Natural Products and some Semi-synthetic Analogues as Potential TRPV1 Ligands for Attenuating Neuropathic Pain

Page: [766 - 786] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Natural products and leads inspired by them have acted as a probe for successful drug discovery for many decades. Pain is an obnoxious sensory and emotional experience associated with potential tissue damage. It affects the quality of life of patients to a greater extent. Despite the availability of several agents targeting TRP receptors, none of them can proficiently alleviate neuropathic pain. TRPV1 is a prospective target for treating neuropathic pain as it is recognized to modulate the pain circuitry at the periphery and the central level. In this review, we have discussed several natural molecules, such as Capsaicinoids, Capsinoids, Piperine, Eugenol, Scutigeral, Ginsenosides, Cinnamaldehyde, Camphor, Shogaol, Gingerols, Zingerone, Allicin, Evodiamine, Allylisothiocyanate, Cannabidiol, Ricinoleic acid, Isovelleral, Capsazepine, Thapsigargin, Pellitorine, Yohimbine, Curcumin and some semi-synthetic analogues that activate TRPV1 channels and consequently, can be further harnessed for the treatment of neuropathic pain.

Keywords: TRPV1 channels, neuropathic pain, natural products, semi-synthetic analogues, agonists, antagonists.

Graphical Abstract

[1]
Smith, B.H.; Hébert, H.L.; Veluchamy, A. Neuropathic pain in the community: prevalence, impact, and risk factors. Pain, 2020, 161(Suppl. 1), S127-S137.
[http://dx.doi.org/10.1097/j.pain.0000000000001824] [PMID: 33090746]
[2]
van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain, 2014, 155(4), 654-662.
[http://dx.doi.org/10.1016/j.pain.2013.11.013] [PMID: 24291734]
[3]
Dykukha, I.; Malessa, R.; Essner, U.; Überall, M.A. Nabiximols in chronic neuropathic pain: a meta-analysis of randomized placebo-controlled trials. Pain Med., 2021, 22(4), 861-874.
[http://dx.doi.org/10.1093/pm/pnab050] [PMID: 33561282]
[4]
Bajaj, S.; Ong, S.T.; Chandy, K.G. Contributions of natural products to ion channel pharmacology. Nat. Prod. Rep., 2020, 37(5), 703-716.
[http://dx.doi.org/10.1039/C9NP00056A] [PMID: 32065187]
[5]
Gao, P.; Wang, J.; Su, Z.; Li, F.; Zhang, X. Amorfrutins relieve neuropathic pain through the PPARγ/CCL2 Axis in CCI Rats. PPAR Res., 2021, 2021, 8894752.
[http://dx.doi.org/10.1155/2021/8894752] [PMID: 33552153]
[6]
Zhang, L.; Song, J.; Kong, L.; Yuan, T.; Li, W.; Zhang, W.; Hou, B.; Lu, Y.; Du, G. The strategies and techniques of drug discovery from natural products. Pharmacol. Ther., 2020, 216, 107686.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107686] [PMID: 32961262]
[7]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[8]
Di Nardo, G.; Gilardi, G. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 833, 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285.]
[9]
Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; Eccleston, C.; Kalso, E.; Bennett, D.L.; Dworkin, R.H.; Raja, S.N. Neuropathic pain. Nat. Rev. Dis. Primers, 2017, 3(1), 17002.
[http://dx.doi.org/10.1038/nrdp.2017.2] [PMID: 28205574]
[10]
Eccles, J.A.; Davies, K.A. The challenges of chronic pain and fatigue. Clin. Med. (Lond.), 2021, 21(1), 19-27.
[http://dx.doi.org/10.7861/clinmed.2020-1009] [PMID: 33479064]
[11]
Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Curr. Pharm. Biotechnol., 2020, 21(5), 390-402.
[http://dx.doi.org/10.2174/1389201020666191202111534] [PMID: 31793418]
[12]
Baron, R. Mechanisms of disease: Neuropathic pain--a clinical perspective. Nat. Clin. Pract. Neurol., 2006, 2(2), 95-106.
[http://dx.doi.org/10.1038/ncpneuro0113] [PMID: 16932531]
[13]
Cruccu, G.; Truini, A. A review of neuropathic pain: From guidelines to clinical practice. Pain Ther., 2017, 6(1)(Suppl. 1), 35-42.
[http://dx.doi.org/10.1007/s40122-017-0087-0] [PMID: 29178033]
[14]
Smith, J.G.; Karamat, A.; Melek, L.N.; Jayakumar, S.; Renton, T. The differential impact of neuropathic, musculoskeletal and neurovascular orofacial pain on psychosocial function. J. Oral Pathol. Med., 2020, 49(6), 538-546.
[http://dx.doi.org/10.1111/jop.13071] [PMID: 32531812]
[15]
Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; Raja, S.N.; Rice, A.S.C.; Serra, J.; Smith, B.H.; Treede, R.D.; Jensen, T.S. Neuropathic pain: An updated grading system for research and clinical practice. Pain, 2016, 157(8), 1599-1606.
[http://dx.doi.org/10.1097/j.pain.0000000000000492] [PMID: 27115670]
[16]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[17]
O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev., 2012, 64(4), 939-971.
[http://dx.doi.org/10.1124/pr.112.006163] [PMID: 23023032]
[18]
Moran, M.M. TRP channels as potential drug targets. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 309-330.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052832] [PMID: 28945977]
[19]
Chen, H.; Terrett, J.A. Transient receptor potential ankyrin 1 (TRPA1) antagonists: A patent review (2015-2019). Expert Opin. Ther. Pat., 2020, 30(9), 643-657.
[http://dx.doi.org/10.1080/13543776.2020.1797679] [PMID: 32686526]
[20]
Gao, M.; Wang, Y.; Liu, L.; Qiao, Z.; Yan, L. A patent review of transient receptor potential vanilloid type 1 modulators (2014–present). Expert Opin. Ther. Pat., 2020, 1-19.
