Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives

Page: [1212 - 1228] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress.

Objective and Methods: This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder.

Results and Conclusion: In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.

Keywords: Renin-angiotensin system, stress, neurobiology, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers.

Graphical Abstract

[1]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[2]
Ferrario, C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst., 2006, 7(1), 3-14.
[http://dx.doi.org/10.3317/jraas.2006.003] [PMID: 17083068]
[3]
Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev., 2018, 98(3), 1627-1738.
[http://dx.doi.org/10.1152/physrev.00038.2017] [PMID: 29873596]
[4]
Etelvino, G.M.; Peluso, A.A.B.; Santos, R.A.S. New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D. Curr. Hypertens. Rep., 2014, 16(6), 433.
[http://dx.doi.org/10.1007/s11906-014-0433-0] [PMID: 24760442]
[5]
Li, X.C.; Zhang, J.; Zhuo, J.L. The vasoprotective axes of the renin- angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res., 2017, 125(Pt A), 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005] [PMID: 28619367]
[6]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[7]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[8]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. Alenina Natalia and Bader, M.; Campagnole-Santos, M. J. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[9]
Santos, R.A. Angiotensin-(1-7). Hypertension, 2014, 63(6), 1138-1147.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01274] [PMID: 24664288]
[10]
Santos, R.A.S.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[11]
Metzger, R.; Bader, M.; Ludwig, T.; Berberich, C.; Bunnemann, B.; Ganten, D. Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett., 1995, 357(1), 27-32.
[http://dx.doi.org/10.1016/0014-5793(94)01292-9] [PMID: 8001672]
[12]
Alenina, N.; Xu, P.; Rentzsch, B.; Patkin, E.L.; Bader, M. Genetically altered animal models for Mas and angiotensin-(1-7). Exp. Physiol., 2008, 93(5), 528-537.
[http://dx.doi.org/10.1113/expphysiol.2007.040345] [PMID: 18156169]
[13]
Jankowski, V.; Vanholder, R.; van der Giet, M.; Tölle, M.; Karadogan, S.; Gobom, J.; Furkert, J.; Oksche, A.; Krause, E.; Tran, T.N.; Tepel, M.; Schuchardt, M.; Schlüter, H.; Wiedon, A.; Beyermann, M.; Bader, M.; Todiras, M.; Zidek, W.; Jankowski, J. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 297-302.
[http://dx.doi.org/10.1161/01.ATV.0000253889.09765.5f] [PMID: 17138938]
[14]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[15]
Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(5), H958-H970.
[http://dx.doi.org/10.1152/ajpheart.00723.2018] [PMID: 30707614]
[16]
Kyrou, I.; Tsigos, C. Stress hormones: physiological stress and regulation of metabolism. Curr. Opin. Pharmacol., 2009, 9(6), 787-793.
[http://dx.doi.org/10.1016/j.coph.2009.08.007] [PMID: 19758844]
[17]
Kendler, K.S.; Gardner, C.O.; Prescott, C.A. Toward a comprehensive developmental model for major depression in men. Am. J. Psychiatry, 2006, 163(1), 115-124.
[http://dx.doi.org/10.1176/appi.ajp.163.1.115] [PMID: 16390898]
[18]
Kendler, K.S.; Gardner, C.O.; Prescott, C.A. Toward a comprehensive developmental model for major depression in women. Am. J. Psychiatry, 2002, 159(7), 1133-1145.
[http://dx.doi.org/10.1176/appi.ajp.159.7.1133] [PMID: 12091191]
[19]
Post, R.M. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am. J. Psychiatry, 1992, 149(8), 999-1010.
[http://dx.doi.org/10.1176/ajp.149.8.999] [PMID: 1353322]
[20]
Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci., 2018, 12, 127.
[http://dx.doi.org/10.3389/fnbeh.2018.00127] [PMID: 30034327]
[21]
Fontes, M.A.P.; Xavier, C.H.; Marins, F.R.; Limborço-Filho, M.; Vaz, G.C.; Müller-Ribeiro, F.C.; Nalivaiko, E. Emotional stress and sympathetic activity: contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res., 2014, 1554, 49-58.
[http://dx.doi.org/10.1016/j.brainres.2014.01.043] [PMID: 24491632]
[22]
Fontes, M.A.P.; Xavier, C.H.; de Menezes, R.C.A.; Dimicco, J.A. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience, 2011, 184, 64-74.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.018] [PMID: 21435377]
[23]
Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2009, 10(6), 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[24]
Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci., 2013, 14(9), 609-625.
[http://dx.doi.org/10.1038/nrn3381] [PMID: 23942470]
[25]
Arnsten, A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci., 2009, 10(6), 410-422.
[http://dx.doi.org/10.1038/nrn2648] [PMID: 19455173]
[26]
Ridderinkhof, K.R.; Ullsperger, M.; Crone, E.A.; Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science, 2004, 306(5695), 443-447.
[http://dx.doi.org/10.1126/science.1100301] [PMID: 15486290]
[27]
Diorio, D. viau, V.; Meaney, M.J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci., 1993, 13(9), 3839-3847.
[http://dx.doi.org/10.1523/JNEUROSCI.13-09-03839.1993] [PMID: 8396170]
[28]
Figueiredo, H.F.; Bruestle, A.; Bodie, B.; Dolgas, C.M.; Herman, J.P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur. J. Neurosci., 2003, 18(8), 2357-2364.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02932.x] [PMID: 14622198]
[29]
Bali, A.; Jaggi, A.S. Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol. Res., 2013, 76, 49-57.
[http://dx.doi.org/10.1016/j.phrs.2013.07.004] [PMID: 23892268]
[30]
Armando, I.; Carranza, A.; Nishimura, Y.; Hoe, K.L.; Barontini, M.; Terrón, J.A.; Falcón-Neri, A.; Ito, T.; Juorio, A.V.; Saavedra, J.M. Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress. Endocrinology, 2001, 142(9), 3880-3889.
[http://dx.doi.org/10.1210/endo.142.9.8366] [PMID: 11517166]
[31]
Xue, B.; Xue, J.; Yu, Y.; Wei, S-G.; Beltz, T.G.; Felder, R.B.; Johnson, A.K. Predator scent-induced sensitization of hypertension and anxiety-like behaviors. Cell. Mol. Neurobiol., 2022, 42(4), 1141-1152.
