Transcription Factors in Deriving β Cell Regeneration: A Potential Novel Therapeutic Target

Page: [421 - 430] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Recently, remarkable advances have been achieved in the molecular biopathology field and researchers turned to evaluate the role, molecular mechanisms, and clinical value of transcription factors in curing a variety of parenchymal degenerative pathologies. Special agents have the capability to cell lineage reprogramming termed transcription factors with a capacity for gene expression modification. Therefore, whatever niche factor may modify gene expression is termed as a transcription factor. A variety of transcription factors have been identified to participate in the regulation of pancreatic stem cell maturation, differentiation, and proliferation; primarily, not only Pdx1, NeuroG3, and MafA, but transcription factors can also transdifferentiate somatic cells in between, liver and gallbladder cells into insulin-producing cells. These heterogenic capabilities of the transcription factors are of clinical significance since they can control cells' regeneration capacity. Physiologically, the pancreatic cells are subdivided into exocrine and endocrine cells. Pancreatic endocrine dysfunction is clinically more common and of more clinical relevance. The paper will illustrate the role and possible mechanisms of transcription factors in the transdifferentiation of endodermderived somatic cells into pancreatic beta-like cells. Clinically, understanding the potential mechanisms in generating physiologic beta cells is extremely crucial to optimize current therapies and evaluate new therapeutic targets via recruiting specific transcription factors. The transcription factors can be applied to both types of diabetes and chronic pancreatitis.

Keywords: Regeneration, pancreatic stem cell, transcription factor, pancreatic physiopathology, beta-cell, transdifferentiation, reprogramming, cellular plasticity, insulin, endoderm, Pdx1/NEUROG3/MaFA.

[1]
Jones PM, Persaud SJ. Islet Function and Insulin SecretionTextbook of Diabetes. Chichester, UK: John Wiley & Sons, Ltd 2016; pp. 87-102.
[http://dx.doi.org/10.1002/9781118924853.ch6]
[2]
Burke ZD, Thowfeequ S, Peran M, Tosh D. Stem Cells in the Adult Pancreas and LiverBiochemical Journal. Portland Press Ltd 2007; pp. 169-78.
[http://dx.doi.org/10.1042/BJ20070167]
[3]
Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of Type 1 and Type 2 Diabetes Mellitus: A 90-Year PerspectivePostgraduate Medical Journal. BMJ Publishing Group 2016; pp. 63-9.
[http://dx.doi.org/10.1136/postgradmedj-2015-133281]
[4]
Marasco MR, Linnemann AK. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018; 159(5): 2127-41.
[http://dx.doi.org/10.1210/en.2017-03273] [PMID: 29617763]
[5]
Lambelet M, Terra LF, Fukaya M, et al. Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic β-cell apoptosis. Cell Death Dis 2018; 9(2): 96.
[http://dx.doi.org/10.1038/s41419-017-0121-5] [PMID: 29367588]
[6]
Wu J, Kong F, Pan Q, et al. Autophagy protects against cholesterol-induced apoptosis in pancreatic β-cells. Biochem Biophys Res Commun 2017; 482(4): 678-85.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.093] [PMID: 27865837]
[7]
Marzoog BA. Beta-Cell Autophagy Under The Scope Of Hypoglycemic Drugs; Possible Mechanism As Novel Therapeutic Target. Obes Metab 2021; 18(4): 465-70.
[8]
Prince VE, Anderson RM, Dalgin G. Zebrafish Pancreas Development and Regeneration: Fishing for Diabetes Therapies.Current Topics in Developmental Biology. Academic Press Inc. 2017; 124: 235-76.
[9]
HORISAWA K Suzuki A. Direct Cell-Fate Conversion of Somatic Cells: Toward Regenerative Medicine and Industries. Proc Jpn Acad, Ser B, Phys Biol Sci 2020; 96(4): 131-58.
[http://dx.doi.org/10.2183/pjab.96.012]
[10]
Loomans CJM, Giuliani NW, Balak J, et al. Stem Cell Reports Ar Ticle Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. 2018. m. Cell Reports 2018; 10(3): 712-24.