[PMID: 33377418]
[21]
Sun, Z.C.; Ma, S.B.; Chu, W.G.; Jia, D.; Luo, C. Canonical transient receptor potential (TRPC) channels in nociception and pathological pain. Neural Plast., 2020, 2020, 3764193.
[http://dx.doi.org/10.1155/2020/3764193] [PMID: 32273889]
[22]
Jimenez, I.; Prado, Y.; Marchant, F.; Otero, C.; Eltit, F.; Cabello-Verrugio, C.; Cerda, O.; Simon, F. TRPM Channels in Human Diseases. Cells, 2020, 9(12), 2604.
[http://dx.doi.org/10.3390/cells9122604] [PMID: 33291725]
[23]
Roh, J.; Go, E.J.; Park, J.W.; Kim, Y.H.; Park, C.K. Resolvins: Potent pain inhibiting lipid mediators via transient receptor potential regulation. Front. Cell Dev. Biol., 2020, 8, 584206.
[http://dx.doi.org/10.3389/fcell.2020.584206] [PMID: 33363143]
[24]
Basso, L.; Altier, C. Transient receptor potential channels in neuropathic pain. Curr. Opin. Pharmacol., 2017, 32, 9-15.
[http://dx.doi.org/10.1016/j.coph.2016.10.002] [PMID: 27835802]
[25]
Wang, Y.; Mo, X.; Ping, C.; Huang, Q.; Zhang, H.; Xie, C.; Zhong, B.; Li, D.; Yao, J. Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kvβ1 subunit. J. Biol. Chem., 2020, 295(50), 17337-17348.
[http://dx.doi.org/10.1074/jbc.RA120.015605] [PMID: 33060203]
[26]
Negri, S.; Faris, P.; Rosti, V.; Antognazza, M.R.; Lodola, F.; Moccia, F. Endothelial TRPV1 as an emerging molecular target to promote therapeutic angiogenesis. Cells, 2020, 9(6), 1341.
[http://dx.doi.org/10.3390/cells9061341] [PMID: 32471282]
[27]
Takahashi, K.; Yoshida, T.; Wakamori, M. Mode-selective inhibitory effects of eugenol on the mouse TRPV1 channel. Biochem. Biophys. Res. Commun., 2021, 556, 156-162.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.126] [PMID: 33839411]
[28]
Hill, R.Z.; Bautista, D.M. Getting in touch with mechanical pain mechanisms. Trends Neurosci., 2020, 43(5), 311-325.
[http://dx.doi.org/10.1016/j.tins.2020.03.004] [PMID: 32353335]
[29]
Wang, M.; Thyagarajan, B. Pain pathways and potential new targets for pain relief. Biotechnol. Appl. Biochem., 2020.
[http://dx.doi.org/10.1002/bab.2086] [PMID: 33316085]
[30]
Malek, N.; Pajak, A.; Kolosowska, N.; Kucharczyk, M.; Starowicz, K. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol. Cell. Neurosci., 2015, 65, 1-10.
[http://dx.doi.org/10.1016/j.mcn.2015.02.001] [PMID: 25662734]
[31]
Urano, H.; Ara, T.; Fujinami, Y.; Hiraoka, B.Y. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. Int. J. Med. Sci., 2012, 9(8), 690-697.
[http://dx.doi.org/10.7150/ijms.4706] [PMID: 23091405]
[32]
Kim, Y.S.; Chu, Y.; Han, L.; Li, M.; Li, Z.; LaVinka, P.C.; Sun, S.; Tang, Z.; Park, K.; Caterina, M.J.; Ren, K.; Dubner, R.; Wei, F.; Dong, X. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron, 2014, 81(4), 873-887.
[http://dx.doi.org/10.1016/j.neuron.2013.12.011] [PMID: 24462040]
[33]
Clark, A.K.; Yip, P.K.; Grist, J.; Gentry, C.; Staniland, A.A.; Marchand, F.; Dehvari, M.; Wotherspoon, G.; Winter, J.; Ullah, J.; Bevan, S.; Malcangio, M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. USA, 2007, 104(25), 10655-10660.
[http://dx.doi.org/10.1073/pnas.0610811104] [PMID: 17551020]
[34]
Marrone, M.C.; Morabito, A.; Giustizieri, M.; Chiurchiù, V.; Leuti, A.; Mattioli, M.; Marinelli, S.; Riganti, L.; Lombardi, M.; Murana, E.; Totaro, A.; Piomelli, D.; Ragozzino, D.; Oddi, S.; Maccarrone, M.; Verderio, C.; Marinelli, S. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat. Commun., 2017, 8(1), 15292.
[http://dx.doi.org/10.1038/ncomms15292] [PMID: 28489079]
[35]
Jin, S.X.; Zhuang, Z.Y.; Woolf, C.J.; Ji, R.R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci., 2003, 23(10), 4017-4022.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04017.2003] [PMID: 12764087]
[36]
Talbot, S.; Dias, J.P.; Lahjouji, K.; Bogo, M.R.; Campos, M.M.; Gaudreau, P.; Couture, R. Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. J. Neuroinflammation, 2012, 9(1), 16.
[http://dx.doi.org/10.1186/1742-2094-9-16] [PMID: 22264228]
[37]
Chen, Y.; Willcockson, H.H.; Valtschanoff, J.G. Influence of the vanilloid receptor TRPV1 on the activation of spinal cord glia in mouse models of pain. Exp. Neurol., 2009, 220(2), 383-390.
[http://dx.doi.org/10.1016/j.expneurol.2009.09.030] [PMID: 19815011]
[38]
Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.Y.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[39]
Evans, R.M.; Scott, R.H.; Ross, R.A. Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. Br. J. Pharmacol., 2007, 152(3), 404-413.