[http://dx.doi.org/10.1007/s10571-020-01005-y] [PMID: 33201417]
[32]
Wang, X-F.; Li, J-D.; Huo, Y-L.; Zhang, Y-P.; Fang, Z-Q.; Wang, H-P.; Peng, W.; Johnson, A.K.; Xue, B. Blockade of angiotensin-converting enzyme or tumor necrosis factor-α reverses maternal high-fat diet-induced sensitization of angiotensin II hypertension in male rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, 318(2), R351-R359.
[http://dx.doi.org/10.1152/ajpregu.00200.2019] [PMID: 31746626]
[33]
Kangussu, L.M.; Marzano, L.A.S.; Souza, C.F.; Dantas, C.C.; Miranda, A.S.; Simões, E.; Silva, A.C.; Silva, A.C. The renin-angiotensin system and the cerebrovascular diseases: Experimental and clinical evidence. Protein Pept. Lett., 2020, 27(6), 463-475.
[http://dx.doi.org/10.2174/0929866527666191218091823] [PMID: 31849284]
[34]
Regenhardt, R.W.; Bennion, D.M.; Sumners, C. Cerebroprotective action of angiotensin peptides in stroke. Clin. Sci. (Lond.), 2014, 126(3), 195-205.
[http://dx.doi.org/10.1042/CS20130324] [PMID: 24102099]
[35]
Simões, E.; Silva, A.C.; Flynn, J.T. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr. Nephrol., 2012, 27(10), 1835-1845.
[http://dx.doi.org/10.1007/s00467-011-2002-y] [PMID: 21947887]
[36]
Almeida-Santos, A.F.; Kangussu, L.M.; Campagnole-Santos, M.J. The renin-angiotensin system and the neurodegenerative diseases: A brief review. Protein Pept. Lett., 2017, 24(9), 841-853.
[http://dx.doi.org/10.2174/0929866524666170822120258] [PMID: 28828974]
[37]
Rocha, N.P.; Simoes, E. Silva, A.C.; Prestes, T.R.R.; Feracin, V.; Machado, C.A.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. Silva, A. C.; Prestes, T. R. R.; Feracin, V.; Machado, C. A.; Ferreira, R. N.; Teixeira, A. L.; de Miranda, A. S. RAS in the central nervous system: Potential role in neuropsychiatric disorders. Curr. Med. Chem., 2018, 25(28), 3333-3352.
[http://dx.doi.org/10.2174/0929867325666180226102358] [PMID: 29484978]
[38]
Villapol, S.; Saavedra, J.M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens., 2015, 28(3), 289-299.
[http://dx.doi.org/10.1093/ajh/hpu197] [PMID: 25362113]
[39]
Gironacci, M.M.; Vicario, A.; Cerezo, G.; Silva, M.G. The depressor axis of the renin-angiotensin system and brain disorders: a translational approach. Clin. Sci. (Lond.), 2018, 132(10), 1021-1038.
[http://dx.doi.org/10.1042/CS20180189] [PMID: 29802208]
[40]
Saavedra, J.M.; Ando, H.; Armando, I.; Baiardi, G.; Bregonzio, C.; Jezova, M.; Zhou, J. Brain angiotensin II, an important stress hormone: regulatory sites and therapeutic opportunities. Ann. N. Y. Acad. Sci., 2004, 1018(1), 76-84.
[http://dx.doi.org/10.1196/annals.1296.009] [PMID: 15240355]
[41]
Nakagawa, P.; Gomez, J.; Grobe, J.L.; Sigmund, C.D. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr. Hypertens. Rep., 2020, 22(1), 7.
[http://dx.doi.org/10.1007/s11906-019-1011-2] [PMID: 31925571]
[42]
Fontes, M.A.P.; Martins Lima, A.; Santos, R.A. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides, 2016, 56, 9-17.
[http://dx.doi.org/10.1016/j.npep.2015.10.003] [PMID: 26584971]
[43]
Oscar, C.G.; Müller-Ribeiro, F.C. de F.; de Castro, L.G. Martins Lima, A.; Campagnole-Santos, M.J.; Santos, R.A.; Xavier, C.H.; Fontes, M.A. Angiotensin-(1-7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Res., 2015, 1594, 183-189.
[http://dx.doi.org/10.1016/j.brainres.2014.11.006] [PMID: 25446442]
[44]
Schreuder, E.; van Erp, J.; Toet, A.; Kallen, V.L. Emotional responses to multisensory environmental stimuli: A conceptual framework and literature review. SAGE Open, 2016, 6(1), 215824401663059.
[http://dx.doi.org/10.1177/2158244016630591]
[45]
Watanabe, T.; Fujioka, T.; Hashimoto, M.; Nakamura, S. Stress and brain angiotensin II receptors. Crit. Rev. Neurobiol., 1998, 12(4), 305-317.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v12.i4.20] [PMID: 10348613]
[46]
Dumont, E.C.; Rafrafi, S.; Laforest, S.; Drolet, G. Involvement of central angiotensin receptors in stress adaptation. Neuroscience, 1999, 93(3), 877-884.
[http://dx.doi.org/10.1016/S0306-4522(99)00206-7] [PMID: 10473253]
[47]
Kubo, T.; Numakura, H.; Endo, S.; Hagiwara, Y.; Fukumori, R. Angiotensin receptor blockade in the anterior hypothalamic area inhibits stress-induced pressor responses in rats. Brain Res. Bull., 2001, 56(6), 569-574.
[http://dx.doi.org/10.1016/S0361-9230(01)00729-8] [PMID: 11786243]
[48]
Gaudet, E.; Blanc, J.; Elghozi, J.L. Role of angiotensin II and catecholamines in blood pressure variability responses to stress in SHR. Am. J. Physiol., 1996, 270(6 Pt 2), R1265-R1272.
[PMID: 8764293]
[49]
Uresin, Y.; Eroglu, L.; Yildiran, G.; Güvener, B.; Ozkok, E. Protective role of immobilization on ouabain-induced arrhythmias. Methods Find. Exp. Clin. Pharmacol., 1997, 19(9), 633-636.
[PMID: 9500127]
[50]
Yamazato, M.; Ohya, Y.; Nakamoto, M.; Sakima, A.; Tagawa, T.; Harada, Y.; Nabika, T.; Takishita, S. Sympathetic hyperreactivity to air-jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(3), R709-R714.