[http://dx.doi.org/10.1016/j.stemcr.2018.02.005]
[11]
Clevers H. What Is an Adult Stem Cell? Science (80- ) 2015; 350(6266): 1319-20.
[http://dx.doi.org/10.1126/science.aad7016]
[12]
Li W, Nakanishi M, Zumsteg A, et al. In Vivo Reprogramming of Pancreatic Acinar Cells to Three Islet Endocrine Subtypes. In: Elife 2014; 3: e01846.
[http://dx.doi.org/10.7554/eLife.01846]
[13]
Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci USA 2012; 109(38): 15336-41.
[http://dx.doi.org/10.1073/pnas.1201701109] [PMID: 22949652]
[14]
Chandra V, Swetha G, Muthyala S, et al. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 2011; 6(6): e20615.
[http://dx.doi.org/10.1371/journal.pone.0020615] [PMID: 21687731]
[15]
Akinci E, Banga A, Greder LV, Dutton JR, Slack JMW. Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA. Biochem J 2012; 442(3): 539-50.
[http://dx.doi.org/10.1042/BJ20111678] [PMID: 22150363]
[16]
Galivo F, Benedetti E, Wang Y, et al. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One 2017; 12(8): e0181812.
[http://dx.doi.org/10.1371/journal.pone.0181812] [PMID: 28813430]
[17]
Li R, Buras E, Lee J, et al. Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice. Gene Ther 2015; 22(11): 876-82.
[http://dx.doi.org/10.1038/gt.2015.62] [PMID: 26172077]
[18]
Yechoor V, Liu V, Espiritu C, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 2009; 16(3): 358-73.
[http://dx.doi.org/10.1016/j.devcel.2009.01.012] [PMID: 19289082]
[19]
Akinci E, Banga A, Tungatt K, et al. Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA. PLoS One 2013; 8(11): e82424.
[http://dx.doi.org/10.1371/journal.pone.0082424] [PMID: 24312421]
[20]
Manohar R, Komori J, Guzik L, et al. Identification and expansion of a unique stem cell population from adult mouse gallbladder. Hepatology 2011; 54(5): 1830-41.
[http://dx.doi.org/10.1002/hep.24568] [PMID: 21793026]
[21]
Gage BK, Riedel MJ, Karanu F, et al. Cellular reprogramming of human amniotic fluid cells to express insulin. Differentiation 2010; 80(2-3): 130-9.
[http://dx.doi.org/10.1016/j.diff.2010.05.007] [PMID: 20561745]
[22]
Ariyachet C, Tovaglieri A, Xiang G, et al. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell 2016; 18(3): 410-21.
[http://dx.doi.org/10.1016/j.stem.2016.01.003] [PMID: 26908146]
[23]
Antoniou A, Raynaud P, Cordi S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136(7): 2325-33.
[http://dx.doi.org/10.1053/j.gastro.2009.02.051] [PMID: 19403103]
[24]
Wang Y, Galivo F, Pelz C, et al. Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Res (Amst) 2016; 17(3): 587-96.
[http://dx.doi.org/10.1016/j.scr.2016.10.009] [PMID: 27833043]
[25]
Meivar-Levy I, Ferber S. Reprogramming of Liver Cells into Insulin-Producing CellsBest Practice and Research: Clinical Endocrinology and Metabolism. Bailliere Tindall Ltd 2015; pp. 873-82.
[http://dx.doi.org/10.1016/j.beem.2015.10.006]
[26]
Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020; 12(7): 1-18.
[http://dx.doi.org/10.1101/cshperspect.a035626] [PMID: 31767653]
[27]
Carpino G, Puca R, Cardinale V, et al. Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Stem Cells 2016; 34(5): 1332-42.
[http://dx.doi.org/10.1002/stem.2311] [PMID: 26850087]
[28]
Chen F, Li T, Sun Y, et al. Generation of insulin-secreting cells from mouse gallbladder stem cells by small molecules in vitro. Stem Cell Res Ther 2019; 10(1): 289.