[http://dx.doi.org/10.1038/sj.bjp.0707411] [PMID: 17700720]
[40]
Thomas, K.C.; Ethirajan, M.; Shahrokh, K.; Sun, H.; Lee, J.; Cheatham, T.E., III; Yost, G.S.; Reilly, C.A. Structure-activity relationship of capsaicin analogs and transient receptor potential vanilloid 1-mediated human lung epithelial cell toxicity. J. Pharmacol. Exp. Ther., 2011, 337(2), 400-410.
[http://dx.doi.org/10.1124/jpet.110.178491] [PMID: 21343315]
[41]
Choi, H.K.; Choi, S.; Lee, Y.; Kang, D.W.; Ryu, H.; Maeng, H.J.; Chung, S.J.; Pavlyukovets, V.A.; Pearce, L.V.; Toth, A.; Tran, R.; Wang, Y.; Morgan, M.A.; Blumberg, P.M.; Lee, J. Non-vanillyl resiniferatoxin analogues as potent and metabolically stable transient receptor potential vanilloid 1 agonists. Bioorg. Med. Chem., 2009, 17(2), 690-698.
[http://dx.doi.org/10.1016/j.bmc.2008.11.085] [PMID: 19135377]
[42]
Steinberg, X.; Lespay-Rebolledo, C.; Brauchi, S. A structural view of ligand-dependent activation in thermo TRP channels. Front. Physiol., 2014, 5, 171.
[http://dx.doi.org/10.3389/fphys.2014.00171] [PMID: 24847275]
[43]
Nazıroğlu, M.; Övey, I.S. Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience, 2015, 293, 55-66.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.041] [PMID: 25743251]
[44]
Meghvansi, M.K.; Siddiqui, S.; Khan, M.H.; Gupta, V.K.; Vairale, M.G.; Gogoi, H.K.; Singh, L. Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol., 2010, 132(1), 1-14.
[http://dx.doi.org/10.1016/j.jep.2010.08.034] [PMID: 20728519]
[45]
Luo, X.J.; Peng, J.; Li, Y.J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol., 2011, 650(1), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.074] [PMID: 20946891]
[46]
Braga Ferreira, L.G.; Faria, J.V.; Dos Santos, J.P.S.; Faria, R.X. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur. J. Pharmacol., 2020, 887, 173356.
[http://dx.doi.org/10.1016/j.ejphar.2020.173356] [PMID: 32763303]
[47]
Ogawa, K.; Murota, K.; Shimura, H.; Furuya, M.; Togawa, Y.; Matsumura, T.; Masuta, C. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol., 2015, 15(1), 93.
[http://dx.doi.org/10.1186/s12870-015-0476-7] [PMID: 25884984]
[48]
Kobata, K.; Sugawara, M.; Mimura, M.; Yazawa, S.; Watanabe, T. Potent production of capsaicinoids and capsinoids by Capsicum peppers. J. Agric. Food Chem., 2013, 61(46), 11127-11132.
[http://dx.doi.org/10.1021/jf403553w] [PMID: 24147886]
[49]
Srinivasan, K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Crit. Rev. Food Sci. Nutr., 2016, 56(9), 1488-1500.
[http://dx.doi.org/10.1080/10408398.2013.772090] [PMID: 25675368]
[50]
Cui, M.; Gosu, V.; Basith, S.; Hong, S.; Choi, S. Polymodal transient receptor potential vanilloid type 1 nocisensor: structure, modulators, and therapeutic applications. Adv. Protein Chem. Struct. Biol., 2016, 104, 81-125.
[http://dx.doi.org/10.1016/bs.apcsb.2015.11.005] [PMID: 27038373]
[51]
Iwasaki, Y.; Saito, O.; Tanabe, M.; Inayoshi, K.; Kobata, K.; Uno, S.; Morita, A.; Watanabe, T. Monoacylglycerols activate capsaicin receptor, TRPV1. Lipids, 2008, 43(6), 471-483.
[http://dx.doi.org/10.1007/s11745-008-3182-5] [PMID: 18481133]
[52]
Rosenberger, D.C.; Binzen, U.; Treede, R.D.; Greffrath, W. The capsaicin receptor TRPV1 is the first line defense protecting from acute non damaging heat: a translational approach. J. Transl. Med., 2020, 18(1), 28.
[http://dx.doi.org/10.1186/s12967-019-02200-2] [PMID: 31952468]
[53]
Yang, F.; Xiao, X.; Cheng, W.; Yang, W.; Yu, P.; Song, Z.; Yarov-Yarovoy, V.; Zheng, J. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat. Chem. Biol., 2015, 11(7), 518-524.
[http://dx.doi.org/10.1038/nchembio.1835] [PMID: 26053297]
[54]
Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell, 2017, 8(3), 169-177.
[http://dx.doi.org/10.1007/s13238-016-0353-7] [PMID: 28044278]
[55]
Goldstein, R.H.; Katz, B.; Lev, S.; Binshtok, A.M. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro. J. Biomed. Opt., 2017, 22(7), 76010.
[http://dx.doi.org/10.1117/1.JBO.22.7.076010] [PMID: 28715544]
[56]
Papoiu, A.D.; Yosipovitch, G. Topical capsaicin. The fire of a ‘hot’ medicine is reignited. Expert Opin. Pharmacother., 2010, 11(8), 1359-1371.
[http://dx.doi.org/10.1517/14656566.2010.481670] [PMID: 20446852]
[57]
Bode, A.M.; Dong, Z. The two faces of capsaicin. Cancer Res., 2011, 71(8), 2809-2814.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3756] [PMID: 21487045]
[58]
Kasckow, J.W.; Mulchahey, J.J.; Geracioti, T.D., Jr Effects of the vanilloid agonist olvanil and antagonist capsazepine on rat behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(2), 291-295.
[http://dx.doi.org/10.1016/j.pnpbp.2003.10.007] [PMID: 14751425]
[59]
Kurosawa, W.; Nakano, T.; Amino, Y. Practical large-scale production of dihydrocapsiate, a nonpungent capsaicinoid-like substance. Biosci. Biotechnol. Biochem., 2017, 81(2), 211-221.