[http://dx.doi.org/10.1152/ajpregu.00610.2005] [PMID: 16239369]
[51]
de Menezes, R.C.A.; Zaretsky, D.V.; Sarkar, S.; Fontes, M.A.; Dimicco, J.A. Microinjection of muscimol into the periaqueductal gray suppresses cardiovascular and neuroendocrine response to air jet stress in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(3), R881-R890.
[http://dx.doi.org/10.1152/ajpregu.00181.2008] [PMID: 18650321]
[52]
Coste, S.C.; Qi, Y.; Brooks, V.L.; McCarron, D.A.; Hatton, D.C. Captopril and stress-induced hypertension in the borderline hypertensive rat. J. Hypertens., 1995, 13(12 Pt 1), 1391-1398.
[http://dx.doi.org/10.1097/00004872-199512000-00004] [PMID: 8866900]
[53]
De Matteo, R.; Head, G.A.; Mayorov, D.N. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(1), R257-R264.
[http://dx.doi.org/10.1152/ajpregu.00372.2005] [PMID: 16141307]
[54]
Veelken, R.; Hilgers, K.F.; Stetter, A.; Siebert, H.G.; Schmieder, R.E.; Mann, J.F. Nerve-mediated antidiuresis and antinatriuresis after air-jet stress is modulated by angiotensin II. Hypertension, 1996, 28(5), 825-832.
[http://dx.doi.org/10.1161/01.HYP.28.5.825] [PMID: 8901830]
[55]
Lim, K.; Burke, S.L.; Moretti, J-L.; Head, G.A. Differential activation of renal sympathetic burst amplitude and frequency during hypoxia, stress and baroreflexes with chronic angiotensin treatment. Exp. Physiol., 2015, 100(10), 1132-1144.
[http://dx.doi.org/10.1113/EP085312] [PMID: 26442604]
[56]
Martins Lima, A.; Xavier, C.H.; Ferreira, A.J.; Raizada, M.K.; Wallukat, G.; Velloso, E.P.P.; dos Santos, R.A.S.; Fontes, M.A.P. Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(7), H1057-H1067.
[http://dx.doi.org/10.1152/ajpheart.00433.2013] [PMID: 23873801]
[57]
Morimoto, K.; Tan, N.; Nishiyasu, T.; Sone, R.; Murakami, N. Spontaneous wheel running attenuates cardiovascular responses to stress in rats. Pflugers Arch., 2000, 440(2), 216-222.
[http://dx.doi.org/10.1007/s004240000265] [PMID: 10898521]
[58]
Morimoto, K.; Uji, M.; Ueyama, T.; Kimura, H.; Kohno, T.; Takamata, A.; Yano, S.; Yoshida, K. Estrogen replacement suppresses pressor response and oxidative stress induced by cage-switch stress in ovariectomized rats. Ann. N. Y. Acad. Sci., 2008, 1148(1), 213-218.
[http://dx.doi.org/10.1196/annals.1410.045] [PMID: 19120112]
[59]
Davern, P.J.; Chen, D.; Head, G.A.; Chavez, C.A.; Walther, T.; Mayorov, D.N. Role of angiotensin II Type 1A receptors in cardiovascular reactivity and neuronal activation after aversive stress in mice. Hypertension, 2009, 54(6), 1262-1268.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.139741] [PMID: 19884564]
[60]
Palma-Rigo, K.; Jackson, K.L.; Davern, P.J.; Nguyen-Huu, T-P.; Elghozi, J-L.; Head, G.A. Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J. Hypertens., 2011, 29(11), 2156-2166.
[http://dx.doi.org/10.1097/HJH.0b013e32834bbb6b] [PMID: 21941207]
[61]
Chen, D.; Jancovski, N.; Bassi, J.K.; Nguyen-Huu, T-P.; Choong, Y-T.; Palma-Rigo, K.; Davern, P.J.; Gurley, S.B.; Thomas, W.G.; Head, G.A.; Allen, A.M. Angiotensin type 1A receptors in C1 neurons of the rostral ventrolateral medulla modulate the pressor response to aversive stress. J. Neurosci., 2012, 32(6), 2051-2061.
[http://dx.doi.org/10.1523/JNEUROSCI.5360-11.2012] [PMID: 22323719]
[62]
Silva, C.C.; Correa, A.M.B.; Kushmerick, C.; Sharma, N.M.; Patel, K.P.; de Almeida, J.F.Q.; Moreira, F.A.; Ferreira, A.J.; Fontes, M.A.P. Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides, 2020, 83, 102076.
[http://dx.doi.org/10.1016/j.npep.2020.102076] [PMID: 32800589]
[63]
Tazumi, S.; Yokota, N.; Kawakami, M.; Omoto, S.; Takamata, A.; Morimoto, K. Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 311(5), R898-R905.
[http://dx.doi.org/10.1152/ajpregu.00415.2015] [PMID: 27511283]
[64]
Lee, D.L.; Webb, R.C.; Brands, M.W. Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(6), R1394-R1398.
[http://dx.doi.org/10.1152/ajpregu.00306.2004] [PMID: 15308486]
[65]
Watanabe, T.; Hashimoto, M.; Okuyama, S.; Inagami, T.; Nakamura, S. Effects of targeted disruption of the mouse angiotensin II type 2 receptor gene on stress-induced hyperthermia. J. Physiol., 1999, 515(Pt 3), 881-885.
[http://dx.doi.org/10.1111/j.1469-7793.1999.881ab.x] [PMID: 10066912]
[66]
Tanaka, M.; Yoshida, M.; Emoto, H.; Ishii, H. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur. J. Pharmacol., 2000, 405(1-3), 397-406.
[http://dx.doi.org/10.1016/S0014-2999(00)00569-0] [PMID: 11033344]
[67]
Yang, G.; Xi, Z-X.; Wan, Y.; Wang, H.; Bi, G. Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol. Signals, 1993, 2(3), 166-172.
[http://dx.doi.org/10.1159/000109488] [PMID: 8004155]
[68]
von Bohlen und Halbach O.; Albrecht, D. The CNS renin-angiotensin system. Cell Tissue Res., 2006, 326(2), 599-616.