[http://dx.doi.org/10.1186/s13287-019-1407-6] [PMID: 31547878]
[29]
Corritore E, Lee Y S, Sokal E M, Lysy P A. β-Cell Replacement Sources for Type 1 Diabetes: A Focus on Pancreatic Ductal Cells.Therapeutic Advances in Endocrinology and Metabolism. SAGE Publications Ltd 2016; pp. 182-99.
[http://dx.doi.org/10.1177/2042018816652059]
[30]
Zhu S, Russ HA, Wang X, et al. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 2016; 7: 10080.
[http://dx.doi.org/10.1038/ncomms10080] [PMID: 26733021]
[31]
Thulé PM, Jia D, Safley S, et al. Engineered insulin secretion from neuroendocrine cells isolated from human thyroid. World J Surg 2014; 38(6): 1251-61.
[http://dx.doi.org/10.1007/s00268-014-2457-7] [PMID: 24549997]
[32]
Mauda-Havakuk M, Litichever N, Chernichovski E, et al. Ectopic PDX-1 expression directly reprograms human keratinocytes along pancreatic insulin-producing cells fate. PLoS One 2011; 6(10): e26298.
[http://dx.doi.org/10.1371/journal.pone.0026298] [PMID: 22028850]
[33]
Afelik S, Rovira M. Pancreatic β-cell regeneration: advances in understanding the genes and signaling pathways involved. Genome Med 2017; 9(1): 42.
[http://dx.doi.org/10.1186/s13073-017-0437-x] [PMID: 28511717]
[34]
Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: Critical Transcription Regulators for Beta Cell Development and Regeneration. Stem Cell Research and Therapy. BioMed Central Ltd 2017; p. 240.
[http://dx.doi.org/10.1186/s13287-017-0694-z]
[35]
Balakrishnan S, Dhavamani S, Prahalathan C. β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163: 103634.
[http://dx.doi.org/10.1016/j.mod.2020.103634] [PMID: 32711047]
[36]
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014; 159(2): 428-39.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[37]
Cavelti-Weder C, Li W, Zumsteg A, et al. Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes. Curr Pathobiol Rep 2015; 3(1): 57-65.
[http://dx.doi.org/10.1007/s40139-015-0068-0] [PMID: 26998407]
[38]
Chera S, Herrera PL. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 2016; 40: 1-10.
[http://dx.doi.org/10.1016/j.gde.2016.05.010] [PMID: 27266969]
[39]
Zeng J, Li Y, Ma Z, Hu M. Advances in Small Molecules in Cellular Reprogramming: Effects, Structures, and Mechanisms. Curr Stem Cell Res Ther 2021; 16(2): 115-32.
[http://dx.doi.org/10.2174/1574888X15666200621172042] [PMID: 32564763]
[40]
Sim EZ, Shiraki N, Kume S. Recent progress in pancreatic islet cell therapy. Inflamm Regen 2021; 41(1): 1.
[http://dx.doi.org/10.1186/s41232-020-00152-5] [PMID: 33402224]
[41]
Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2013; 2(2): e00940.
[http://dx.doi.org/10.7554/eLife.00940] [PMID: 24252877]
[42]
Hickey RD, Galivo F, Schug J, et al. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Res (Amst) 2013; 11(1): 503-15.
[http://dx.doi.org/10.1016/j.scr.2013.02.005] [PMID: 23562832]
[43]
Zhong F, Jiang Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Front Endocrinol (Lausanne) 2019; 10: 101.
[http://dx.doi.org/10.3389/fendo.2019.00101] [PMID: 30842756]
[44]
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 2018; 7(3): R114-25.
[http://dx.doi.org/10.1530/EC-18-0012] [PMID: 29555660]
[45]
Arutyunyan IV, Fatkhudinov TK, Makarov AV, Elchaninov AV, Sukhikh GT. Regenerative medicine of pancreatic islets. World J Gastroenterol 2020; 26(22): 2948-66.
[http://dx.doi.org/10.3748/wjg.v26.i22.2948] [PMID: 32587441]
[46]
Holditch SJ, Terzic A, Ikeda Y. Concise review: pluripotent stem cell-based regenerative applications for failing β-cell function. Stem Cells Transl Med 2014; 3(5): 653-61.
