Acceleration of Baylis-Hillman Reaction using Ionic Liquid Supported Organocatalyst

Page: [147 - 154] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Baylis-Hillman reaction requires cheap starting materials, easy reaction protocol, and possibility to create the chiral center in the reaction product has increased the synthetic efficacy of this reaction which also suffers from high catalyst loading, low reaction rate, and poor yield.

Objective: The extensive use of various functional or non-functional ionic liquids (ILs) with organocatalyst acts not only as reaction medium but also as a support to anchor the catalysts to increase the reaction rate of various organic transformations.

Methods: In this manuscript, we have demonstrated the synthesis of quinuclidine-supported trimethylamine-based functionalized ionic liquid as a catalyst for the Baylis-Hillman reaction.

Results: We obtained the Baylis-Hillman adducts in good, isolated yield along with low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. N- ((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide was also successfully synthesized using CATALYST-3 promoted Baylis-Hillman reaction.

Conclusion: We successfully isolated the 25 types of Baylis-Hillman adducts using three different quinuclidine-supported ammonium-based ionic liquids such as Et3AmQ][BF4] (CATALYST-1), [Et3AmQ][PF6] (CATALYST-2), and [TMAAmEQ][NTf2](CATALYST-3) as new and efficient catalysts. Generally, all the reactions demonstrated higher activity and gave good to high yield in competition with various previously reported homogenous and heterogeneous catalytic systems. Easy catalyst and product recovery followed by 6 times of catalysts recycling were the added advantages of the prosed catalytic system. Tedious and highly active N-((E,3S,4R)-5-benzylidene-tetrahydro- 4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivative was also synthesized using CATALYST- 3 followed by Baylis-Hillman reaction.

Keywords: Organocatalysis, Ionic liquid, baylis-hillman adduct, 3-quinuclidinone, catalyst recycling, supported catalysis.