[http://dx.doi.org/10.1007/s00441-006-0190-8] [PMID: 16555051]
[69]
Allen, A.M.; Oldfield, B.J.; Giles, M.E.; Paxinos, G.; Mckinley, M.J.; Mendelsohn, F.A.O.; Chapter, I.I.I. Localization of angiotensin receptors in the nervous system.In: Handbook of Chemical Neuroanatomy; Elsevier: Amsterdam, 2000, pp. 79-124.
[70]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[PMID: 10977869]
[71]
Gard, P.R. The role of angiotensin II in cognition and behaviour. Eur. J. Pharmacol., 2002, 438(1-2), 1-14.
[http://dx.doi.org/10.1016/S0014-2999(02)01283-9] [PMID: 11906704]
[72]
McKinley, M.J.; Albiston, A.L.; Allen, A.M.; Mathai, M.L.; May, C.N.; McAllen, R.M.; Oldfield, B.J.; Mendelsohn, F.A.O.; Chai, S.Y. The brain renin-angiotensin system: location and physiological roles. Int. J. Biochem. Cell Biol., 2003, 35(6), 901-918.
[http://dx.doi.org/10.1016/S1357-2725(02)00306-0] [PMID: 12676175]
[73]
Thomas, W.G.; Mendelsohn, F.A.O. Angiotensin receptors: form and function and distribution. Int. J. Biochem. Cell Biol., 2003, 35(6), 774-779.
[http://dx.doi.org/10.1016/S1357-2725(02)00263-7] [PMID: 12676163]
[74]
Benigni, A.; Cassis, P.; Remuzzi, G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol. Med., 2010, 2(7), 247-257.
[http://dx.doi.org/10.1002/emmm.201000080] [PMID: 20597104]
[75]
Bobrovskaya, L.; Beard, D.; Bondarenko, E.; Beig, M.I.; Jobling, P.; Walker, F.R.; Day, T.A.; Nalivaiko, E. Does exposure to chronic stress influence blood pressure in rats? Auton. Neurosci., 2013, 177(2), 217-223.
[http://dx.doi.org/10.1016/j.autneu.2013.05.001] [PMID: 23721955]
[76]
Bunn, S.J.; Marley, P.D. Effects of angiotensin II on cultured, bovine adrenal medullary cells. Neuropeptides, 1989, 13(2), 121-132.
[http://dx.doi.org/10.1016/0143-4179(89)90009-7] [PMID: 2567972]
[77]
Powis, D.A.; O’Brien, K.J. Angiotensin II increases catecholamine release from bovine adrenal medulla but does not enhance that evoked by K+ depolarization or by carbachol. J. Neurochem., 1991, 57(5), 1461-1469.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb06339.x] [PMID: 1919569]
[78]
Saavedra, J.M.; Armando, I.; Bregonzio, C.; Juorio, A.; Macova, M.; Pavel, J.; Sanchez-Lemus, E. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology, 2006, 31(6), 1123-1134.
[http://dx.doi.org/10.1038/sj.npp.1300921] [PMID: 16205776]
[79]
Dos Reis, D.G.; Fortaleza, E.A.; Tavares, R.F.; Corrêa, F.M. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats. Stress, 2014, 17(4), 362-372.
[http://dx.doi.org/10.3109/10253890.2014.930429] [PMID: 24903268]
[80]
Nostramo, R.; Tillinger, A.; Saavedra, J.M.; Kumar, A.; Pandey, V.; Serova, L.; Kvetnansky, R.; Sabban, E.L. Regulation of angiotensin II type 2 receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. J. Endocrinol., 2012, 215(2), 291-301.
[http://dx.doi.org/10.1530/JOE-12-0181] [PMID: 22911895]
[81]
Zhu, D.; Tong, Q.; Liu, W.; Tian, M.; Xie, W.; Ji, L.; Shi, J. Angiotensin (1-7) protects against stress-induced gastric lesions in rats. Biochem. Pharmacol., 2014, 87(3), 467-476.
[http://dx.doi.org/10.1016/j.bcp.2013.10.026] [PMID: 24231511]
[82]
Sgoifo, A.; Koolhaas, J.M.; Musso, E.; De Boer, S.F. Different sympathovagal modulation of heart rate during social and nonsocial stress episodes in wild-type rats. Physiol. Behav., 1999, 67(5), 733-738.
[http://dx.doi.org/10.1016/S0031-9384(99)00134-1] [PMID: 10604845]
[83]
van Ravenswaaij-Arts, C.M.; Kollée, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Intern. Med., 1993, 118(6), 436-447.
[http://dx.doi.org/10.7326/0003-4819-118-6-199303150-00008] [PMID: 8439119]
[84]
McDougall, S.J.; Roulston, C.A.; Widdop, R.E.; Lawrence, A.J. Characterisation of vasopressin V(1A), angiotensin AT(1) and AT(2) receptor distribution and density in normotensive and hypertensive rat brain stem and kidney: effects of restraint stress. Brain Res., 2000, 883(1), 148-156.
[http://dx.doi.org/10.1016/S0006-8993(00)02917-6] [PMID: 11063999]
[85]
Busnardo, C.; Tavares, R.F.; Correa, F.M.A. Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience, 2014, 270, 12-19.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.064] [PMID: 24717718]
[86]
Brasil, T.F.S.; Fassini, A.; Corrêa, F.M. AT1 and AT2 receptors in the prelimbic cortex modulate the cardiovascular response evoked by acute exposure to restraint stress in rats. Cell. Mol. Neurobiol., 2018, 38(1), 305-316.
[http://dx.doi.org/10.1007/s10571-017-0518-9] [PMID: 28695320]
[87]
Uresin, A.Y.; Tonyali, H.; Karamürsel, S. The effects of losartan and immobilization stress on heart rate variability and plasma corticosterone levels in rats. Int. J. Neurosci., 2004, 114(3), 365-379.
[http://dx.doi.org/10.1080/00207450490270587] [PMID: 14754661]
[88]
Costa-Ferreira, W.; Vieira, J.O.; Almeida, J.; Gomes-de-Souza, L.; Crestani, C.C. Almeida Jeferson and Gomes-de-Souza, L.; Crestani, C. C. Involvement of type 1 angiontensin II receptor (AT1) in cardiovascular changes induced by chronic emotional stress: Comparison between homotypic and heterotypic stressors. Front. Pharmacol., 2016, 7, 262.