[http://dx.doi.org/10.5966/sctm.2013-0184] [PMID: 24646490]
[47]
Tran R, Moraes C, Hoesli CA. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Sci Rep 2020; 10(1): 1190.
[http://dx.doi.org/10.1038/s41598-020-57787-0] [PMID: 31988329]
[48]
Kaneto H, Matsuoka TA. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int J Mol Sci 2015; 16(3): 6281-97.
[http://dx.doi.org/10.3390/ijms16036281] [PMID: 25794287]
[49]
Meivar-Levy I, Ferber S. Liver to Pancreas Transdifferentiation. Curr Diab Rep 2019; 19(9): 76.
[http://dx.doi.org/10.1007/s11892-019-1198-2] [PMID: 31375924]
[50]
Cim A, Sawyer GJ, Zhang X, et al. In vivo studies on non-viral transdifferentiation of liver cells towards pancreatic β cells. J Endocrinol 2012; 214(3): 277-88.
[http://dx.doi.org/10.1530/JOE-12-0033] [PMID: 22685335]
[51]
Chaker Z, Aïd S, Berry H, Holzenberger M. Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging. Aging Cell 2015; 14(5): 847-56.
[http://dx.doi.org/10.1111/acel.12365] [PMID: 26219530]
[52]
Zhou J, Sun J. A Revolution in Reprogramming: Small Molecules. Curr Mol Med 2019; 19(2): 77-90.
[http://dx.doi.org/10.2174/1566524019666190325113945] [PMID: 30914022]
[53]
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2019; 20(2): 241-54.
[http://dx.doi.org/10.2174/1389450119666180801122551] [PMID: 30068271]
[54]
Muniyandi P, Maekawa T, Hanajiri T, Palaninathan V. Direct Cardiac Reprogramming with Engineered miRNA Scaffolds. Curr Pharm Des 2020; 26(34): 4285-303.
[http://dx.doi.org/10.2174/1381612826666200327161112] [PMID: 32216733]
[55]
Lehmann M, Canatelli-Mallat M, Chiavellini P, Cónsole GM, Gallardo MD, Goya RG. Partial Reprogramming As An Emerging Strategy for Safe Induced Cell Generation and Rejuvenation. Curr Gene Ther 2019; 19(4): 248-54.
[http://dx.doi.org/10.2174/1566523219666190902154511] [PMID: 31475896]
[56]
Wang J, Wang H. Oxidative Stress in Pancreatic Beta Cell Regeneration. Oxid Med Cell Longev 2017; 2017: 1930261.
[http://dx.doi.org/10.1155/2017/1930261] [PMID: 28845211]
[57]
Marzoog B A, Vlasova T I. Membrane Lipids Behavior in Norm and Disease Exp Mol Pathol
[58]
Noso S, Kataoka K, Kawabata Y, et al. Insulin transactivator MafA regulates intrathymic expression of insulin and affects susceptibility to type 1 diabetes. Diabetes 2010; 59(10): 2579-87.
[http://dx.doi.org/10.2337/db10-0476] [PMID: 20682694]
[59]
Noso S. Association Study of MAFA and MAFB Genes Related to Organ-Specific Autoimmunity, with Susceptibility to Type-1 Diabetes in Japanese and Caucasian Populations. J Genet Syndr Gene Ther 2013; 04(11): 204.
[http://dx.doi.org/10.4172/2157-7412.1000204]
[60]
Piccand J, Strasser P, Hodson DJ, et al. Rfx6 maintains the functional identity of adult pancreatic β cells. Cell Rep 2014; 9(6): 2219-32.
[http://dx.doi.org/10.1016/j.celrep.2014.11.033] [PMID: 25497096]
[61]
Chandra V, Albagli-Curiel O, Hastoy B, et al. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells. Cell Rep 2014; 9(6): 2206-18.
