Effects of Di-2-Ethylhexyl Phthalate on Central Nervous System Functions: A Narrative Review

Page: [766 - 776] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Phthalates are widely used in the plastics industry. Di-2-Ethylhexyl Phthalate (DEHP) is one of the most important phthalate metabolites that disrupt the function of endocrine glands. Exposure to DEHP causes numerous effects on animals, humans, and the environment. Low doses of DEHP increase neurotoxicity in the nervous system that has arisen deep concerns due to the widespread nature of DEHP exposure and its high absorption during brain development.

Objective: In this review article, we evaluated the impacts of DEHP exposure from birth to adulthood on neurobehavioral damages. Then, the possible mechanisms of DEHP-induced neurobehavioral impairment were discussed.

Methodology: Peer-reviewed articles were extracted through Embase, PubMed, and Google Scholar till the year 2021.

Results: The results showed that exposure to DEHP during pregnancy and infancy leads to memory loss and irreversible nervous system damage.

Conclusion: Overall, it seems that increased levels of oxidative stress and inflammatory mediators possess a pivotal role in DEHP-induced neurobehavioral impairment.

Keywords: Endocrine disruptors, phthalates, di-2-ethylhexyl phthalate, neurotoxicity, memory deficits, neurobehavioral impairment.

Graphical Abstract

[1]
Betz, A.; Jayatilaka, S.; Joshi, J.; Ramanan, S.; Debartolo, D.; Pylypiw, H.; Franke, E. Chronic exposure to benzyl butyl phthalate (BBP) alters social interaction and fear conditioning in male adult rats: Alterations in amygdalar MeCP2, ERK1/2 and ERα. Neuroendocrinol. Lett., 2013, 34(5), 347-358.
[PMID: 23922038]
[2]
Chen, X.; Xu, S.; Tan, T.; Lee, S.T.; Cheng, S.H.; Lee, F.W.F.; Xu, S.J.; Ho, K.C. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health, 2014, 11(3), 3156-3168.
[http://dx.doi.org/10.3390/ijerph110303156] [PMID: 24637910]
[3]
Lin, H.; Yuan, K.; Li, L.; Liu, S.; Li, S.; Hu, G.; Lian, Q.Q.; Ge, R.S. In utero exposure to diethylhexyl phthalate affects rat brain development: A behavioral and genomic approach. Int. J. Environ. Res. Public Health, 2015, 12(11), 13696-13710.
[http://dx.doi.org/10.3390/ijerph121113696] [PMID: 26516888]
[4]
Cao, X.L. Phthalate esters in foods: sources, occurrence, and analytical methods. Compr. Rev. Food Sci. Food Saf., 2010, 9(1), 21-43.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00093.x] [PMID: 33467808]
[5]
Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ. Res., 2011, 111(3), 329-336.
[http://dx.doi.org/10.1016/j.envres.2011.01.013] [PMID: 21315328]
[6]
Zhang, Y.; Huang, B.; Thomsen, M.; Sabel, C.E.; Hess, F.; Hu, W.; Tian, K. One overlooked source of phthalate exposure - oral intake from vegetables produced in plastic greenhouses in China. Sci. Total Environ., 2018, 642, 1127-1135.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.112] [PMID: 30045494]
[7]
Shelby, MD NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP). Ntp Cerhr Mon., 2006, (18), v, vii-7., II..
[8]
Sun, J.; Pan, L.; Tsang, D.C.W.; Li, Z.; Zhu, L.; Li, X. Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: A case study from eastern China. Environ. Sci. Pollut. Res. Int., 2018, 25(1), 34-42.
[http://dx.doi.org/10.1007/s11356-016-7725-7] [PMID: 27738865]
[9]
Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environ. Geochem. Health, 2015, 37(1), 83-96.
[http://dx.doi.org/10.1007/s10653-014-9632-5] [PMID: 25056812]
[10]
Moore, R.W.; Rudy, T.A.; Lin, T-M.; Ko, K.; Peterson, R.E. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate. Environ. Health Perspect., 2001, 109(3), 229-237.
[http://dx.doi.org/10.1289/ehp.01109229] [PMID: 11333183]
[11]
Wittassek, M.; Heger, W.; Koch, H.M.; Becker, K.; Angerer, J.; Kolossa-Gehring, M. Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children - A comparison of two estimation models based on urinary DEHP metabolite levels. Int. J. Hyg. Environ. Health, 2007, 210(1), 35-42.
[http://dx.doi.org/10.1016/j.ijheh.2006.11.009] [PMID: 17185035]
[12]
Koch, H.M.; Preuss, R.; Angerer, J. Di (2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int. J. Androl., 2006, 29(1), 155-165.