Graphical Abstract

[1]
Carey, F.A.; Sundberg, R.J.; Carey, F.A.; Sundberg, R.J. Carbon- carbon bond-forming reactions of compounds of boron, silicon, and tin. Advanced organic chemistry; Springer: US, 1990, pp. 443-492.
[2]
Carruthers, W.; Coldham, I. Formation of carbon-carbon single bonds.Modern methods of organic synthesis; Cambridge University Press, 2012, pp. 1-104.
[3]
Mandal, S.; Mandal, S.; Ghosh, S.K.; Ghosh, A.; Saha, R.; Banerjee, S.; Saha, B. Review of the aldol reaction. Synth. Commun., 2016, 46, 1327-1342.
[http://dx.doi.org/10.1080/00397911.2016.1206938]
[4]
Srivastava, V. Ionic liquid mediated recyclable sulphonimide based organocatalysis for aldol reaction. Cent. Eur. J. Chem., 2010, 8, 269-272.
[5]
Ito, H.; Taguchi, T. Asymmetric claisen rearrangement. Chem. Soc. Rev., 1999, 28, 43-50.
[http://dx.doi.org/10.1039/a706415b]
[6]
Rueping, M.; Nachtsheim, B.J. A review of new developments in the friedel-crafts alkylation - from green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6, 6.
[http://dx.doi.org/10.3762/bjoc.6.6] [PMID: 20485588]
[7]
Ashby, E.C. Grignard reagents. Compositions and mechanisms of reaction. Q. Rev. Chem. Soc., 1967, 21, 269-285.
[http://dx.doi.org/10.1039/qr9672100259]
[8]
Norton, J.A. The diels-alder diene synthesis. Chem. Rev., 1942, 31, 319-523.
[http://dx.doi.org/10.1021/cr60099a003]
[9]
Srivastava, V. Ionic-liquid-mediated macmillan’s catalyst for diels-alder reaction. J. Chem., 2013, 1-5.
[http://dx.doi.org/10.1155/2013/954094]
[10]
Heravi, M.M.; Ghanbarian, M.; Zadsirjan, V.; Alimadadi Jani, B. Recent advances in the applications of wittig reaction in the total synthesis of natural products containing lactone, pyrone, and lactam as a scaffold. Monatsh. Chem., 2019, 150, 1365-1407.
[http://dx.doi.org/10.1007/s00706-019-02465-9]
[11]
Srivastava, V. Active ruthenium (0) nanoparticles catalyzed wittig-type olefination reaction. Catal. Lett., 2017, 147, 693-703.
[http://dx.doi.org/10.1007/s10562-016-1943-y]
[12]
Puleo, T.R.; Sujansky, S.J.; Wright, S.E.; Bandar, J. Organic superbases in recent synthetic methodology research. Chemistry., 2020, 27(13), 4216-4229.
[http://dx.doi.org/10.1002/chem.202003580] [PMID: 32841442]
[13]
Hayashi, Y. Time economy in total synthesis. J. Org. Chem., 2020.
[PMID: 33085885]
[14]
de Almeida, A.F.; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem., 2019, 3, 589-604.
[http://dx.doi.org/10.1038/s41570-019-0124-0]
[15]
Nicolaou, K.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc. R. Soc. A Math. Phys. Eng. Sci., 2014, 470
[16]
Basavaiah, D.; Naganaboina, R.T. The baylis-hillman reaction: A new continent in organic chemistry-our philosophy, vision and over three decades of research. New J. Chem., 2018, 42, 14036-14066.
[http://dx.doi.org/10.1039/C8NJ02483A]
[17]
Srivastava, V. Recyclable hydrotalcite clay catalysed baylis-hillman reaction. J. Chem. Sci., 2013, 125, 1207-1212.
[http://dx.doi.org/10.1007/s12039-013-0472-0]
[18]
Bhowmik, S.; Batra, S. Applications of morita-baylis-hillman reaction to the synthesis of natural products and drug molecules. Curr. Org. Chem., 2015, 18, 3078-3119.
[http://dx.doi.org/10.2174/1385272819666141125003114]
[19]
Mansilla, J.; Saá, J.M. Enantioselective, organocatalytic morita-baylis-hillman and aza-morita-baylis-hillman reactions: Stereochemical issues. Molecules, 2010, 15(2), 709-734.
[http://dx.doi.org/10.3390/molecules15020709] [PMID: 20335941]
[20]
Corma, A.; García, H.; Leyva, A. Heterogeneous Baylis-Hillman using a polystyrene-bound 4-(N-benzyl-N-methylamino)pyridine as reusable catalyst. Chem. Commun. (Camb.), 2003, 3(22), 2806-2807.
[http://dx.doi.org/10.1039/B309117A] [PMID: 14651114]
[21]
Huang, J-W.; Shi, M. Polymer-supported lewis bases for the baylis-hillman reaction. Adv. Synth. Catal., 2003, 345, 953-958.
[http://dx.doi.org/10.1002/adsc.200303072]
[22]
D’Elia, V.; Liu, Y.; Zipse, H. Immobilized dmap derivatives rivaling homogeneous DMAP. Eur. J. Org. Chem., 2011, 2011, 1527-1533.
[http://dx.doi.org/10.1002/ejoc.201001507]
[23]
Goren, K.; Portnoy, M. Supported N-alkylimidazole-decorated dendrons as heterogeneous catalysts for the Baylis-Hillman reaction. Chem. Commun. (Camb.), 2010, 46(11), 1965-1967.
[http://dx.doi.org/10.1039/B915577E] [PMID: 20198268]
[24]
Robiette, R.; Aggarwal, V.K.; Harvey, J.N. Mechanism of the Morita-Baylis-Hillman reaction: A computational investigation. J. Am. Chem. Soc., 2007, 129(50), 15513-15525.
[http://dx.doi.org/10.1021/ja0717865] [PMID: 18041831]
