One variable at a time’ (OVAT) approach. Effects of different substrates (wheat bran, wheat straw, sugarcane bagasse), incubation time (24, 48, 72 and 96 h), incubation temperatures (25, 30, 35 and 40°C), pH (4.0, 5.0, 6.0, 7.0 and 8.0) and moisture content (1:1.5, 1:2.0, 1:2.5 and 1:3) were studied on phytase production. Bacterial phytase was used in dephytinization of food samples.

Results: Optimization of phytase production was studied in solid state fermentation (SSF) using ‘One variable at a time’ (OVAT) approach. Bacillus subtilis subsp. subtilis JJBS250 grew well in various agroresidues in SSF and secreted high enzyme titres using wheat bran at 30°C and pH 5.0 after incubation time of 48 h with substrate to moisture ratio of 1:3. Glucose and ammonium sulphate supplementation to wheat bran further enhanced phytase production in SSF. Optimization of phytase production resulted in 2.4-fold improvement in phytase production in solid state fermentation. The enzyme resulted in dephytinization of wheat and rice flours with concomitant release of inorganic phosphate, reducing sugar and soluble protein.

Conclusion: Optimization resulted in 2.34-fold enhancement in phytase production by bacterial culture that showed dephytinization of food ingredients with concomitant release of nutritional components. Therefore, phytase of B. subtilis subsp. subtilis JJBS250 could find application in improving nutritional quality of food and feed of monogastric animals.

Keywords: Phytic acid, phytase, Bacillus subtilis subsp. subtilis JJBS250, solid state, fermentation, wheat bran, dephytinization.