[http://dx.doi.org/10.1111/j.1365-2605.2005.00607.x] [PMID: 16466535]
[13]
Salapasidou, M.; Samara, C.; Voutsa, D. Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece. Atmos. Environ., 2011, 45(22), 3720-3729.
[http://dx.doi.org/10.1016/j.atmosenv.2011.04.025]
[14]
Crocker, J.F.; Safe, S.H.; Acott, P. Effects of chronic phthalate exposure on the kidney. J. Toxicol. Environ. Health, 1988, 23(4), 433-444.
[http://dx.doi.org/10.1080/15287398809531126] [PMID: 3361614]
[15]
Rusyn, I.; Peters, J.M.; Cunningham, M.L. Effects of DEHP in the liver: modes of action and species-specific differences. Crit. Rev. Toxicol., 2006, 36(5), 459.
[http://dx.doi.org/10.1080/10408440600779065] [PMID: 16954067]
[16]
Liu, T.; Li, N.; Zhu, J.; Yu, G.; Guo, K.; Zhou, L.; Zheng, D.; Qu, X.; Huang, J.; Chen, X.; Wang, S.; Ye, L. Effects of di-(2-ethylhexyl) phthalate on the hypothalamus-pituitary-ovarian axis in adult female rats. Reprod. Toxicol., 2014, 46, 141-147.
[http://dx.doi.org/10.1016/j.reprotox.2014.03.006] [PMID: 24675100]
[17]
Do, R.P.; Stahlhut, R.W.; Ponzi, D.; Vom Saal, F.S.; Taylor, J.A. Non-monotonic dose effects of in utero exposure to di(2-ethylhexyl) phthalate (DEHP) on testicular and serum testosterone and anogenital distance in male mouse fetuses. Reprod. Toxicol., 2012, 34(4), 614-621.
[http://dx.doi.org/10.1016/j.reprotox.2012.09.006] [PMID: 23041310]
[18]
Amara, I.; Timoumi, R.; Annabi, E.; Neffati, F.; Najjar, M.F.; Bouaziz, C.; Abid-Essefi, S. Di (2-ethylhexyl) phthalate induces cardiac disorders in BALB/c mice. Environ. Sci. Pollut. Res. Int., 2019, 26(8), 7540-7549.
[http://dx.doi.org/10.1007/s11356-019-04219-w] [PMID: 30659488]
[19]
Gobas, F.A.P.C.; Otton, S.V.; Tupper-Ring, L.F.; Crawford, M.A.; Clark, K.E.; Ikonomou, M.G. Chemical activity-based environmental risk analysis of the plasticizer di-ethylhexyl phthalate and its main metabolite mono-ethylhexyl phthalate. Environ. Toxicol. Chem., 2017, 36(6), 1483-1492.
[http://dx.doi.org/10.1002/etc.3689] [PMID: 27859543]
[20]
Polanska, K.; Ligocka, D.; Sobala, W.; Hanke, W. Phthalate exposure and child development: the Polish Mother and Child Cohort Study. Early Hum. Dev., 2014, 90(9), 477-485.
[http://dx.doi.org/10.1016/j.earlhumdev.2014.06.006] [PMID: 25038557]
[21]
Xu, Y.; Agrawal, S.; Cook, T.J.; Knipp, G.T. Di-(2-ethylhexyl)-phthalate affects lipid profiling in fetal rat brain upon maternal exposure. Arch. Toxicol., 2007, 81(1), 57-62.
[http://dx.doi.org/10.1007/s00204-006-0143-8] [PMID: 16951938]
[22]
Xu, Y.; Agrawal, S.; Cook, T.J.; Knipp, G.T. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta. Placenta, 2008, 29(11), 962-969.
[http://dx.doi.org/10.1016/j.placenta.2008.08.011] [PMID: 18829104]
[23]
Öztop, D.B.; Demirci, E.; Özmen, S.; Kondolot, M.; Kardas, F.; Per, H. Might BPA and phthalates have a role in etiopathogenesis of ADHD? Anadolu Psikiyatri Derg., 2018, 19(3), 300-306.
[24]
Testa, C.; Nuti, F.; Hayek, J.; De Felice, C.; Chelli, M.; Rovero, P.; Latini, G.; Papini, A.M. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro, 2012, 4(4), 223-229.
[http://dx.doi.org/10.1042/AN20120015] [PMID: 22537663]
[25]
Cho, S-C.; Bhang, S-Y.; Hong, Y-C.; Shin, M-S.; Kim, B-N.; Kim, J-W.; Yoo, H.J.; Cho, I.H.; Kim, H.W. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ. Health Perspect., 2010, 118(7), 1027-1032.