[http://dx.doi.org/10.3389/fphar.2016.00262] [PMID: 27588004]
[89]
Lu, X-T.; Liu, X-Q.; Wang, B.; Sun, Y-Y.; Yang, R-X.; Xing, Y-F.; Sun, P.; Wang, Y-B.; Zhao, Y-X. The role of psychological stress on heart autophagy in mice with heart failure. Psychosom. Med., 2017, 79(9), 1036-1044.
[http://dx.doi.org/10.1097/PSY.0000000000000509] [PMID: 28691995]
[90]
Jeong, J.H.; Hanevold, C.; Harris, R.A.; Kapuku, G.; Pollock, J.; Pollock, D.; Harshfield, G. Angiotensin II receptor blocker attenuates stress pressor response in young adult African Americans. J. Clin. Hypertens. (Greenwich), 2019, 21(8), 1191-1199.
[http://dx.doi.org/10.1111/jch.13625] [PMID: 31328876]
[91]
Braga, A.N.G.; da Silva Lemos, M.; da Silva, J.R.; Fontes, W.R.; dos Santos, R.A. Effects of angiotensins on day-night fluctuations and stress-induced changes in blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(6), R1663-R1671.
[http://dx.doi.org/10.1152/ajpregu.00583.2001] [PMID: 12010748]
[92]
Castren, E.; Saavedra, J.M. Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology, 1988, 122(1), 370-372.
[http://dx.doi.org/10.1210/endo-122-1-370] [PMID: 3335214]
[93]
Oldfield, B.J.; Davern, P.J.; Giles, M.E.; Allen, A.M.; Badoer, E.; McKinley, M.J. Efferent neural projections of angiotensin receptor (AT1) expressing neurones in the hypothalamic paraventricular nucleus of the rat. J. Neuroendocrinol., 2001, 13(2), 139-146.
[PMID: 11168839]
[94]
Guo, D.F.; Uno, S.; Ishihata, A.; Nakamura, N.; Inagami, T. Identification of a cis-acting glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ. Res., 1995, 77(2), 249-257.
[http://dx.doi.org/10.1161/01.RES.77.2.249] [PMID: 7614711]
[95]
Nostramo, R.; Serova, L.; Laukova, M.; Tillinger, A.; Peddu, C.; Sabban, E.L. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 308(6), R517-R529.
[http://dx.doi.org/10.1152/ajpregu.00130.2014] [PMID: 25589013]
[96]
Krebs, L.T.; Kramár, E.A.; Hanesworth, J.M.; Sardinia, M.F.; Ball, A.E.; Wright, J.W.; Harding, J.W. Characterization of the binding properties and physiological action of divalinal-angiotensin IV, a putative AT4 receptor antagonist. Regul. Pept., 1996, 67(2), 123-130.
[http://dx.doi.org/10.1016/S0167-0115(96)00121-8] [PMID: 8958583]
[97]
Pawlikowski, M.; Gruszka, A.; Mucha, S.; Melen-Mucha, G. Angiotensins II and IV stimulate the rat adrenocortical cell proliferation acting via different receptors. Endocr. Regul., 2001, 35(3), 139-142.
[PMID: 11674842]
[98]
Zhu, D.; Sun, M.; Liu, Q.; Yue, Y.; Lu, J.; Lin, X.; Shi, J. Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats. Behav. Brain Res., 2020, 390(112671), 112671.
[http://dx.doi.org/10.1016/j.bbr.2020.112671] [PMID: 32437889]
[99]
Yisireyili, M.; Uchida, Y.; Yamamoto, K.; Nakayama, T.; Cheng, X.W.; Matsushita, T.; Nakamura, S.; Murohara, T.; Takeshita, K. Angiotensin receptor blocker irbesartan reduces stress-induced intestinal inflammation via AT1a signaling and ACE2-dependent mechanism in mice. Brain Behav. Immun., 2018, 69, 167-179.
[http://dx.doi.org/10.1016/j.bbi.2017.11.010] [PMID: 29155324]
[100]
Ortiz, J.B.; Conrad, C.D. The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Front. Neuroendocrinol., 2018, 49, 114-123.
[http://dx.doi.org/10.1016/j.yfrne.2018.02.005] [PMID: 29428548]
[101]
Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress, 2016, 6, 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[102]
Ping, G.; Qian, W.; Song, G.; Zhaochun, S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice. Pharmacol. Biochem. Behav., 2014, 124, 5-12.
[http://dx.doi.org/10.1016/j.pbb.2014.05.006] [PMID: 24844704]
[103]
Firoozmand, L.T.; Sanches, A.; Damaceno-Rodrigues, N.R.; Perez, J.D.; Aragão, D.S.; Rosa, R.M.; Marcondes, F.K.; Casarini, D.E.; Caldini, E.G.; Cunha, T.S. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats. Stress, 2018, 21(6), 484-493.
[http://dx.doi.org/10.1080/10253890.2018.1462328] [PMID: 29676198]
[104]
Neves, V.J.; Moura, M.J.C.S.; Tamascia, M.L.; Ferreira, R.; Silva, N.S.; Costa, R.; Montemor, P.L.; Narvaes, E A O.; Bernardes, C.F.; Novaes, P.D.; Marcondes, F.K. Proatherosclerotic effects of chronic stress in male rats: altered phenylephrine sensitivity and nitric oxide synthase activity of aorta and circulating lipids. Stress, 2009, 12(4), 320-327.
[http://dx.doi.org/10.1080/10253890802437779] [PMID: 19085621]
[105]
Neves, V.J.; Moura, M.J.C.S.; Almeida, B.S.; Costa, R.; Sanches, A.; Ferreira, R.; Tamascia, M.L.; Romani, E A O.; Novaes, P.D.; Marcondes, F.K. Chronic stress, but not hypercaloric diet, impairs vascular function in rats. Stress, 2012, 15(2), 138-148.
[http://dx.doi.org/10.3109/10253890.2011.601369] [PMID: 21801080]
[106]
Costa, R.; Tamascia, M.L.; Sanches, A.; Moreira, R.P.; Cunha, T.S.; Nogueira, M.D.; Casarini, D.E.; Marcondes, F.K. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav. Brain Res., 2020, 379(112250), 112250.