[http://dx.doi.org/10.1080/09168451.2016.1254533] [PMID: 27838955]
[60]
Weyer-Menkhoff, I.; Lötsch, J. Human pharmacological approaches to TRP-ion-channel-based analgesic drug development. Drug Discov. Today, 2018, 23(12), 2003-2012.
[http://dx.doi.org/10.1016/j.drudis.2018.06.020] [PMID: 29969684]
[61]
Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules, 2016, 21(8), 966.
[http://dx.doi.org/10.3390/molecules21080966] [PMID: 27455231]
[62]
Appendino, G.; De Petrocellis, L.; Trevisani, M.; Minassi, A.; Daddario, N.; Moriello, A.S.; Gazzieri, D.; Ligresti, A.; Campi, B.; Fontana, G.; Pinna, C.; Geppetti, P.; Di Marzo, V. Development of the first ultra-potent “capsaicinoid” agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. J. Pharmacol. Exp. Ther., 2005, 312(2), 561-570.
[http://dx.doi.org/10.1124/jpet.104.074864] [PMID: 15356216]
[63]
Appendino, G.; Szallasi, A. Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci., 1997, 60(10), 681-696.
[http://dx.doi.org/10.1016/S0024-3205(96)00567-X] [PMID: 9064473]
[64]
Kissin, I.; Szallasi, A. Therapeutic targeting of TRPV1 by resiniferatoxin, from preclinical studies to clinical trials. Curr. Top. Med. Chem., 2011, 11(17), 2159-2170.
[http://dx.doi.org/10.2174/156802611796904924] [PMID: 21671878]
[65]
Lee, M.G.; Huh, B.K.; Choi, S.S.; Lee, D.K.; Lim, B.G.; Lee, M. The effect of epidural resiniferatoxin in the neuropathic pain rat model. Pain Physician, 2012, 15(4), 287-296.
[http://dx.doi.org/10.36076/ppj.2012/15/287] [PMID: 22828682]
[66]
Iadarola, M.J.; Gonnella, G.L. Resiniferatoxin for pain treatment: An interventional approach to personalized pain medicine. Open Pain J., 2013, 6, 95-107.
[http://dx.doi.org/10.2174/1876386301306010095] [PMID: 26779292]
[67]
Tender, G.C.; Li, Y-Y.; Cui, J-G. Brain-derived neurotrophic factor redistribution in the dorsal root ganglia correlates with neuropathic pain inhibition after resiniferatoxin treatment. Spine J., 2010, 10(8), 715-720.
[http://dx.doi.org/10.1016/j.spinee.2010.03.029] [PMID: 20452292]
[68]
Nahama, A.; Ramachandran, R.; Cisternas, A.F.; Ji, H. The role of afferent pulmonary innervation in poor prognosis of acute respiratory distress syndrome in COVID-19 patients and proposed use of resiniferatoxin (RTX) to improve patient outcomes in advanced disease state. A review; Med. Drug Discov, 2020.
[69]
Meghwal, M.; Goswami, T.K. Piper nigrum and piperine: an update. Phytother. Res., 2013, 27(8), 1121-1130.
[http://dx.doi.org/10.1002/ptr.4972] [PMID: 23625885]
[70]
Srinivasan, K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr., 2007, 47(8), 735-748.
[http://dx.doi.org/10.1080/10408390601062054] [PMID: 17987447]
[71]
Dong, Y.; Yin, Y.; Vu, S.; Yang, F.; Yarov-Yarovoy, V.; Tian, Y.; Zheng, J. A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem. Biophys. Res. Commun., 2019, 516(2), 365-372.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.039] [PMID: 31213294]
[72]
McNamara, F.N.; Randall, A.; Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol., 2005, 144(6), 781-790.
[http://dx.doi.org/10.1038/sj.bjp.0706040] [PMID: 15685214]
[73]
Wimmer, L.; Schönbauer, D.; Pakfeifer, P.; Schöffmann, A.; Khom, S.; Hering, S.; Mihovilovic, M.D. Developing piperine towards TRPV1 and GABAA receptor ligands-synthesis of piperine analogs via Heck-coupling of conjugated dienes. Org. Biomol. Chem., 2015, 13(4), 990-994.
[http://dx.doi.org/10.1039/C4OB02242D] [PMID: 25438036]
[74]
Nazifi, M.; Ashrafpoor, M.; Oryan, S.; Esfahani, D.E.; Moghadamnia, A.A. Neurotoxic effects of high-dose piperine on hippocampal synaptic transmission and synaptic plasticity in a rat model of memory impairment. Neurotoxicology, 2020, 79, 200-208.
[http://dx.doi.org/10.1016/j.neuro.2020.04.008] [PMID: 32360092]
[75]
Asha, M.K.; Prashanth, D.; Murali, B.; Padmaja, R.; Amit, A. Anthelmintic activity of essential oil of Ocimum sanctum and eugenol. Fitoterapia, 2001, 72(6), 669-670.
[http://dx.doi.org/10.1016/S0367-326X(01)00270-2] [PMID: 11543966]
[76]
Fonsêca, D.V.; Salgado, P.R. Aragão Neto, Hde.C.; Golzio, A.M.; Caldas Filho, M.R.; Melo, C.G.; Leite, F.C.; Piuvezam, M.R.; Pordeus, L.C.; Barbosa Filho, J.M.; Almeida, R.N. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int. Immunopharmacol., 2016, 38, 402-408.
[http://dx.doi.org/10.1016/j.intimp.2016.06.005] [PMID: 27355133]
[77]
Yang, B.H.; Piao, Z.G.; Kim, Y.B.; Lee, C.H.; Lee, J.K.; Park, K.; Kim, J.S.; Oh, S.B. Activation of vanilloid receptor 1 (VR1) by eugenol. J. Dent. Res., 2003, 82(10), 781-785.