[http://dx.doi.org/10.1289/ehp.0901376] [PMID: 20194078]
[26]
Barakat, R.; Lin, P-C.; Park, C.J.; Best-Popescu, C.; Bakry, H.H.; Abosalem, M.E.; Abdelaleem, N.M.; Flaws, J.A.; Ko, C. Prenatal exposure to DEHP induces neuronal degeneration and neurobehavioral abnormalities in adult male mice. Toxicol. Sci., 2018, 164(2), 439-452.
[http://dx.doi.org/10.1093/toxsci/kfy103] [PMID: 29688563]
[27]
Smith, C.A.; Farmer, K.; Lee, H.; Holahan, M.R.; Smith, J.C. Altered hippocampal lipid profile following acute postnatal exposure to Di (2-Ethylhexyl) phthalate in rats. Int. J. Environ. Res. Public Health, 2015, 12(10), 13542-13559.
[http://dx.doi.org/10.3390/ijerph121013542] [PMID: 26516880]
[28]
Spritzer, M.D.; Galea, L.A. Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats. Dev. Neurobiol., 2007, 67(10), 1321-1333.
[http://dx.doi.org/10.1002/dneu.20457] [PMID: 17638384]
[29]
Quinnies, K.M.; Harris, E.P.; Snyder, R.W.; Sumner, S.S.; Rissman, E.F. Direct and transgenerational effects of low doses of perinatal di-(2-ethylhexyl) phthalate (DEHP) on social behaviors in mice. PLoS One, 2017, 12(2) ,e0171977.
[http://dx.doi.org/10.1371/journal.pone.0171977] [PMID: 28199414]
[30]
Dai, Y.; Yang, Y.; Xu, X.; Hu, Y. Effects of uterine and lactational exposure to di-(2-ethylhexyl) phthalate on spatial memory and NMDA receptor of hippocampus in mice. Horm. Behav., 2015, 71, 41-48.
[http://dx.doi.org/10.1016/j.yhbeh.2015.03.008] [PMID: 25870019]
[31]
Carbone, S.; Ponzo, O.J.; Gobetto, N.; Samaniego, Y.A.; Reynoso, R.; Scacchi, P.; Moguilevsky, J.A.; Cutrera, R. Antiandrogenic effect of perinatal exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate increases anxiety-like behavior in male rats during sexual maturation. Horm. Behav., 2013, 63(5), 692-699.
[http://dx.doi.org/10.1016/j.yhbeh.2013.01.006] [PMID: 23399322]
[32]
Xu, X.; Yang, Y.; Wang, R.; Wang, Y.; Ruan, Q.; Lu, Y. Perinatal exposure to di-(2-ethylhexyl) phthalate affects anxiety- and depression-like behaviors in mice. Chemosphere, 2015, 124, 22-31.
[http://dx.doi.org/10.1016/j.chemosphere.2014.10.056] [PMID: 25441928]
[33]
Tanida, T.; Warita, K.; Ishihara, K.; Fukui, S.; Mitsuhashi, T.; Sugawara, T.; Tabuchi, Y.; Nanmori, T.; Qi, W.M.; Inamoto, T.; Yokoyama, T.; Kitagawa, H.; Hoshi, N. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol. Lett., 2009, 189(1), 40-47.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.005] [PMID: 19481886]
[34]
Helland, I.B.; Smith, L.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 2003, 111(1), e39-e44.
[http://dx.doi.org/10.1542/peds.111.1.e39] [PMID: 12509593]
[35]
Schug, T.T.; Blawas, A.M.; Gray, K.; Heindel, J.J.; Lawler, C.P. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology, 2015, 156(6), 1941-1951.
[http://dx.doi.org/10.1210/en.2014-1734] [PMID: 25714811]
[36]
Lottrup, G.; Andersson, A.M.; Leffers, H.; Mortensen, G.K.; Toppari, J.; Skakkebaek, N.E.; Main, K.M. Possible impact of phthalates on infant reproductive health. Int. J. Androl., 2006, 29(1), 172-180.
[http://dx.doi.org/10.1111/j.1365-2605.2005.00642.x] [PMID: 16466537]
[37]
Masuo, Y.; Morita, M.; Oka, S.; Ishido, M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: A study inspired by the physiological roles of PACAP in the brain. Regul. Pept., 2004, 123(1-3), 225-234.
[http://dx.doi.org/10.1016/j.regpep.2004.05.010] [PMID: 15518916]
[38]
Andrade, A.J.; Grande, S.W.; Talsness, C.E.; Grote, K.; Chahoud, I. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity. Toxicology, 2006, 227(3), 185-192.