[http://dx.doi.org/10.1016/j.bbr.2019.112250] [PMID: 31654661]
[107]
McCarty, R. Learning about stress: neural, endocrine and behavioral adaptations. Stress, 2016, 19(5), 449-475.
[http://dx.doi.org/10.1080/10253890.2016.1192120] [PMID: 27294884]
[108]
Kvarta, M.D.; Bradbrook, K.E.; Dantrassy, H.M.; Bailey, A.M.; Thompson, S.M. Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. J. Neurophysiol., 2015, 114(3), 1713-1724.
[http://dx.doi.org/10.1152/jn.00359.2015] [PMID: 26180121]
[109]
Liu, J.; Zhu, H-X.; Fu, W-L.; Xu, X-W.; Yang, J-Z.; Dai, D.; Li, Y. Downregulated hippocampal expression of brain derived neurotrophic factor and tyrosine kinase B in a rat model of comorbid epilepsy and depression. Neurol. Res., 2019, 41(5), 437-445.
[http://dx.doi.org/10.1080/01616412.2019.1576358] [PMID: 30741614]
[110]
Iyer, S.N.; Ferrario, C.M.; Chappell, M.C. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension, 1998, 31(1 Pt 2), 356-361.
[http://dx.doi.org/10.1161/01.HYP.31.1.356] [PMID: 9453328]
[111]
Campbell, D.J.; Kladis, A.; Duncan, A.M. Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension, 1994, 23(4), 439-449.
[http://dx.doi.org/10.1161/01.HYP.23.4.439] [PMID: 8144213]
[112]
Kohara, K.; Brosnihan, K.B.; Ferrario, C.M. Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides, 1993, 14(5), 883-891.
[http://dx.doi.org/10.1016/0196-9781(93)90063-M] [PMID: 8284265]
[113]
Saavedra, J.M.; Armando, I. Angiotensin II AT2 receptors contribute to regulate the sympathoadrenal and hormonal reaction to stress stimuli. Cell. Mol. Neurobiol., 2018, 38(1), 85-108.
[http://dx.doi.org/10.1007/s10571-017-0533-x] [PMID: 28884431]
[114]
Costa, R.; Carvalho, M.S.M.; Brandão, J.D.P.; Moreira, R.P.; Cunha, T.S.; Casarini, D.E.; Marcondes, F.K. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav. Brain Res., 2021, 397(112928), 112928.
[http://dx.doi.org/10.1016/j.bbr.2020.112928] [PMID: 32987059]
[115]
Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol., 1992, 32(Suppl.), S22-S27.
[http://dx.doi.org/10.1002/ana.410320706] [PMID: 1510377]
[116]
Pong, K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin. Biol. Ther., 2003, 3(1), 127-139.
[http://dx.doi.org/10.1517/14712598.3.1.127] [PMID: 12718737]
[117]
Ip, S.P.; Tsang, S.W.; Wong, T.P.; Che, C.T.; Leung, P.S. Saralasin, a nonspecific angiotensin II receptor antagonist, attenuates oxidative stress and tissue injury in cerulein-induced acute pancreatitis. Pancreas, 2003, 26(3), 224-229.
[http://dx.doi.org/10.1097/00006676-200304000-00003] [PMID: 12657946]
[118]
Ayyub, M.; Najmi, A.K.; Akhtar, M. Protective effect of irbesartan an angiotensin (AT1) receptor antagonist in unpredictable chronic mild stress induced depression in mice. Drug Res. (Stuttg.), 2017, 67(1), 59-64.
[PMID: 27756096]
[119]
Micheli, L.; Ceccarelli, M.; D’Andrea, G.; Tirone, F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull., 2018, 143, 181-193.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.002] [PMID: 30236533]
[120]
Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl.), 1987, 93(3), 358-364.
[http://dx.doi.org/10.1007/BF00187257] [PMID: 3124165]
[121]
AbdAlla S.; Lother, H.; el Missiry, A.; Langer, A.; Sergeev, P.; el Faramawy, Y.; Quitterer, U. Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J. Biol. Chem., 2009, 284(10), 6554-6565.
[http://dx.doi.org/10.1074/jbc.M807746200] [PMID: 19074441]
[122]
Cuadrado-Tejedor, M.; Ricobaraza, A.; Frechilla, D.; Franco, R.; Pérez-Mediavilla, A.; Garcia-Osta, A. Chronic mild stress accelerates the onset and progression of the Alzheimer’s disease phenotype in Tg2576 mice. J. Alzheimers Dis., 2012, 28(3), 567-578.
[http://dx.doi.org/10.3233/JAD-2011-110572] [PMID: 22045482]
[123]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[124]
Dong, Y-F.; Kataoka, K.; Tokutomi, Y.; Nako, H.; Nakamura, T.; Toyama, K.; Sueta, D.; Koibuchi, N.; Yamamoto, E.; Ogawa, H.; Kim-Mitsuyama, S. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J., 2011, 25(9), 2911-2920.
[http://dx.doi.org/10.1096/fj.11-182873] [PMID: 21593435]
[125]
AbdAlla S.; Langer, A.; Fu, X.; Quitterer, U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(8), 16917-16942.
[http://dx.doi.org/10.3390/ijms140816917] [PMID: 23959119]
[126]
Ohrui, T.; Tomita, N.; Sato-Nakagawa, T.; Matsui, T.; Maruyama, M.; Niwa, K.; Arai, H.; Sasaki, H. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology, 2004, 63(7), 1324-1325.
[http://dx.doi.org/10.1212/01.WNL.0000140705.23869.E9] [PMID: 15477567]
[127]
Soto, M.E.; van Kan, G.A.; Nourhashemi, F.; Gillette-Guyonnet, S.; Cesari, M.; Cantet, C.; Rolland, Y.; Vellas, B. Angiotensin-converting enzyme inhibitors and Alzheimer’s disease progression in older adults: results from the Réseau sur la Maladie d’Alzheimer Français cohort. J. Am. Geriatr. Soc., 2013, 61(9), 1482-1488.
[http://dx.doi.org/10.1111/jgs.12415] [PMID: 24000874]
[128]
Gao, Y.; O’Caoimh, R.; Healy, L.; Kerins, D.M.; Eustace, J.; Guyatt, G.; Sammon, D.; Molloy, D.W. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open, 2013, 3(7), e002881.