[http://dx.doi.org/10.1177/154405910308201004] [PMID: 14514756]
[78]
Yagura, S.; Onimaru, H.; Kanzaki, K.; Izumizaki, M. Inhibitory effects of eugenol on putative nociceptive response in spinal cord preparation isolated from neonatal rats. Exp. Brain Res., 2018, 236(6), 1767-1774.
[http://dx.doi.org/10.1007/s00221-018-5254-y] [PMID: 29654351]
[79]
Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 2004, 41(6), 849-857.
[http://dx.doi.org/10.1016/S0896-6273(04)00150-3] [PMID: 15046718]
[80]
Guenette, S.A.; Beaudry, F.; Marier, J.F.; Vachon, P. Pharmacokinetics and anesthetic activity of eugenol in male Sprague-Dawley rats. J. Vet. Pharmacol. Ther., 2006, 29(4), 265-270.
[http://dx.doi.org/10.1111/j.1365-2885.2006.00740.x] [PMID: 16846463]
[81]
Thakur, M.P.; Singh, H.K. Mushrooms, their bioactive compounds and medicinal uses: A review. Med. Plants-Interna. J. Phytomed. Related Indus., 2013, 5(1), 1-20.
[http://dx.doi.org/10.5958/j.0975-6892.5.1.004]
[82]
Iida, T.; Moriyama, T.; Kobata, K.; Morita, A.; Murayama, N.; Hashizume, S.; Fushiki, T.; Yazawa, S.; Watanabe, T.; Tominaga, M. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology, 2003, 44(7), 958-967.
[http://dx.doi.org/10.1016/S0028-3908(03)00100-X] [PMID: 12726827]
[83]
Sterner, O.; Szallasi, A. Novel natural vanilloid receptor agonists: new therapeutic targets for drug development. Trends Pharmacol. Sci., 1999, 20(11), 459-465.
[http://dx.doi.org/10.1016/S0165-6147(99)01393-0] [PMID: 10542446]
[84]
Szallasi, A.; Bíró, T.; Szabó, T.; Modarres, S.; Petersen, M.; Klusch, A.; Blumberg, P.M.; Krause, J.E.; Sterner, O. A non-pungent triprenyl phenol of fungal origin, scutigeral, stimulates rat dorsal root ganglion neurons via interaction at vanilloid receptors. Br. J. Pharmacol., 1999, 126(6), 1351-1358.
[http://dx.doi.org/10.1038/sj.bjp.0702440] [PMID: 10217528]
[85]
Park, S-Y.; Park, J-H.; Kim, H-S.; Lee, C-Y.; Lee, H.J.; Kang, K.S.; Kim, C.E. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. J. Ginseng Res., 2018, 42(1), 98-106.
[http://dx.doi.org/10.1016/j.jgr.2017.09.001] [PMID: 29348728]
[86]
Lorz, L.R.; Kim, M.Y.; Cho, J.Y. Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J. Ginseng Res., 2020, 44(1), 8-13.
[http://dx.doi.org/10.1016/j.jgr.2018.12.012] [PMID: 32095092]
[87]
Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res., 2020.
[http://dx.doi.org/10.1016/j.jgr.2020.02.004] [PMID: 33841000]
[88]
Kim, M.K.; Kang, H.; Baek, C.W.; Jung, Y.H.; Woo, Y.C.; Choi, G.J.; Shin, H.Y.; Kim, K.S. Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J. Ginseng Res., 2018, 42(2), 183-191.
[http://dx.doi.org/10.1016/j.jgr.2017.02.005] [PMID: 29719465]
[89]
Ahn, E.J.; Choi, G.J.; Kang, H.; Baek, C.W.; Jung, Y.H.; Woo, Y.C.; Bang, S.R. Antinociceptive effects of ginsenoside Rg3 in a rat model of incisional pain. Eur. Surg. Res., 2016, 57(3-4), 211-223.
[http://dx.doi.org/10.1159/000448001] [PMID: 27441690]
[90]
Meotti, F.C.; de Andrade, E.L.; Calixto, J.B. TRP modulation by natural compounds. Mammalian transient receptor potential (TRP) Cation channels; Springer, 2014, pp. 1177-1238.
[http://dx.doi.org/10.1007/978-3-319-05161-1_19]
[91]
Jung, S-Y.; Choi, S.; Ko, Y-S.; Park, C-S.; Oh, S.; Koh, S-R.; Oh, U.; Oh, J.W.; Rhee, M.H.; Nah, S.Y. Effects of ginsenosides on vanilloid receptor (VR1) channels expressed in Xenopus oocytes. Molecules & Cells (Springer Science & Business Media BV., 2001, 21(3)
[92]
Huang, J.; Qiu, L.; Ding, L.; Wang, S.; Wang, J.; Zhu, Q.; Song, F.; Hu, J. Ginsenoside Rb1 and paeoniflorin inhibit transient receptor potential vanilloid-1-activated IL-8 and PGE2 production in a human keratinocyte cell line HaCaT. Int. Immunopharmacol., 2010, 10(10), 1279-1283.
[http://dx.doi.org/10.1016/j.intimp.2010.07.010] [PMID: 20678598]
[93]
Ribeiro-Santos, R.; Andrade, M.; Madella, D.; Martinazzo, A.P.; Moura, L.D.A.G.; de Melo, N.R.; Sanches-Silva, A. Revisiting an ancient spice with medicinal purposes. Cinnamon. Trends Food Sci. Technol., 2017, 62, 154-169.
[http://dx.doi.org/10.1016/j.tifs.2017.02.011]
[94]
Sui, F.; Zhou, H-Y.; Meng, J.; Du, X-L.; Sui, Y-P.; Zhou, Z-K.; Dong, C.; Wang, Z.J.; Wang, W.H.; Dai, L.; Ma, H.; Huo, H.R.; Jiang, T.L. A Chinese herbal decoction, Shaoyao-Gancao Tang, exerts analgesic effect by down-regulating the TRPV1 channel in a rat model of arthritic pain. Am. J. Chin. Med., 2016, 44(7), 1363-1378.