[http://dx.doi.org/10.1016/j.tox.2006.07.022] [PMID: 16949715]
[39]
Safarpour, S.; Zabihi, E.; Ghasemi-Kasman, M.; Nosratiyan, N.; Feizi, F. Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food Chem. Toxicol., 2021, 154 ,112322.
[http://dx.doi.org/10.1016/j.fct.2021.112322] [PMID: 34111487]
[40]
Smith, C.A.; Macdonald, A.; Holahan, M.R. Acute postnatal exposure to di(2-ethylhexyl) phthalate adversely impacts hippocampal development in the male rat. Neuroscience, 2011, 193, 100-108.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.082] [PMID: 21782900]
[41]
Holahan, M.R.; Smith, C.A.; Luu, B.E.; Storey, K.B. Preadolescent phthalate (DEHP) exposure is associated with elevated locomotor activity and reward-related behavior and a reduced number of tyrosine hydroxylase positive neurons in post-adolescent male and female rats. Toxicol. Sci., 2018, 165(2), 512-530.
[http://dx.doi.org/10.1093/toxsci/kfy171] [PMID: 29982774]
[42]
Sun, W.; Ban, J.B.; Zhang, N.; Zu, Y.K.; Sun, W.X. Perinatal exposure to Di-(2-ethylhexyl)-Phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats. Environ. Toxicol., 2014, 29(5), 596-603.
[http://dx.doi.org/10.1002/tox.21785] [PMID: 22610992]
[43]
Smith, C.A.; Holahan, M.R. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male Long Evans rats. PLoS One, 2014, 9(10) ,e109522.
[http://dx.doi.org/10.1371/journal.pone.0109522] [PMID: 25295592]
[44]
Tseng, I-L.; Yang, Y-F.; Yu, C-W.; Li, W-H.; Liao, V.H-C. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in Caenorhabditis elegans. PLoS One, 2013, 8(12) ,e82657.
[http://dx.doi.org/10.1371/journal.pone.0082657] [PMID: 24349328]
[45]
Wu, M.; Xu, L.; Teng, C.; Xiao, X.; Hu, W.; Chen, J.; Tu, W. Involvement of oxidative stress in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse NE-4C neural stem cells. Neurotoxicology, 2019, 70, 41-47.
[http://dx.doi.org/10.1016/j.neuro.2018.10.013] [PMID: 30395871]
[46]
Howdeshell, K.L.; Furr, J.; Lambright, C.R.; Rider, C.V.; Wilson, V.S.; Gray, L.E., Jr Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: Altered fetal steroid hormones and genes. Toxicol. Sci., 2007, 99(1), 190-202.
[http://dx.doi.org/10.1093/toxsci/kfm069] [PMID: 17400582]
[47]
Wójtowicz, A.K.; Sitarz-Głownia, A.M.; Szczęsna, M.; Szychowski, K.A. The action of di-(2-ethylhexyl) phthalate (DEHP) in mouse cerebral cells involves an impairment in aryl hydrocarbon receptor (AhR) signaling. Neurotox. Res., 2019, 35(1), 183-195.
[http://dx.doi.org/10.1007/s12640-018-9946-7] [PMID: 30120713]
[48]
Wang, R.; Xu, X.; Zhu, Q. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice. Chemosphere, 2016, 144, 1771-1779.
[http://dx.doi.org/10.1016/j.chemosphere.2015.10.062] [PMID: 26524146]
[49]
You, M.; Dong, J.; Fu, Y.; Cong, Z.; Fu, H.; Wei, L.; Wang, Y.; Wang, Y.; Chen, J. Exposure to Di-(2-ethylhexyl) phthalate during perinatal period gender-specifically impairs the dendritic growth of pyramidal neurons in rat offspring. Front. Neurosci., 2018, 12, 444.
[http://dx.doi.org/10.3389/fnins.2018.00444] [PMID: 30087586]
[50]
Luo, Y.; Li, X-N.; Zhao, Y.; Du, Z-H.; Li, J-L. DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. Chemosphere, 2019, 224, 626-633.
[http://dx.doi.org/10.1016/j.chemosphere.2019.02.142] [PMID: 30844593]
[51]
Rice, D.; Barone, S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect., 2000, 108(Suppl. 3), 511-533.
[PMID: 10852851]
[52]
Gascon, M.; Valvi, D.; Forns, J.; Casas, M.; Martínez, D.; Júlvez, J.; Monfort, N.; Ventura, R.; Sunyer, J.; Vrijheid, M. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Environ. Health, 2015, 218(6), 550-558.
[http://dx.doi.org/10.1016/j.ijheh.2015.05.006] [PMID: 26095249]
[53]
Smith, C.A. The Evaluation of Neurodevelopmental and Behavioural Correlates of Acute Postnatal Exposure to di (2-ethylhexyl) phthalate in Rats; Carleton University, 2014.