[http://dx.doi.org/10.1136/bmjopen-2013-002881] [PMID: 23887090]
[129]
O’Caoimh, R.; Healy, L.; Gao, Y.; Svendrovski, A.; Kerins, D.M.; Eustace, J.; Kehoe, P.G.; Guyatt, G.; Molloy, D.W. Effects of centrally acting angiotensin converting enzyme inhibitors on functional decline in patients with Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(3), 595-603.
[http://dx.doi.org/10.3233/JAD-131694] [PMID: 24496072]
[130]
de Oliveira, F.F.; Bertolucci, P.H.F.; Chen, E.S.; Smith, M.C. Brain-penetrating angiotensin-converting enzyme inhibitors and cognitive change in patients with dementia due to Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(s3), S321-S324.
[http://dx.doi.org/10.3233/JAD-132189]
[131]
AbdAlla S.; El Hakim, A.; Abdelbaset, A.; Elfaramawy, Y.; Quitterer, U. S.; el Hakim, A.; Abdelbaset, A.; Elfaramawy, Y.; Quitterer, U. Inhibition of ACE retards tau hyperphosphorylation and signs of neuronal degeneration in aged rats subjected to chronic mild stress. BioMed Res. Int., 2015, 2015, 917156.
[http://dx.doi.org/10.1155/2015/917156] [PMID: 26697495]
[132]
Barreto-Chaves, M.L.; Anéas, I.; Krieger, J.E. Glucocorticoid regulation of angiotensin-converting enzyme in primary culture of adult cardiac fibroblasts. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280(1), R25-R32.
[http://dx.doi.org/10.1152/ajpregu.2001.280.1.R25] [PMID: 11124130]
[133]
Dasarathy, Y.; Lanzillo, J.J.; Fanburg, B.L. Stimulation of bovine pulmonary artery endothelial cell ACE by dexamethasone: involvement of steroid receptors. Am. J. Physiol., 1992, 263(6 Pt 1), L645-L649.
[PMID: 1335698]
[134]
Fishel, R.S.; Eisenberg, S.; Shai, S.Y.; Redden, R.A.; Bernstein, K.E.; Berk, B.C. Glucocorticoids induce angiotensin-converting enzyme expression in vascular smooth muscle. Hypertension, 1995, 25(3), 343-349.
[http://dx.doi.org/10.1161/01.HYP.25.3.343] [PMID: 7875759]
[135]
Luo, H.; Wu, P-F.; Cao, Y.; Jin, M.; Shen, T-T.; Wang, J.; Huang, J-G.; Han, Q-Q.; He, J-G.; Deng, S-L.; Ni, L.; Hu, Z-L.; Long, L-H.; Wang, F.; Chen, J-G. Angiotensin-converting enzyme inhibitor rapidly ameliorates depressive-type behaviors via bradykinin-dependent activation of mammalian target of rapamycin complex 1. Biol. Psychiatry, 2020, 88(5), 415-425.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.005] [PMID: 32220499]
[136]
Mori, S.; Tokuyama, K. ACE activity affects myogenic differentiation via mTOR signaling. Biochem. Biophys. Res. Commun., 2007, 363(3), 597-602.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.006] [PMID: 17892857]
[137]
Chen, L-J.; Xu, Y-L.; Song, B.; Yu, H-M.; Oudit, G.Y.; Xu, R.; Zhang, Z-Z.; Jin, H-Y.; Chang, Q.; Zhu, D-L.; Zhong, J-C. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides, 2016, 79, 49-57.
[http://dx.doi.org/10.1016/j.peptides.2016.03.008] [PMID: 27018342]
[138]
Tan, J.; Wang, J.M.; Leenen, F.H.H. Inhibition of brain angiotensin-converting enzyme by peripheral administration of trandolapril versus lisinopril in Wistar rats. Am. J. Hypertens., 2005, 18(2 Pt 1), 158-164.
[http://dx.doi.org/10.1016/j.amjhyper.2004.09.004] [PMID: 15752941]
[139]
Kawano, K.; Morinobu, S.; Sawada, T.; Tsuji, S.; Erabi, K.; Fuchikami, M.; Kozuru, T.; Yamawaki, S.; Hisaoka, K.; Takebayashi, M. Prior neonatal isolation reduces induction of NGF mRNA and decreases GDNF mRNA in the hippocampus of juvenile and adult rodents subjected to immobilization stress. Synapse, 2008, 62(4), 259-267.
[http://dx.doi.org/10.1002/syn.20487] [PMID: 18236460]
[140]
Loria, A.S.; Yamamoto, T.; Pollock, D.M.; Pollock, J.S. Early life stress induces renal dysfunction in adult male rats but not female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(2), R121-R129.
[http://dx.doi.org/10.1152/ajpregu.00364.2012] [PMID: 23174859]
[141]
De Miguel, C.; Obi, I.E.; Ho, D.H.; Loria, A.S.; Pollock, J.S. Early life stress induces immune priming in kidneys of adult male rats. Am. J. Physiol. Renal Physiol., 2018, 314(3), F343-F355.
[http://dx.doi.org/10.1152/ajprenal.00590.2016] [PMID: 28971994]
[142]
Dalmasso, C.; Leachman, J.R.; Ensor, C.M.; Yiannikouris, F.B.; Giani, J.F.; Cassis, L.A.; Loria, A.S. Female mice exposed to postnatal neglect display angiotensin II-dependent obesity-induced hypertension. J. Am. Heart Assoc., 2019, 8(23), e012309.
[http://dx.doi.org/10.1161/JAHA.119.012309] [PMID: 31752639]
[143]
Saez, F.; Castells, M.T.; Zuasti, A.; Salazar, F.; Reverte, V.; Loria, A.; Salazar, F.J. Sex differences in the renal changes elicited by angiotensin II blockade during the nephrogenic period. Hypertension, 2007, 49(6), 1429-1435.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.087957] [PMID: 17404180]
[144]
Loria, A.; Reverte, V.; Salazar, F.; Saez, F.; Llinas, M.T.; Salazar, F.J. Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period. Am. J. Physiol. Renal Physiol., 2007, 293(2), F506-F510.
[http://dx.doi.org/10.1152/ajprenal.00066.2007] [PMID: 17442728]
[145]
Loria, A.S.; Osborn, J.L. Maternal separation diminishes α-adrenergic receptor density and function in renal vasculature from male Wistar-Kyoto rats. Am. J. Physiol. Renal Physiol., 2017, 313(1), F47-F54.