[http://dx.doi.org/10.1142/S0192415X16500762] [PMID: 27785943]
[95]
Nozadze, I.; Tsiklauri, N.; Gurtskaia, G.; Abzianidze, E.; Tsagareli, M.G. TRP channels in thermal pain sensation; Systemic, cellular and molecular mechanisms of physiological functions and their disorders, 2016, pp. 271-287.
[96]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Imag., 2013, 4(2), 86-89.
[http://dx.doi.org/10.5348/ijcri-2013-02-267-RA-1]
[97]
Babu, K.N.; Sajina, A.; Minoo, D.; John, C.Z.; Mini, P.M.; Tushar, K.V.; Rema, J.; Ravindran, P.N. Micropropagation of camphor tree (Cinnamomum camphora). Plant Cell Tissue Organ Cult., 2003, 74(2), 179-183.
[http://dx.doi.org/10.1023/A:1023988110064]
[98]
Marsakova, L.; Touska, F.; Krusek, J.; Vlachova, V. Pore helix domain is critical to camphor sensitivity of transient receptor potential vanilloid 1 channel. Anesthesiology, 2012, 116(4), 903-917.
[http://dx.doi.org/10.1097/ALN.0b013e318249cf62] [PMID: 22314297]
[99]
Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol., 2010, 127(2), 515-520.
[http://dx.doi.org/10.1016/j.jep.2009.10.004] [PMID: 19833188]
[100]
Onogi, T.; Minami, M.; Kuraishi, Y.; Satoh, M. Capsaicin-like effect of (6)-shogaol on substance P-containing primary afferents of rats: A possible mechanism of its analgesic action. Neuropharmacology, 1992, 31(11), 1165-1169.
[http://dx.doi.org/10.1016/0028-3908(92)90013-F] [PMID: 1282221]
[101]
Fajrin, F.A.; Nugroho, A.E.; Nurrochmad, A.; Susilowati, R. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord. J. Ethnopharmacol., 2020, 249, 112396.
[http://dx.doi.org/10.1016/j.jep.2019.112396] [PMID: 31743763]
[102]
Yin, Y.; Dong, Y.; Vu, S.; Yang, F.; Yarov-Yarovoy, V.; Tian, Y.; Zheng, J. Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers. Br. J. Pharmacol., 2019, 176(17), 3364-3377.
[http://dx.doi.org/10.1111/bph.14766] [PMID: 31207668]
[103]
Malhotra, S.; Singh, A.P. Medicinal properties of ginger (Zingiber officinale Rosc.). Nat. Prod. Radiance, 2003, 2(6)
[104]
Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res., 2020.
[PMID: 32954562]
[105]
Phukan, S.; Adhikari, K. Study of the antidepressant and antinociceptive activity of ethanolic extract of rhizomes of Zingiber officinale in experimental animals. Int. J. Pharm. Sci. Rev. Res., 2017, 8(7), 3004-3009.
[106]
Fajrin, F.A.; Nugroho, A.E.; Susilowati, R.; Nurrochmad, A. Molecular docking analysis of ginger active compound on transient receptor potential cation channel subfamily V member 1 (TRPV1). Indones. J. Chem, 2018, 18(1), 179-185.
[http://dx.doi.org/10.22146/ijc.28172]
[107]
Dedov, V.N.; Tran, V.H.; Duke, C.C.; Connor, M.; Christie, M.J.; Mandadi, S.; Roufogalis, B.D. Gingerols: a novel class of vanilloid receptor (VR1) agonists. Br. J. Pharmacol., 2002, 137(6), 793-798.
[http://dx.doi.org/10.1038/sj.bjp.0704925] [PMID: 12411409]
[108]
Iwasaki, Y.; Morita, A.; Iwasawa, T.; Kobata, K.; Sekiwa, Y.; Morimitsu, Y.; Kubota, K.; Watanabe, T. A nonpungent component of steamed ginger-[10]-shogaol-increases adrenaline secretion via the activation of TRPV1. Nutr. Neurosci., 2006, 9(3-4), 169-178.
[http://dx.doi.org/10.1080/110284150600955164] [PMID: 17176640]
[109]
Morera, E.; De Petrocellis, L.; Morera, L.; Moriello, A.S.; Nalli, M.; Di Marzo, V.; Ortar, G. Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorg. Med. Chem. Lett., 2012, 22(4), 1674-1677.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.113] [PMID: 22257892]
[110]
El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, G. L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A Review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[111]
Alam, M.K.; Hoq, M.O.; Uddin, M.S. Medicinal plant Allium sativum. A review. J. Med. Plants Res., 2016, 4(6), 72-79.
[112]
Macpherson, L.J.; Geierstanger, B.H.; Viswanath, V.; Bandell, M.; Eid, S.R.; Hwang, S.; Patapoutian, A. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol., 2005, 15(10), 929-934.
[http://dx.doi.org/10.1016/j.cub.2005.04.018] [PMID: 15916949]
[113]
Salazar, H.; Llorente, I.; Jara-Oseguera, A.; García-Villegas, R.; Munari, M.; Gordon, S.E.; Islas, L.D.; Rosenbaum, T. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci., 2008, 11(3), 255-261.
[http://dx.doi.org/10.1038/nn2056] [PMID: 18297068]
[114]
Li, D.W.; Zhang, M.; Feng, L.; Huang, S.S.; Zhang, B.J.; Liu, S.S.; Deng, S.; Wang, C.; Ma, X.C.; Leng, A.J. Alkaloids from the nearly ripe fruits of Evodia rutaecarpa and their bioactivities. Fitoterapia, 2020, 146, 104668.
[http://dx.doi.org/10.1016/j.fitote.2020.104668] [PMID: 32540378]
[115]
Komatsu, K.; Wakame, K.; Kano, Y. Pharmacological properties of galenical preparation. XVI. Pharmacokinetics of evodiamine and the metabolite in rats. Biol. Pharm. Bull., 1993, 16(9), 935-938.