Graphical Abstract

[1]
Singh, B.; Satyanarayana, T. Phytases from themophilic molds: their production, characteristics and multifarious applications. Process Biochem., 2011, 46, 1391-1398.
[http://dx.doi.org/10.1016/j.procbio.2011.03.009]
[2]
Singh, B.; Kunze, G.; Satyanarayana, T. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev., 2011, 6, 69-87.
[3]
Vats, P.; Banerjee, U.C. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb. Technol., 2004, 35, 3-14.
[http://dx.doi.org/10.1016/j.enzmictec.2004.03.010]
[4]
Vohra, A.; Satyanarayana, T. Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 2003, 23(1), 29-60.
[http://dx.doi.org/10.1080/713609297] [PMID: 12693443]
[5]
Jain, J. Sapna; Singh, B. Characteristics and biotechnological applications of bacterial phytases. Process Biochem., 2016, 51, 159-169.
[http://dx.doi.org/10.1016/j.procbio.2015.12.004]
[6]
Singh, B.; Satyanarayana, T. Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J. Anim. Physiol. Anim. Nutr. (Berl.), 2015, 99(4), 646-660.
[http://dx.doi.org/10.1111/jpn.12236] [PMID: 25132310]
[7]
Sapna, S.; Singh, B. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran. Appl. Biochem. Biotechnol., 2014, 173(7), 1885-1895.
[http://dx.doi.org/10.1007/s12010-014-0974-3] [PMID: 24879597]
[8]
Chadha, B.S.; Gulati, H.; Minhas, M.; Saini, H.S.; Singh, N. Phytase production by the thermophilic fungus Rhizomucor pusillus. World J. Microbiol. Biotechnol., 2004, 20, 105-109.
[http://dx.doi.org/10.1023/B:WIBI.0000013319.13348.0a]
[9]
Singh, B.; Satyanarayana, T. Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresour. Technol., 2008, 99(8), 2824-2830.
[http://dx.doi.org/10.1016/j.biortech.2007.06.010] [PMID: 17681787]
[10]
Esakkiraj, P.; Sandoval, G.; Sankaralingam, S.; Immanuel, G.; Palavesam, A. Preliminary optimization of solid-state phytase production by moderately halophilic Pseudomonas AP-MSU 2 isolated from fish intestine. An. Microbiol., 2010, 60, 461-468.
[http://dx.doi.org/10.1007/s13213-010-0064-x]
[11]
Kammoun, R.; Farhat, A.; Chouayekh, H.; Bouchaala, K.; Bejar, S. Phytase production by Bacillus subtilis US417 in submerged and solid state fermentations. An. Microbiol., 2012, 62, 155-164.
[http://dx.doi.org/10.1007/s13213-011-0240-7]
[12]
Lee, J.; Park, I.; Cho, J. Extracellular phytase production by Bacillus sp. T4 using solid State fermentation. J. Anim. Plant Sci., 2014, 24, 1116-1122.
[13]
Kim, Y.O.; Kim, H.K.; Bae, K.S.; Yu, J.H.; Oh, T.K. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol., 1998, 22, 2-7.
[http://dx.doi.org/10.1016/S0141-0229(97)00096-3]
[14]
Choi, Y.M.; Suh, H.J.; Kim, J.M. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem., 2001, 20(4), 287-292.
[http://dx.doi.org/10.1023/A:1010945416862] [PMID: 11594462]
[15]
Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning, a laboratory manual; Cold Spring Harbor Laboratory Press: New York, 1989.
[16]
Singh, B.; Satyanarayana, T. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl. Biochem. Biotechnol., 2006, 133(3), 239-250. a
[http://dx.doi.org/10.1385/ABAB:133:3:239] [PMID: 16720904]
[17]
Fiske, C.H.; Subbarow, Y.P. The colorimetric determination of phosphorus. J. Biol. Chem., 1925, 66, 375-400.
[http://dx.doi.org/10.1016/S0021-9258(18)84756-1]
[18]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[19]
Miller, G.L. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31, 426-428.
[http://dx.doi.org/10.1021/ac60147a030]
[20]
Pandey, A.; Selvakumar, P.; Nigam, P.; Soccol, C.R. Solid-state fermentation for the production of industrial enzymes. Curr. Sci., 1999, 77, 149-162.
[21]
Hosseinkhani, B.; Emtiazi, G.; Nahvi, I. Analysis of phytase producing bacteria (Pseudomonas sp.) from poultry faeces and optimization of this enzyme production. Afr. J. Biotechnol., 2009, 8, 4229-4232.
[22]
Tungala, A.; Narayanan, K.A.; Muthuraman, M.S. Isolation of phytase producing bacteria from poultry faeces and optimization of culture conditions for enhanced phytase production. Int. J. Pharm. Pharm. Sci., 2013, 5, 264-269.
[23]
Kerovuo, J.; Lauraeus, M.; Nurminen, P.; Kalkkinen, N.; Apajalahti, J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol., 1998, 64(6), 2079-2085.
[http://dx.doi.org/10.1128/AEM.64.6.2079-2085.1998] [PMID: 9603817]
[24]
Idriss, E.E.; Makarewicz, O.; Farouk, A.; Rosner, K.; Greiner, R.; Bochow, H.; Richter, T.; Borriss, R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology (Reading), 2002, 148(Pt 7), 2097-2109.
[http://dx.doi.org/10.1099/00221287-148-7-2097] [PMID: 12101298]
[25]
Singh, N.K.; Joshi, D.K.; Gupta, R.K. Isolation of phytase producing bacteria and optimization of phytase production parameters. Jundishapur J. Microbiol., 2013, 6(5), 6419.
[http://dx.doi.org/10.5812/jjm.6419]
[26]
Mittal, A.; Singh, G.; Goyal, V.; Yadav, A. Aggarwa,l N.K., Production of phytase by acido-thermophilic strain of Klebsiella sp. DB-3FJ711774.1 using orange peel flour under submerged fermentation. Innov. Rom. Food Biotechnol., 2012, 10, 18-27.
[27]
Hussin, A.S.M.; Farouk, A.E.; Ali, A.M.; Greiner, R. Production of phytate-degrading enzyme from Malaysian soil bacteria using rice bran containing media. J. Agrobiotechnol., 2011, 1, 17-28.
[28]
Singh, B.; Satyanarayana, T. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. J. Appl. Microbiol., 2006, 101(2), 344-352.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02921.x] [PMID: 16882141]
[29]
Singh, B.; Satyanarayana, T. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. Bioresour. Technol., 2008, 99(4), 824-830. b
[http://dx.doi.org/10.1016/j.biortech.2007.01.007] [PMID: 17350826]
[30]
Singh, B.; Satyanarayana, T. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. J. Appl. Microbiol., 2008, 105(6), 1858-1865. c
[http://dx.doi.org/10.1111/j.1365-2672.2008.03929.x] [PMID: 19120634]
[31]
Dahiya, S.; Kumar, A.; Singh, B. Enhanced endoxylanase production by Myceliophthora thermophila using rice straw and its synergism with phytase in improving nutrition. Process Biochem., 2020, 94, 235-242.
[http://dx.doi.org/10.1016/j.procbio.2020.04.032]
[32]
Selle, P.H.; Ravindran, V.; Partridge, G.G. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilization, mineral retention and growth performance in wheat-based broiler diets. Anim. Feed Sci. Technol., 2009, 153(34), 303-313.
[http://dx.doi.org/10.1016/j.anifeedsci.2009.06.011]
[33]
Yang, Y.Y.; Fan, Y.F.; Cao, Y.H.; Guo, P.P.; Dong, B.; Ma, Y.X. Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets. Asian-Australas. J. Anim. Sci., 2017, 30(1), 57-63.
[http://dx.doi.org/10.5713/ajas.15.0876] [PMID: 27004820]
[34]
Maasa, R.M.; Verdegema, M.C.J.; Dersjant-Lib, Y.; Schramaa, J.W. The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture, 2018, 487, 7-14.
[http://dx.doi.org/10.1016/j.aquaculture.2017.12.040]
[35]
Ingelmann, C.J.; Witzig, M.; Möhring, J.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Effect of supplemental phytase and xylanase in wheat-based diets on prececal phosphorus digestibility and phytate degradation in young turkeys. Poult. Sci., 2018, 97(6), 2011-2020.
[http://dx.doi.org/10.3382/ps/pey030] [PMID: 29462419]
[36]
Adeola, O. Phytase in starter and grower diets of White Pekin ducks. Poult. Sci., 2018, 97(2), 592-598.
[http://dx.doi.org/10.3382/ps/pex352] [PMID: 29253228]
[37]
Olsen, K.M.; Gould, S.A.; Walk, C.L.; Serão, N.V.L.; Hansen, S.L.; Patience, J.F. Evaluating phosphorus release by phytase in diets fed to growing pigs that are not deficient in phosphorus. J. Anim. Sci., 2019, 97(1), 327-337.
[http://dx.doi.org/10.1093/jas/sky402] [PMID: 30325441]
[38]
Rosenfelder-Kuon, P.; Siegert, W.; Rodehutscord, M. Effect of microbial phytase supplementation on P digestibility in pigs: a meta-analysis. Arch. Anim. Nutr., 2020, 74(1), 1-18.
[http://dx.doi.org/10.1080/1745039X.2019.1687249] [PMID: 31769698]
[39]
Kumar, V.; Sinha, A.K.; Makkar, H.P.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. (Berl.), 2012, 96(3), 335-364.
[http://dx.doi.org/10.1111/j.1439-0396.2011.01169.x] [PMID: 21692871]
[40]
Akter, M.; Iji, P.A.; Graham, H. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens. Br. Poult. Sci., 2017, 58(4), 409-417.
[http://dx.doi.org/10.1080/00071668.2017.1315050] [PMID: 28398093]