[http://dx.doi.org/10.1152/ajprenal.00591.2016] [PMID: 28331064]
[146]
Dalmasso, C.; Chade, A.R.; Mendez, M.; Giani, J.F.; Bix, G.J.; Chen, K.C.; Loria, A.S. Intrarenal renin angiotensin system imbalance during postnatal life is associated with increased microvascular density in the mature kidney. Front. Physiol., 2020, 11, 1046.
[http://dx.doi.org/10.3389/fphys.2020.01046] [PMID: 32982785]
[147]
van Esch, J.H.M.; Oosterveer, C.R.; Batenburg, W.W.; van Veghel, R.; Jan Danser, A.H. Effects of angiotensin II and its metabolites in the rat coronary vascular bed: is angiotensin III the preferred ligand of the angiotensin AT2 receptor? Eur. J. Pharmacol., 2008, 588(2-3), 286-293.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.042] [PMID: 18511032]
[148]
Touyz, R.M.; Montezano, A.C. Angiotensin-(1-7) and vascular function: The clinical context. Hypertension, 2018, 71(1), 68-69.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10406] [PMID: 29203630]
[149]
Pei, N.; Wan, R.; Chen, X.; Li, A.; Zhang, Y.; Li, J.; Du, H.; Chen, B.; Wei, W.; Qi, Y.; Zhang, Y.; Katovich, M.J.; Sumners, C.; Zheng, H.; Li, H. Angiotensin-(1-7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts. Mol. Cancer Ther., 2016, 15(1), 37-47.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0981] [PMID: 26671566]
[150]
Sessa, B. MDMA and PTSD treatment: “PTSD: From novel pathophysiology to innovative therapeutics. Neurosci. Lett., 2017, 649, 176-180.
[http://dx.doi.org/10.1016/j.neulet.2016.07.004] [PMID: 27394687]
[151]
Yehuda, R. Biology of posttraumatic stress disorder. J. Clin. Psychiatry, 2000, 61(Suppl. 7), 14-21.
[PMID: 10795605]
[152]
Pitman, R.K.; Rasmusson, A.M.; Koenen, K.C.; Shin, L.M.; Orr, S.P.; Gilbertson, M.W.; Milad, M.R.; Liberzon, I. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci., 2012, 13(11), 769-787.
[http://dx.doi.org/10.1038/nrn3339] [PMID: 23047775]
[153]
Skrbic, R.; Igic, R. Seven decades of angiotensin (1939-2009). Peptides, 2009, 30(10), 1945-1950.
[http://dx.doi.org/10.1016/j.peptides.2009.07.003] [PMID: 19595728]
[154]
Shekhar, A. Angiotensin type 1 receptor antagonists-a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol. Psychiatry, 2014, 75(11), 836-837.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.004] [PMID: 24837620]
[155]
Marvar, P.J.; Goodman, J.; Fuchs, S.; Choi, D.C.; Banerjee, S.; Ressler, K.J. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol. Psychiatry, 2014, 75(11), 864-872.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.024] [PMID: 24094510]
[156]
Fudim, M.; Cerbin, L.P.; Devaraj, S.; Ajam, T.; Rao, S.V.; Kamalesh, M. v; Kamalesh, M. Post-traumatic stress disorder and heart failure in men within the veteran affairs health system. Am. J. Cardiol., 2018, 122(2), 275-278.
[http://dx.doi.org/10.1016/j.amjcard.2018.04.007] [PMID: 29731118]
[157]
Nylocks, K.M.; Michopoulos, V.; Rothbaum, A.O.; Almli, L.; Gillespie, C.F.; Wingo, A.; Schwartz, A.C.; Habib, L.; Gamwell, K.L.; Marvar, P.J.; Bradley, B.; Ressler, K.J. An angiotensin-converting enzyme (ACE) polymorphism may mitigate the effects of angiotensin-pathway medications on posttraumatic stress symptoms. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2015, 168B(4), 307-315.
[http://dx.doi.org/10.1002/ajmg.b.32313] [PMID: 25921615]
[158]
Bonini, J.S.; Bevilaqua, L.R.; Zinn, C.G.; Kerr, D.S.; Medina, J.H.; Izquierdo, I.; Cammarota, M. Angiotensin II disrupts inhibitory avoidance memory retrieval. Horm. Behav., 2006, 50(2), 308-313.
[http://dx.doi.org/10.1016/j.yhbeh.2006.03.016] [PMID: 16697382]
[159]
Benicky, J.; Sánchez-Lemus, E.; Honda, M.; Pang, T.; Orecna, M.; Wang, J.; Leng, Y.; Chuang, D.M.; Saavedra, J.M. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology, 2011, 36(4), 857-870.
[http://dx.doi.org/10.1038/npp.2010.225] [PMID: 21150913]
[160]
Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 2017, 42(1), 254-270.
[http://dx.doi.org/10.1038/npp.2016.146] [PMID: 27510423]
[161]
Khoury, N.M.; Marvar, P.J.; Gillespie, C.F.; Wingo, A.; Schwartz, A.; Bradley, B.; Kramer, M.; Ressler, K.J. The renin-angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry, 2012, 73(6), 849-855.
[http://dx.doi.org/10.4088/JCP.11m07316] [PMID: 22687631]
[162]
Parrish, J.N.; Bertholomey, M.L.; Pang, H.W.; Speth, R.C.; Torregrossa, M.M. Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl. Psychiatry, 2019, 9(1), 36.
[http://dx.doi.org/10.1038/s41398-019-0374-0] [PMID: 30696810]
[163]
Xue, B.; Yu, Y.; Wei, S-G.; Beltz, T.G.; Guo, F.; Felder, R.B.; Johnson, A.K. Stress-induced sensitization of angiotensin II hypertension is reversed by blockade of angiotensin-converting enzyme or tumor necrosis factor-α. Am. J. Hypertens., 2019, 32(9), 909-917.
[http://dx.doi.org/10.1093/ajh/hpz075] [PMID: 31063551]
[164]
Winter, A.; Ahlbrand, R.; Sah, R. Recruitment of central angiotensin II type 1 receptor associated neurocircuits in carbon dioxide associated fear. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 378-386.
[http://dx.doi.org/10.1016/j.pnpbp.2019.02.007] [PMID: 30776402]