[http://dx.doi.org/10.1016/j.celrep.2014.11.010] [PMID: 25497100]
[62]
Dumayne C, Tarussio D, Sanchez-Archidona AR, et al. Klf6 protects β-cells against insulin resistance-induced dedifferentiation. Mol Metab 2020; 35: 100958.
[http://dx.doi.org/10.1016/j.molmet.2020.02.001] [PMID: 32244185]
[63]
Bastidas-Ponce A, Roscioni SS, Burtscher I, et al. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Mol Metab 2017; 6(6): 524-34.
[http://dx.doi.org/10.1016/j.molmet.2017.03.007] [PMID: 28580283]
[64]
Lu J, Xia Q, Zhou Q. How to make insulin-producing pancreatic β cells for diabetes treatment. Sci China Life Sci 2017; 60(3): 239-48.
[http://dx.doi.org/10.1007/s11427-016-0211-3] [PMID: 27796637]
[65]
Swisa A, Avrahami D, Eden N, et al. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 2017; 127(1): 230-43.
[http://dx.doi.org/10.1172/JCI88015] [PMID: 27941241]
[66]
Matsuoka T-A, Kawashima S, Miyatsuka T, et al. Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo. Diabetes 2017; 66(5): 1293-300.
[http://dx.doi.org/10.2337/db16-0887] [PMID: 28223284]
[67]
Chakravarthy H, Gu X, Enge M, et al. Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. Cell Metab 2017; 25(3): 622-34.
[http://dx.doi.org/10.1016/j.cmet.2017.01.009] [PMID: 28215845]
[68]
Raum JC, Gerrish K, Artner I, et al. FoxA2, Nkx2.2, and PDX-1 regulate islet β-cell-specific mafA expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site. Mol Cell Biol 2006; 26(15): 5735-43.
[http://dx.doi.org/10.1128/MCB.00249-06] [PMID: 16847327]
[69]
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2018; 93(1): 364-89.
[http://dx.doi.org/10.1111/brv.12349] [PMID: 28643455]
[70]
Taylor BL, Benthuysen J, Sander M. Postnatal β-cell proliferation and mass expansion is dependent on the transcription factor Nkx6.1. Diabetes 2015; 64(3): 897-903.
[http://dx.doi.org/10.2337/db14-0684] [PMID: 25277396]
[71]
Taylor BL, Liu FF, Sander M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep 2013; 4(6): 1262-75.
[http://dx.doi.org/10.1016/j.celrep.2013.08.010] [PMID: 24035389]
[72]
Schaffer AE, Taylor BL, Benthuysen JR, et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 2013; 9(1): e1003274.
[http://dx.doi.org/10.1371/journal.pgen.1003274] [PMID: 23382704]
[73]
Swisa A, Glaser B, Dor Y. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Front Genet 2017; 8: 21.
[http://dx.doi.org/10.3389/fgene.2017.00021] [PMID: 28270834]
[74]
Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582(7811): 240-5.
[http://dx.doi.org/10.1038/s41586-020-2263-3] [PMID: 32499647]
[75]
Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 New Susceptibility Loci for Type 2 Diabetes in the Japanese Population. Nature Genetics. Nature Publishing Group 2019; pp. 379-86.
[http://dx.doi.org/10.1038/s41588-018-0332-4]
[76]
Ray JD, Kener KB, Bitner BF, et al. Nkx6.1-mediated insulin secretion and β-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 2016; 590(12): 1791-803.
[http://dx.doi.org/10.1002/1873-3468.12208] [PMID: 27164028]
[77]
Tessem JS, Moss LG, Chao LC, et al. Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proc Natl Acad Sci USA 2014; 111(14): 5242-7.
[http://dx.doi.org/10.1073/pnas.1320953111] [PMID: 24706823]
[78]
Hobson A, Draney C, Stratford A, et al. Aurora Kinase A is critical for the Nkx6.1 mediated β-cell proliferation pathway. Islets 2015; 7(1): e1027854.
[http://dx.doi.org/10.1080/19382014.2015.1027854] [PMID: 26030060]
[79]
Draney C, Hobson AE, Grover SG, Jack BO, Tessem JS. Cdk5r1 Overexpression Induces Primary β-Cell Proliferation. J Diabetes Res 2016; 2016: 6375804.