[http://dx.doi.org/10.22215/etd/2014-10590]
[54]
Chopra, V.; Harley, K.; Lahiff, M.; Eskenazi, B. Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6-15 years. Environ. Res., 2014, 128, 64-69.
[http://dx.doi.org/10.1016/j.envres.2013.10.004] [PMID: 24267794]
[55]
Koch, H.M.; Drexler, H.; Angerer, J. Internal exposure of nursery-school children and their parents and teachers to di(2-ethylhexyl)phthalate (DEHP). Int. J. Hyg. Environ. Health, 2004, 207(1), 15-22.
[http://dx.doi.org/10.1078/1438-4639-00270] [PMID: 14762970]
[56]
Sioen, I.; Fierens, T.; Van Holderbeke, M.; Geerts, L.; Bellemans, M.; De Maeyer, M.; Servaes, K.; Vanermen, G.; Boon, P.E.; De Henauw, S. Phthalates dietary exposure and food sources for Belgian preschool children and adults. Environ. Int., 2012, 48, 102-108.
[http://dx.doi.org/10.1016/j.envint.2012.07.004] [PMID: 22885666]
[57]
Göen, T.; Dobler, L.; Koschorreck, J.; Müller, J.; Wiesmüller, G.A.; Drexler, H.; Kolossa-Gehring, M. Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study. Int. J. Hyg. Environ. Health, 2011, 215(1), 36-45.
[http://dx.doi.org/10.1016/j.ijheh.2011.07.011] [PMID: 21889907]
[58]
Sakhi, A.K.; Lillegaard, I.T.L.; Voorspoels, S.; Carlsen, M.H.; Løken, E.B.; Brantsæter, A.L.; Haugen, M.; Meltzer, H.M.; Thomsen, C. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ. Int., 2014, 73, 259-269.
[http://dx.doi.org/10.1016/j.envint.2014.08.005] [PMID: 25173060]
[59]
Kim, B-N.; Cho, S-C.; Kim, Y.; Shin, M-S.; Yoo, H-J.; Kim, J-W.; Yang, Y.H.; Kim, H.W.; Bhang, S.Y.; Hong, Y.C. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry, 2009, 66(10), 958-963.
[http://dx.doi.org/10.1016/j.biopsych.2009.07.034] [PMID: 19748073]
[60]
Whyatt, R.; Adibi, J.; Calafat, A.; Rundle, A.; Just, A.; Hauser, R. Maternal prenatal urinary concentrations of di-(2-ethylhexyl) phthalate in relation to the timing of labor: results from a birth cohort study of inner-city mothers and newborns. Epidemiology, 2008, 19(6), S220.
[61]
Hokanson, R.; Hanneman, W.; Hennessey, M.; Donnelly, K.C.; McDonald, T.; Chowdhary, R.; Busbee, D.L. DEHP, bis(2)-ethylhexyl phthalate, alters gene expression in human cells: possible correlation with initiation of fetal developmental abnormalities. Hum. Exp. Toxicol., 2006, 25(12), 687-695.
[http://dx.doi.org/10.1177/0960327106071977] [PMID: 17286146]
[62]
Engel, S.M.; Villanger, G.D.; Nethery, R.C.; Thomsen, C.; Sakhi, A.K.; Drover, S.S.M.; Hoppin, J.A.; Zeiner, P.; Knudsen, G.P.; Reichborn-Kjennerud, T.; Herring, A.H.; Aase, H. Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the Norwegian mother and child cohort. Environ. Health Perspect., 2018, 126(5) ,057004.
[http://dx.doi.org/10.1289/EHP2358] [PMID: 29790729]
[63]
Lin, C-H.; Chen, T-J.; Chen, S-S.; Hsiao, P-C.; Yang, R-C. Activation of Trim17 by PPARγ is involved in di(2-ethylhexyl) phthalate (DEHP)-induced apoptosis on Neuro-2a cells. Toxicol. Lett., 2011, 206(3), 245-251.
[http://dx.doi.org/10.1016/j.toxlet.2011.08.002] [PMID: 21856391]
[64]
Kardas, F.; Bayram, A.K.; Demirci, E.; Akin, L.; Ozmen, S.; Kendirci, M.; Canpolat, M.; Oztop, D.B.; Narin, F.; Gumus, H.; Kumandas, S.; Per, H. Increased serum phthalates (MEHP, DEHP) and bisphenol A concentrations in children with autism spectrum disorder: the role of endocrine disruptors in autism etiopathogenesis. J. Child Neurol., 2016, 31(5), 629-635.