[http://dx.doi.org/10.1248/bpb.16.935] [PMID: 8268864]
[116]
Wu, P.; Chen, Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum. Cell, 2019, 32(3), 251-259.
[http://dx.doi.org/10.1007/s13577-019-00238-4] [PMID: 30701373]
[117]
Tan, Q.; Zhang, J. Evodiamine and its role in chronic diseases. Drug Discovery from Mother Nature; Springer, 2016, pp. 315-328.
[http://dx.doi.org/10.1007/978-3-319-41342-6_14]
[118]
Iwaoka, E.; Wang, S.; Matsuyoshi, N.; Kogure, Y.; Aoki, S.; Yamamoto, S.; Noguchi, K.; Dai, Y. Evodiamine suppresses capsaicin-induced thermal hyperalgesia through activation and subsequent desensitization of the transient receptor potential V1 channels. J. Nat. Med., 2016, 70(1), 1-7.
[http://dx.doi.org/10.1007/s11418-015-0929-1] [PMID: 26188960]
[119]
Yang, W.; Ma, L.; Li, S.; Cui, K.; Lei, L.; Ye, Z. Evaluation of the cardiotoxicity of evodiamine in vitro and in vivo. Molecules, 2017, 22(6), 943.
[http://dx.doi.org/10.3390/molecules22060943] [PMID: 28598372]
[120]
Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010, 54(1), 127-135.
[http://dx.doi.org/10.1002/mnfr.200900323] [PMID: 19960458]
[121]
Spahn, V.; Stein, C.; Zöllner, C. Modulation of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1. Mol. Pharmacol., 2014, 85(2), 335-344.
[http://dx.doi.org/10.1124/mol.113.088997] [PMID: 24275229]
[122]
Alpizar, Y.A.; Boonen, B.; Gees, M.; Sanchez, A.; Nilius, B.; Voets, T.; Talavera, K. Allyl isothiocyanate sensitizes TRPV1 to heat stimulation. Pflugers Arch., 2014, 466(3), 507-515.
[http://dx.doi.org/10.1007/s00424-013-1334-9] [PMID: 23955021]
[123]
Rabgay, K.; Waranuch, N.; Chaiyakunapruk, N.; Sawangjit, R.; Ingkaninan, K.; Dilokthornsakul, P. The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis. J. Am. Pharm. Assoc., 2020, 60(1), 225-234.e6.
[http://dx.doi.org/10.1016/j.japh.2019.07.015] [PMID: 31495691]
[124]
Manzanares, J.; Julian, M.; Carrascosa, A. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr. Neuropharmacol., 2006, 4(3), 239-257.
[http://dx.doi.org/10.2174/157015906778019527] [PMID: 18615144]
[125]
Cheung, K.A.K.; Peiris, H.; Wallace, G.; Holland, O.J.; Mitchell, M.D. The interplay between the endocannabinoid system, epilepsy and cannabinoids. Int. J. Mol. Sci., 2019, 20(23), 6079.
[http://dx.doi.org/10.3390/ijms20236079] [PMID: 31810321]
[126]
Vandebroek, I.; Picking, D. Ricinus communis L.(Euphorbiaceae). Popular Medicinal Plants in Portland and Kingston, Jamaica; Springer: Cham, 2020, pp. 187-197.
[http://dx.doi.org/10.1007/978-3-030-48927-4_21]
[127]
Pabiś, S.; Kula, J. Synthesis and bioactivity of (r)-ricinoleic acid derivatives: A review. Curr. Med. Chem., 2016, 23(35), 4037-4056.
[http://dx.doi.org/10.2174/0929867323666160627104453] [PMID: 27356539]
[128]
Vriens, J.; Nilius, B.; Vennekens, R. Herbal compounds and toxins modulating TRP channels. Curr. Neuropharmacol., 2008, 6(1), 79-96.
[http://dx.doi.org/10.2174/157015908783769644] [PMID: 19305789]
[129]
Ralevic, V.; Jerman, J.C.; Brough, S.J.; Davis, J.B.; Egerton, J.; Smart, D. Pharmacology of vanilloids at recombinant and endogenous rat vanilloid receptors. Biochem. Pharmacol., 2003, 65(1), 143-151.
[http://dx.doi.org/10.1016/S0006-2952(02)01451-X] [PMID: 12473388]
[130]
Abbas, M.A. Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem. Biol. Interact., 2020, 330, 109178.
[http://dx.doi.org/10.1016/j.cbi.2020.109178] [PMID: 32738201]
[131]
Menéndez, L.; Juárez, L.; García, E.; García-Suárez, O.; Hidalgo, A.; Baamonde, A. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci. Lett., 2006, 393(1), 70-73.
[http://dx.doi.org/10.1016/j.neulet.2005.09.046] [PMID: 16243435]
[132]
Iftinca, M.; Defaye, M.; Altier, C. TRPV1-targeted drugs in development for human pain conditions. Drugs, 2020, 1-21.
[PMID: 33165872]
[133]
Gonzalez-Nilo, F.D.; Caceres-Molina, J.; Bravo-Moraga, F.; Sepulveda, R.; Diaz-Franulic, I. Structural characterization of ligand-specific interactions in trpv1 channel: Gating mechanism by capsaicin and capsazepine. Biophys. J., 2016, 110(3), 284a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.1537]
[134]
Khalil, M.; Alliger, K.; Weidinger, C.; Yerinde, C.; Wirtz, S.; Becker, C.; Engel, M.A. Functional role of transient receptor potential channels in immune cells and epithelia. Front. Immunol., 2018, 9, 174.
[http://dx.doi.org/10.3389/fimmu.2018.00174] [PMID: 29467763]
[135]
Wang, Y.; Szabo, T.; Welter, J.D.; Toth, A.; Tran, R.; Lee, J.; Kang, S.U.; Suh, Y-G.; Blumberg, P.M.; Lee, J. High affinity antagonists of the vanilloid receptor. Mol. Pharmacol., 2002, 62(4), 947-956.