[http://dx.doi.org/10.1155/2016/6375804] [PMID: 26788519]
[80]
Zhou H-Q, Chen Q-C, Qiu Z-T, Tan W-L, Mo C-Q, Gao S-W. Integrative microRNA-mRNA and protein-protein interaction analysis in pancreatic neuroendocrine tumors. Eur Rev Med Pharmacol Sci 2016; 20(13): 2842-52.
[PMID: 27424984]
[81]
Donelan W, Koya V, Li S-W, Yang L-J. Distinct regulation of hepatic nuclear factor 1alpha by NKX6.1 in pancreatic beta cells. J Biol Chem 2010; 285(16): 12181-9.
[http://dx.doi.org/10.1074/jbc.M109.064238] [PMID: 20106981]
[82]
Donelan W, Li S, Wang H, et al. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (HNF1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res 2015; 7(6): 995-1008.
[PMID: 26279745]
[83]
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2020; 13(1): 50-6.
[http://dx.doi.org/10.2174/1874467212666190930144349] [PMID: 31566143]
[84]
Sangan CB, Jover R, Heimberg H, Tosh D. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Mol Cell Endocrinol 2015; 399: 50-9.
[http://dx.doi.org/10.1016/j.mce.2014.09.009] [PMID: 25224487]
[85]
Mao GH, Lu P, Wang YN, et al. Role of PI3K p110β in the differentiation of human embryonic stem cells into islet-like cells. Biochem Biophys Res Commun 2017; 488(1): 109-15.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.018] [PMID: 28479244]
[86]
Conrad E, Dai C, Spaeth J, et al. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 2016; 310(1): E91-E102.
[http://dx.doi.org/10.1152/ajpendo.00285.2015] [PMID: 26554594]
[87]
Huang C, Walker EM, Dadi PK, et al. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 2018; 45(3): 347-361.e5.
[http://dx.doi.org/10.1016/j.devcel.2018.03.013] [PMID: 29656931]
[88]
Chen YJ, Finkbeiner SR, Weinblatt D, et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep 2014; 6(6): 1046-58.
[http://dx.doi.org/10.1016/j.celrep.2014.02.013] [PMID: 24613355]
[89]
Banga A, Greder LV, Dutton JR, Slack JMW. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist. Gene Ther 2014; 21(1): 19-27.
[http://dx.doi.org/10.1038/gt.2013.50] [PMID: 24089243]
[90]
Cohen H, Barash H, Meivar-Levy I, et al. The Wnt/β-catenin pathway determines the predisposition and efficiency of liver-to-pancreas reprogramming. Hepatology 2018; 68(4): 1589-603.
[http://dx.doi.org/10.1002/hep.29827] [PMID: 29394503]
[91]
Xu H, Tsang KS, Chan JCN, et al. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transplant 2013; 22(1): 147-58.
[http://dx.doi.org/10.3727/096368912X653057] [PMID: 22776709]
[92]
Romer AI, Singer RA, Sui L, Egli D, Sussel L. Murine Perinatal β-Cell Proliferation and the Differentiation of Human Stem Cell-Derived Insulin-Expressing Cells Require NEUROD1. Diabetes 2019; 68(12): 2259-71.
[http://dx.doi.org/10.2337/db19-0117] [PMID: 31519700]
[93]
Churchill AJ, Gutiérrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. eLife 2017; 6: e20010.
[http://dx.doi.org/10.7554/eLife.20010] [PMID: 28071588]
[94]
Gutiérrez GD, Bender AS, Cirulli V, et al. Pancreatic β cell identity requires continual repression of non-β cell programs. J Clin Invest 2017; 127(1): 244-59.
[http://dx.doi.org/10.1172/JCI88017] [PMID: 27941248]
[95]
Papizan JB, Singer RA, Tschen SI, et al. Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev 2011; 25(21): 2291-305.
[http://dx.doi.org/10.1101/gad.173039.111] [PMID: 22056672]
[96]
Cavelti-Weder C, Li W, Zumsteg A, et al. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice. Diabetologia 2016; 59(3): 522-32.