[http://dx.doi.org/10.1177/0883073815609150] [PMID: 26450281]
[65]
Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; Al-Ayadhi, L.Y.; Attia, S.M.; Alasmari, A.F.; As Sobeai, H.M.; Bakheet, S.A. Ubiquitous plasticizer, Di-(2-ethylhexyl) phthalate enhances existing inflammatory profile in monocytes of children with autism. Toxicology, 2020, 446 ,152597.
[http://dx.doi.org/10.1016/j.tox.2020.152597] [PMID: 32991955]
[66]
Whyatt, R.M.; Liu, X.; Rauh, V.A.; Calafat, A.M.; Just, A.C.; Hoepner, L.; Diaz, D.; Quinn, J.; Adibi, J.; Perera, F.P.; Factor-Litvak, P. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect., 2012, 120(2), 290-295.
[http://dx.doi.org/10.1289/ehp.1103705] [PMID: 21893441]
[67]
Chen, T.; Yang, W.; Li, Y.; Chen, X.; Xu, S. Mono-(2-ethylhexyl) phthalate impairs neurodevelopment: inhibition of proliferation and promotion of differentiation in PC12 cells. Toxicol. Lett., 2011, 201(1), 34-41.
[http://dx.doi.org/10.1016/j.toxlet.2010.12.002] [PMID: 21145954]
[68]
Fu, G.; Dai, J.; Zhang, D.; Zhu, L.; Tang, X.; Zhang, L.; Zhou, T.; Duan, P.; Quan, C.; Zhang, Z.; Song, S.; Di Shi, Y. (2-ethylhexyl) phthalate induces apoptosis through mitochondrial pathway in GC-2spd cells. Environ. Toxicol., 2017, 32(3), 1055-1064.
[http://dx.doi.org/10.1002/tox.22304] [PMID: 27416487]
[69]
Lovell, M.A.; Markesbery, W.R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res., 2007, 35(22), 7497-7504.
[http://dx.doi.org/10.1093/nar/gkm821] [PMID: 17947327]
[70]
Zilka, N.; Ferencik, M.; Hulin, I. Neuroinflammation in Alzheimer’s disease: protector or promoter? Bratisl. Lek Listy, 2006, 107(9-10), 374-383.
[PMID: 17262990]
[71]
Mao, G.; Liu, H.; Ding, Y.; Zhang, W.; Chen, H.; Zhao, T.; Feng, W.; Wu, X.; Yang, L. Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int., 2020, 27(9), 9318-9326.
[http://dx.doi.org/10.1007/s11356-019-06692-9] [PMID: 31916169]
[72]
Yan, B.C.; Jeon, Y.H.; Park, J.H.; Kim, I.H.; Cho, J.H.; Ahn, J.H.; Chen, B.H.; Tae, H.J.; Lee, J.C.; Ahn, J.Y.; Kim, D.W.; Cho, J.H.; Won, M.H.; Hong, S. Increased cyclooxygenase-2 and nuclear factor-κB/p65 expression in mouse hippocampi after systemic administration of tetanus toxin. Mol. Med. Rep., 2015, 12(6), 7837-7844.
[http://dx.doi.org/10.3892/mmr.2015.4490] [PMID: 26498481]
[73]
Aisen, P.S. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J. Pain Symptom Manage., 2002, 23(4)(Suppl.), S35-S40.
[http://dx.doi.org/10.1016/S0885-3924(02)00374-3] [PMID: 11992749]
[74]
Zhang, F.; Jiang, L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2015, 11, 243-256.
[http://dx.doi.org/10.2147/NDT.S75546] [PMID: 25673992]
[75]
Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement., 2016, 12(6), 719-732.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[76]
Trepanier, C.H.; Milgram, N.W. Neuroinflammation in Alzheimer’s disease: Are NSAIDs and selective COX-2 inhibitors the next line of therapy? J. Alzheimers Dis., 2010, 21(4), 1089-1099.
[http://dx.doi.org/10.3233/JAD-2010-090667] [PMID: 21504126]
[77]
Yirun, A.; Ozkemahli, G.; Balci, A.; Erkekoglu, P.; Zeybek, N.D.; Yersal, N.; Kocer-Gumusel, B. Neuroendocrine disruption by bisphenol A and/or di(2-ethylhexyl) phthalate after prenatal, early postnatal and lactational exposure. Environ. Sci. Pollut. Res. Int., 2021, 28(21), 26961-26974.
[http://dx.doi.org/10.1007/s11356-021-12408-9] [PMID: 33496947]
[78]
McDermott, C.M.; Liu, D.; Schrader, L.A. Role of gonadal hormones in anxiety and fear memory formation and inhibition in male mice. Physiol. Behav., 2012, 105(5), 1168-1174.