[http://dx.doi.org/10.1124/mol.62.4.947] [PMID: 12237342]
[136]
Jaskulska, A.; Janecka, A.E.; Gach-Janczak, K. Thapsigargin-from traditional medicine to anticancer drug. Int. J. Mol. Sci., 2020, 22(1), 4.
[http://dx.doi.org/10.3390/ijms22010004] [PMID: 33374919]
[137]
Dey, S.; Bajaj, S.O. Promising anticancer drug thapsigargin: A perspective toward the total synthesis. Synth. Commun., 2018, 48(1), 1-13.
[http://dx.doi.org/10.1080/00397911.2017.1386789]
[138]
Premkumar, L.S.; Sikand, P. TRPV1: A target for next generation analgesics. Curr. Neuropharmacol., 2008, 6(2), 151-163.
[http://dx.doi.org/10.2174/157015908784533888] [PMID: 19305794]
[139]
Broad, L.M.; Keding, S.J.; Blanco, M.J. Recent progress in the development of selective TRPV1 antagonists for pain. Curr. Top. Med. Chem., 2008, 8(16), 1431-1441.
[http://dx.doi.org/10.2174/156802608786264254] [PMID: 18991729]
[140]
Hakii, H.; Fujiki, H.; Suganuma, M.; Nakayasu, M.; Tahira, T.; Sugimura, T.; Scheuer, P.J.; Christensen, S.B. Thapsigargin, a histamine secretagogue, is a non-12-O-tetradecanoylphorbol-13-acetate (TPA) type tumor promoter in two-stage mouse skin carcinogenesis. J. Cancer Res. Clin. Oncol., 1986, 111(3), 177-181.
[http://dx.doi.org/10.1007/BF00389230] [PMID: 2426275]
[141]
Oláh, Z.; Rédei, D.; Pecze, L.; Vizler, C.; Jósvay, K.; Forgó, P.; Winter, Z.; Dombi, G.; Szakonyi, G.; Hohmann, J. Pellitorine, an extract of Tetradium daniellii, is an antagonist of the ion channel TRPV1. Phytomedicine, 2017, 34, 44-49.
[http://dx.doi.org/10.1016/j.phymed.2017.06.006] [PMID: 28899508]
[142]
Ley, J.P.; Jens‐Michael, H.; Berthold, W.; Gerhard, K.; Ian, L.G.; Heinz‐Jürgen, B. Stereoselective enzymatic synthesis of cis‐pellitorine, a taste active alkamide naturally occurring in Tarragon. Eur. J. Org. Chem., 2004, 24, 5135-5140.
[http://dx.doi.org/10.1002/ejoc.200400403]
[143]
Zhao, Z.; He, X.; Han, W.; Chen, X.; Liu, P.; Zhao, X.; Wang, X.; Zhang, L.; Wu, S.; Zheng, X. Genus Tetradium L.: A comprehensive review on traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol., 2019, 231, 337-354.
[http://dx.doi.org/10.1016/j.jep.2018.11.035] [PMID: 30472402]
[144]
Ernst, E.; Pittler, M.H. Yohimbine for erectile dysfunction: a systematic review and meta-analysis of randomized clinical trials. J. Urol., 1998, 159(2), 433-436.
[http://dx.doi.org/10.1016/S0022-5347(01)63942-9] [PMID: 9649257]
[145]
Dessaint, J.; Yu, W.; Krause, J.E.; Yue, L. Yohimbine inhibits firing activities of rat dorsal root ganglion neurons by blocking Na+ channels and vanilloid VR1 receptors. Eur. J. Pharmacol., 2004, 485(1-3), 11-20.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.039] [PMID: 14757119]
[146]
Ajonuma, L.C.; Bamiro, S.A.; Makanjuola, S.L. Adverse effects of prolonged use of pausinystalia yohimbe on sperm and reproductive organs in rats. Fertil. Steril., 2017, 108(3), e314.
[http://dx.doi.org/10.1016/j.fertnstert.2017.07.929]
[147]
Park, H.; Lee, J.H.; Sim, J.H.; Park, J.; Choi, S.S.; Leem, J.G. Effects of curcumin treatment in a diabetic neuropathic pain model of rats: Involvement of c-jun n-terminal kinase located in the astrocytes and neurons of the dorsal root ganglion. Pain Res. Manag., 2021, 2021, 8787231.
[http://dx.doi.org/10.1155/2021/8787231] [PMID: 33532012]
[148]
Yeon, K.Y.; Kim, S.A.; Kim, Y.H.; Lee, M.K.; Ahn, D.K.; Kim, H.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J. Dent. Res., 2010, 89(2), 170-174.
[http://dx.doi.org/10.1177/0022034509356169] [PMID: 20040737]
[149]
Paultre, K.; Cade, W.; Hernandez, D.; Reynolds, J.; Greif, D.; Best, T.M. Therapeutic effects of turmeric or curcumin extract on pain and function for individuals with knee osteoarthritis: A systematic review. BMJ Open Sport Exerc. Med., 2021, 7(1), e000935.
[http://dx.doi.org/10.1136/bmjsem-2020-000935] [PMID: 33500785]
[150]
Sun, J.; Chen, F.; Braun, C.; Zhou, Y.Q.; Rittner, H.; Tian, Y.K.; Cai, X.Y.; Ye, D.W. Role of curcumin in the management of pathological pain. Phytomedicine, 2018, 48, 129-140.
[http://dx.doi.org/10.1016/j.phymed.2018.04.045] [PMID: 30195871]
[151]
Kitaguchi, T.; Swartz, K.J. An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry, 2005, 44(47), 15544-15549.
[http://dx.doi.org/10.1021/bi051494l] [PMID: 16300403]
[152]
Geron, M.; Hazan, A.; Priel, A. Animal toxins providing insights into TRPV1 activation mechanism. Toxins (Basel), 2017, 9(10), 326.
[http://dx.doi.org/10.3390/toxins9100326] [PMID: 29035314]