[25]
Verdier, R.A.T.; Mikkelsen, J.; Lindhardt, A.T. Studying the morita-baylis-hillman reaction in continuous flow using packed bed reactors. Org. Process Res. Dev., 2018, 22, 1524-1533.
[http://dx.doi.org/10.1021/acs.oprd.8b00298]
[26]
Furukawa, Y.; Ogura, M. A unique heterogeneous nucleophilic catalyst comprising methylated nitrogen-substituted porous silica provides high product selectivity for the Morita-Baylis-Hillman reaction. J. Am. Chem. Soc., 2014, 136(1), 119-121.
[http://dx.doi.org/10.1021/ja410781z] [PMID: 24354494]
[27]
Barak-Kulbak, E.; Goren, K.; Portnoy, M. Advantages of polymer-supported multivalent organocatalysts for the baylis-hillman reaction over their soluble analogues. Pure and applied chemistry; Walter de Gruyter GmbH, 2014, 86, pp. 1805-1818.
[28]
Karabline-Kuks, J.; Ramesh, P.; Portnoy, M. Chemoselectivity improvement via partial shielding of an imidazole active site in branched/dendritic homogeneous catalysts of the baylis-hillman reaction. Adv. Synth. Catal., 2016, 358, 3541-3554.
[http://dx.doi.org/10.1002/adsc.201600421]
[29]
Marsh, K.N.; Deev, A.; Wu, A.C.T.; Tran, E.; Klamt, A. Room temperature ionic liquids as replacements for conventional solvents - a review. Korean J. Chem. Eng., 2002, 19, 357-362.
[http://dx.doi.org/10.1007/BF02697140]
[30]
Kumar, A.; Pawar, S.S. The dabco-catalysed baylis-hillman reactions in the chloroaluminate room temperature ionic liquids: Rate promoting and recyclable media. J. Mol. Catal. Chem., 2004, 211, 43-47.
[http://dx.doi.org/10.1016/j.molcata.2003.10.002]
[31]
Singh, A.; Kumar, A. Probing the mechanism of Baylis-Hillman reaction in ionic liquids. J. Org. Chem., 2012, 77(19), 8775-8779.
[http://dx.doi.org/10.1021/jo301348k] [PMID: 22931044]
[32]
Pereira, M.P.; De Souza Martins, R.; De Oliveira, M.A.L.; Bombonato, F.I. Amino acid ionic liquids as catalysts in a solvent-free morita-baylis-hillman reaction. RSC Advances, 2018, 8, 23903-23913.
[http://dx.doi.org/10.1039/C8RA02409J]
[33]
Aggarwal, V.K.; Emme, I.; Mereu, A. Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. Chem. Commun. (Camb.), 2002, 2(15), 1612-1613.
[http://dx.doi.org/10.1039/b203079a] [PMID: 12170807]
[34]
Mi, X.; Luo, S.; Cheng, J.P. Ionic liquid-immobilized quinuclidine-catalyzed Morita-Baylis-Hillman reactions. J. Org. Chem., 2005, 70(6), 2338-2341.
[http://dx.doi.org/10.1021/jo048391d] [PMID: 15760226]
[35]
Srivastava, V. Synthesis and characterization of pd exchanged mmt clay for mizoroki-heck reaction. Open Chem., 2018, 16, 605-613.
[http://dx.doi.org/10.1515/chem-2018-0065]
[36]
Upadhyay, P.R.; Srivastava, V. Ionic liquid mediated in situ synthesis of ru nanoparticles for co2 hydrogenation reaction. Catal. Lett., 2017, 147, 1051-1060.
[http://dx.doi.org/10.1007/s10562-017-1995-7]
[37]
Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H., Jr CO(2) capture by a task-specific ionic liquid. J. Am. Chem. Soc., 2002, 124(6), 926-927.
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[38]
Zhang, L-R.; Yi, F-P.; Zhang, X.; Zou, J-Z. An efficient and recyclable dmap-based ionic liquid/water system for morita-baylis-hillman reactions. J. Chem. Res., 2012, 36, 418-420.
[http://dx.doi.org/10.3184/174751912X13374255642515]
[39]
Shapiro, D.; Flowers, H.M. Studies on sphingolipids. VII. Synthesis and configuration of natural sphingomyelins. J. Am. Chem. Soc., 1962, 84, 1047-1050.
[http://dx.doi.org/10.1021/ja00865a036]
[40]
Young, S.A.; Mina, J.G.; Denny, P.W.; Smith, T.K. Sphingolipid and ceramide homeostasis: Potential therapeutic targets. Biochem. Res. Int., 2012, 2012, 248135.
[http://dx.doi.org/10.1155/2012/248135] [PMID: 22400113]
[41]
Sonnino, S.; Prinetti, A.; Mauri, L.; Chigorno, V.; Tettamanti, G. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev., 2006, 106(6), 2111-2125.
[http://dx.doi.org/10.1021/cr0100446] [PMID: 16771445]
[42]
Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J., 2012, 441(3), 789-802.
[http://dx.doi.org/10.1042/BJ20111626] [PMID: 22248339]
[43]
Wascholowski, V.; Giannis, A. Sphingolactones: Selective and irreversible inhibitors of neutral sphingomyelinase. Angew. Chem. Int. Ed. Engl., 2006, 45(5), 827-830.
[http://dx.doi.org/10.1002/anie.200501983] [PMID: 16365835]
[44]
Chun, J.; Byun, H.S.; Arthur, G.; Bittman, R. Synthesis and growth inhibitory activity of chiral 5-hydroxy-2-N-acyl-(3E)-sphingenines: Ceramides with an unusual sphingoid backbone. J. Org. Chem., 2003, 68(2), 355-359.
[http://dx.doi.org/10.1021/jo026242u] [PMID: 12530860]