[http://dx.doi.org/10.1016/j.physbeh.2011.12.016] [PMID: 22226989]
[79]
Abdel-Maksoud, F.M.; Leasor, K.R.; Butzen, K.; Braden, T.D.; Akingbemi, B.T. Prenatal exposures of male rats to the environmental chemicals bisphenol A and di (2-ethylhexyl) phthalate impact the sexual differentiation process. Endocrinology, 2015, 156(12), 4672-4683.
[http://dx.doi.org/10.1210/en.2015-1077] [PMID: 26372177]
[80]
O’Farrell, S.; Garmo, H.; Holmberg, L.; Adolfsson, J.; Stattin, P.; Van Hemelrijck, M. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J. Clin. Oncol., 2015, 33(11), 1243-1251.
[http://dx.doi.org/10.1200/JCO.2014.59.1792] [PMID: 25732167]
[81]
Pike, C.J. Testosterone attenuates β-amyloid toxicity in cultured hippocampal neurons. Brain Res., 2001, 919(1), 160-165.
[http://dx.doi.org/10.1016/S0006-8993(01)03024-4] [PMID: 11689174]
[82]
Kaufman, J.M.; Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev., 2005, 26(6), 833-876.
[http://dx.doi.org/10.1210/er.2004-0013] [PMID: 15901667]
[83]
Leranth, C.; Hajszan, T.; MacLusky, N.J. Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J. Neurosci., 2004, 24(2), 495-499.
[http://dx.doi.org/10.1523/JNEUROSCI.4516-03.2004] [PMID: 14724248]
[84]
Stahlhut, R.W.; van Wijngaarden, E.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect., 2007, 115(6), 876-882.
[http://dx.doi.org/10.1289/ehp.9882] [PMID: 17589594]
[85]
Carrier, N.; Kabbaj, M. Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats. Horm. Behav., 2012, 61(5), 678-685.
[http://dx.doi.org/10.1016/j.yhbeh.2012.03.001] [PMID: 22426002]
[86]
Nguyen, T-V.V.; Yao, M.; Pike, C.J. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Res., 2009, 1298, 1-12.
[http://dx.doi.org/10.1016/j.brainres.2009.08.066] [PMID: 19729001]
[87]
Moffat, S.D.; Zonderman, A.B.; Metter, E.J.; Kawas, C.; Blackman, M.R.; Harman, S.M.; Resnick, S.M. Free testosterone and risk for Alzheimer disease in older men. Neurology, 2004, 62(2), 188-193.
[http://dx.doi.org/10.1212/WNL.62.2.188] [PMID: 14745052]
[88]
Parks, L.G.; Ostby, J.S.; Lambright, C.R.; Abbott, B.D.; Klinefelter, G.R.; Barlow, N.J.; Gray, L.E., Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci., 2000, 58(2), 339-349.
[http://dx.doi.org/10.1093/toxsci/58.2.339] [PMID: 11099646]
[89]
Dombret, C.; Capela, D.; Poissenot, K.; Parmentier, C.; Bergsten, E.; Pionneau, C.; Chardonnet, S.; Hardin-Pouzet, H.; Grange-Messent, V.; Keller, M.; Franceschini, I.; Mhaouty-Kodja, S. Neural mechanisms underlying the disruption of male courtship behavior by adult exposure to di (2-ethylhexyl) phthalate in mice. Environ. Health Perspect., 2017, 125(9) ,097001.
[http://dx.doi.org/10.1289/EHP1443] [PMID: 28934723]
[90]
Juricek, L.; Coumoul, X. The aryl hydrocarbon receptor and the nervous system. Int. J. Mol. Sci., 2018, 19(9), 2504.
[http://dx.doi.org/10.3390/ijms19092504] [PMID: 30149528]
[91]
Du, Z-H.; Xia, J.; Sun, X-C.; Li, X-N.; Zhang, C.; Zhao, H-S.; Zhu, S.Y.; Li, J.L. A novel nuclear xenobiotic receptors (AhR/PXR/CAR)-mediated mechanism of DEHP-induced cerebellar toxicity in quails (Coturnix japonica) via disrupting CYP enzyme system homeostasis. Environ. Pollut., 2017, 226, 435-443.
[http://dx.doi.org/10.1016/j.envpol.2017.04.015] [PMID: 28413083]
[92]
Choi, K.; Joo, H.; Campbell, J.L., Jr; Clewell, R.A.; Andersen, M.E.; Clewell, H.J., III In vitro metabolism of di(2-ethylhexyl) phthalate (DEHP) by various tissues and cytochrome P450s of human and rat. Toxicol. In Vitro, 2012, 26(2), 315-322.