[http://dx.doi.org/10.1007/s00125-015-3838-7] [PMID: 26693711]
[97]
Osipovich AB, Long Q, Manduchi E, et al. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141(15): 2939-49.
[http://dx.doi.org/10.1242/dev.104810] [PMID: 25053427]
[98]
Lima MJ, Muir KR, Docherty HM, et al. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas. PLoS One 2016; 11(5): e0156204.
[http://dx.doi.org/10.1371/journal.pone.0156204] [PMID: 27243814]
[99]
McKimpson WM, Accili D. Reprogramming Cells to Make Insulin. J Endocr Soc 2019; 3(6): 1214-26.
[http://dx.doi.org/10.1210/js.2019-00040] [PMID: 31187080]
[100]
Furuyama K, Chera S, van Gurp L, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 2019; 567(7746): 43-8.
[http://dx.doi.org/10.1038/s41586-019-0942-8] [PMID: 30760930]
[101]
Benthuysen JR, Carrano AC, Sander M. Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Invest 2016; 126(10): 3651-60.
[http://dx.doi.org/10.1172/JCI87439] [PMID: 27694741]
[102]
Jawahar AP, Narayanan S, Loganathan G, et al. Ductal Cell Reprogramming to Insulin-Producing Beta-Like Cells as a Potential Beta Cell Replacement Source for Chronic Pancreatitis. Curr Stem Cell Res Ther 2019; 14(1): 65-74.
[http://dx.doi.org/10.2174/1574888X13666180918092729] [PMID: 30227823]
[103]
Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016; 150(5): 1098-112.
[http://dx.doi.org/10.1053/j.gastro.2015.12.042] [PMID: 26774180]
[104]
McCauley HA, Wells JM. Sweet Relief: Reprogramming Gastric Endocrine Cells to Make Insulin. Cell Stem Cell 2016; 18(3): 295-7.
[http://dx.doi.org/10.1016/j.stem.2016.02.009] [PMID: 26942844]
[105]
Lee S-H, Rhee M, Kim J-W, Yoon K-H. Generation of Insulin-Expressing Cells in Mouse Small Intestine by Pdx1, MafA, and BETA2/NeuroD. Diabetes Metab J 2017; 41(5): 405-16.
[http://dx.doi.org/10.4093/dmj.2017.41.5.405] [PMID: 29086539]
[106]
Ryu GR, Lee E, Kim JJ, et al. Comparison of enteroendocrine cells and pancreatic β-cells using gene expression profiling and insulin gene methylation. PLoS One 2018; 13(10): e0206401.
[http://dx.doi.org/10.1371/journal.pone.0206401] [PMID: 30379923]
[107]
Bouchi R, Foo KS, Hua H, et al. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat Commun 2014; 5: 4242.
[http://dx.doi.org/10.1038/ncomms5242] [PMID: 24979718]
[108]
Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation Nat Genet 2012; 44(4): 406-412, S1.
[http://dx.doi.org/10.1038/ng.2215] [PMID: 22406641]
[109]
Cogger KF, Sinha A, Sarangi F, et al. Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 2017; 8(1): 331.
[http://dx.doi.org/10.1038/s41467-017-00561-0] [PMID: 28835709]
[110]
Ye J, Koumenis C. ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis. Curr Mol Med 2009; 9(4): 411-6.
[http://dx.doi.org/10.2174/156652409788167096] [PMID: 19519398]
[111]
Huh HD, Kim DH, Jeong H-S, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8(6): 600.
[http://dx.doi.org/10.3390/cells8060600] [PMID: 31212916]
[112]
Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA. Human Pancreas DevelopmentDevelopment. Cambridge: Company of Biologists Ltd 2015; pp. 3126-37.
[http://dx.doi.org/10.1242/dev.120063]
[113]
Kim K, Zhao R, Doi A, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 2011; 29(12): 1117-9. 2015; 3126-37.
[http://dx.doi.org/10.1038/nbt.2052] [PMID: 22119740]