[http://dx.doi.org/10.1016/j.tiv.2011.12.002] [PMID: 22186153]
[93]
Zuloaga, D.G.; Zuloaga, K.L.; Hinds, L.R.; Carbone, D.L.; Handa, R.J. Estrogen receptor β expression in the mouse forebrain: Age and sex differences. J. Comp. Neurol., 2014, 522(2), 358-371.
[http://dx.doi.org/10.1002/cne.23400] [PMID: 23818057]
[94]
Oyola, M.G.; Portillo, W.; Reyna, A.; Foradori, C.D.; Kudwa, A.; Hinds, L.; Handa, R.J.; Mani, S.K. Anxiolytic effects and neuroanatomical targets of estrogen receptor-β (ERβ) activation by a selective ERβ agonist in female mice. Endocrinology, 2012, 153(2), 837-846.
[http://dx.doi.org/10.1210/en.2011-1674] [PMID: 22186418]
[95]
Wang, D-C.; Lin, H-T.; Lee, Y-J.; Yu, H-F.; Wu, S-R.; Qamar, M.U. Recovery of BDNF and CB1R in the Prefrontal Cortex Underlying Improvement of Working Memory in Prenatal DEHP-Exposed Male Rats after Aerobic Exercise. Int. J. Mol. Sci., 2020, 21(11), 3867.
[http://dx.doi.org/10.3390/ijms21113867] [PMID: 32485872]
[96]
Ma, Q-L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Kiosea, N.C.; Nazari, S.; Chen, P.P.; Nothias, F.; Chan, P.; Teng, E.; Frautschy, S.A.; Cole, G.M. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J. Neurosci., 2014, 34(21), 7124-7136.
[http://dx.doi.org/10.1523/JNEUROSCI.3439-13.2014] [PMID: 24849348]
[97]
Harada, A.; Teng, J.; Takei, Y.; Oguchi, K.; Hirokawa, N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol., 2002, 158(3), 541-549.
[http://dx.doi.org/10.1083/jcb.200110134] [PMID: 12163474]
[98]
Bodakuntla, S.; Jijumon, A.S.; Villablanca, C.; Gonzalez-Billault, C.; Janke, C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol., 2019, 29(10), 804-819.
[http://dx.doi.org/10.1016/j.tcb.2019.07.004] [PMID: 31416684]
[99]
Sánchez, C.; Díaz-Nido, J.; Avila, J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol., 2000, 61(2), 133-168.
[http://dx.doi.org/10.1016/S0301-0082(99)00046-5] [PMID: 10704996]
[100]
Bogoyevitch, M.A.; Kobe, B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev., 2006, 70(4), 1061-1095.
[http://dx.doi.org/10.1128/MMBR.00025-06] [PMID: 17158707]
[101]
Chang, L.; Jones, Y.; Ellisman, M.H.; Goldstein, L.S.; Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell, 2003, 4(4), 521-533.
[http://dx.doi.org/10.1016/S1534-5807(03)00094-7] [PMID: 12689591]
[102]
Gavet, O.; El Messari, S.; Ozon, S.; Sobel, A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J. Neurosci. Res., 2002, 68(5), 535-550.
[http://dx.doi.org/10.1002/jnr.10234] [PMID: 12111843]
[103]
Factor-Litvak, P.; Insel, B.; Calafat, A.M.; Liu, X.; Perera, F.; Rauh, V.A.; Whyatt, R.M. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One, 2014, 9(12) ,e114003.
[http://dx.doi.org/10.1371/journal.pone.0114003] [PMID: 25493564]
[104]
Liu, C.; Zhao, L.; Wei, L.; Li, L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environ. Sci. Pollut. Res. Int., 2015, 22(16), 12711-12719.
[http://dx.doi.org/10.1007/s11356-015-4567-7] [PMID: 25913319]
[105]
Cooke, B.; Hegstrom, C.D.; Villeneuve, L.S.; Breedlove, S.M. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front. Neuroendocrinol., 1998, 19(4), 323-362.
[http://dx.doi.org/10.1006/frne.1998.0171] [PMID: 9799588]
[106]
Conolly, R.B.; Lutz, W.K. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol. Sci., 2004, 77(1), 151-157.
[http://dx.doi.org/10.1093/toxsci/kfh007] [PMID: 14600281]
[107]
Eaton, DL; Gilbert, SG Principles of toxicology Casarett & Doull’s toxicology: The basic science of poisons, 2008, 11-43.
[108]
Welshons, W.V.; Thayer, K.A.; Judy, B.M.; Taylor, J.A.; Curran, E.M.; vom Saal, F.S. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ. Health Perspect., 2003, 111(8), 994-1006.
[http://dx.doi.org/10.1289/ehp.5494] [PMID: 12826473]