A Concise Overview of Biosensing Technologies for the Detection of Alzheimer's Disease Biomarkers

Page: [634 - 644] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Abstract: Alzheimer's disease (AD) is a brain-linked pathophysiological condition with neuronal degeneration and cognition dysfunctions and other debilitations. Due to the growing prevalence of AD, there is a highly commended trend to accelerate and develop analytical technologies for easy, costeffective, and sensitive detection of AD biomarkers. Biosensors are commanding analytical devices that can conduct biological responses on transducers into measurable signals. This review focuses on up-todate developmets, contests, and tendencies regarding AD biosensing principally, with the emphasis on the exclusive possessions of nanomaterials. In the last decade, remarkable advancements have been achieved to the progression of biosensors, predominantly optical and electrochemical, for the detection of AD biomarkers. These analytical devices can assist the case finding and management of AD.

Keywords: Alzheimer’s disease, biosensors, biomarkers, tau protein, amyloid-β, apolipoprotein E, nanomaterials.

Graphical Abstract

[1]
Farkhondeh, T.; Samarghandian, S.; Shahri, A.M.P.; Samini, F. The neuroprotective effects of thymoquinone: A review. Dose Response, 2018, 16(2)1559325818761455
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[2]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[3]
Hegnerová, K.; Bocková, M.; Vaisocherová, H.; Krištofiková, Z.; Říčný, J.; Řípová, D.; Homola, J. Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker. Sens. Actuators B Chem., 2009, 139(1), 69-73.
[http://dx.doi.org/10.1016/j.snb.2008.09.006]
[4]
2018 Alzheimer’s disease facts and figures. Alzheimers Dement., 2018, 14(3), 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[5]
Shafiee, A.; Ghadiri, E.; Kassis, J.; Pourhabibi Zarandi, N.; Atala, A. Biosensing technologies for medical applications, manufacturing, and regenerative medicine. Curr. Stem Cell Rep., 2018, 4(2), 105-115.
[http://dx.doi.org/10.1007/s40778-018-0123-y]
[6]
Abreu, C.M.; Soares-Dos-Reis, R.; Melo, P.N.; Relvas, J.B.; Guimarães, J.; Sá, M.J.; Cruz, A.P.; Mendes Pinto, I. Emerging biosensing technologies for neuroinflammatory and neurodegenerative disease diagnostics. Front. Mol. Neurosci., 2018, 11(164), 164.
[http://dx.doi.org/10.3389/fnmol.2018.00164] [PMID: 29867354]
[7]
Rai, S.N.; Mishra, D.; Singh, P.; Vamanu, E.; Singh, M.P. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed. Pharmacother., 2021, 137111377
[http://dx.doi.org/10.1016/j.biopha.2021.111377] [PMID: 33601145]
[8]
Makhouri, F.R.; Ghasemi, J.B. In silico studies in drug research against neurodegenerative diseases. Curr. Neuropharmacol., 2018, 16(6), 664-725.
[http://dx.doi.org/10.2174/1570159X15666170823095628] [PMID: 28831921]
[9]
Maruca, A.; Moraca, F.; Rocca, R.; Molisani, F.; Alcaro, F.; Gidaro, M.C.; Alcaro, S.; Costa, G.; Ortuso, F. Chemoinformatic database building and in silico hit-identification of potential multi-targeting bioactive compounds extracted from mushroom species. Molecules, 2017, 22(9)E1571
[http://dx.doi.org/10.3390/molecules22091571] [PMID: 32961649]
[10]
Sousa, R.M.; Ferri, C.P.; Acosta, D.; Albanese, E.; Guerra, M.; Huang, Y.; Jacob, K.S.; Jotheeswaran, A.T.; Rodriguez, J.J.L.; Pichardo, G.R.; Rodriguez, M.C.; Salas, A.; Sosa, A.L.; Williams, J.; Zuniga, T.; Prince, M. Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: A 10/66 Dementia Research Group population-based survey. Lancet, 2009, 374(9704), 1821-1830.
[http://dx.doi.org/10.1016/S0140-6736(09)61829-8] [PMID: 19944863]
[11]
Talebi, M.; Mojab, F. A systematic review of preclinical and clinical studies on therapeutic potential of piper nigrum on cognitive impairment in alzheimer’s disease and other biological conditions of memory loss; Int Pharm Acta, 2020.
[12]
Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement., 2013, 9(1), 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[13]
Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: A Delphi consensus study. Lancet, 2005, 366(9503), 2112-2117.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[14]
Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J. L. Alzheimer's disease prevention: from risk factors to early intervention.Alzheimers Res Ther,, 2017, 9(1), 017-029.
[http://dx.doi.org/10.1186/s13195-017-0297-z]
[15]
Sun, L.; Zhong, Y.; Gui, J.; Wang, X.; Zhuang, X.; Weng, J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int. J. Nanomedicine, 2018, 13, 843-856.
[http://dx.doi.org/10.2147/IJN.S152163] [PMID: 29467574]
[16]
Faizi, M.; Seydi, E.; Abarghuyi, S.; Salimi, A.; Nasoohi, S.; Pourahmad, J. A search for mitochondrial damage in alzheimer’s disease using isolated rat brain mitochondria. Iran. J. Pharm. Res., 2016, 15(Suppl.), 185-195.
[PMID: 28228816]
[17]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[18]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130110590
[http://dx.doi.org/10.1016/j.biopha.2020.110590] [PMID: 32768885]
[19]
Talebi, M.; Talebi, M.; Samarghandian, S. Association of crocus sativus with cognitive dysfunctions and alzheimer’s disease: A systematic review.Biointerface Res Appl Chem, 2021, 11(1)
[20]
Talebi, M.; Talebi, M.; Kakouri, E.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Tarantilis, P.A.; Samarghandian, S. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int. J. Biol. Macromol., 2021, 172, 93-103.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.042] [PMID: 33440210]
[21]
Faizi, M.; Bader, P.L.; Saw, N.; Nguyen, T.V.; Beraki, S.; Wyss-Coray, T.; Longo, F.M.; Shamloo, M. Thy1-hAPP(Lond/Swe+) mouse model of Alzheimer’s disease displays broad behavioral deficits in sensorimotor, cognitive and social function. Brain Behav., 2012, 2(2), 142-154.
[http://dx.doi.org/10.1002/brb3.41] [PMID: 22574282]
[22]
Kivipelto, M.; Helkala, E.L.; Laakso, M.P.; Hänninen, T.; Hallikainen, M.; Alhainen, K.; Soininen, H.; Tuomilehto, J.; Nissinen, A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ, 2001, 322(7300), 1447-1451.
[http://dx.doi.org/10.1136/bmj.322.7300.1447] [PMID: 11408299]
[23]
Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 2014, 76(Pt A), 27-50.,
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[24]
Fuellen, G.; Jansen, L.; Cohen, A.A.; Luyten, W.; Gogol, M.; Simm, A.; Saul, N.; Cirulli, F.; Berry, A.; Antal, P.; Köhling, R.; Wouters, B.; Möller, S. Health and aging: Unifying concepts, scores, biomarkers and pathways. Aging Dis., 2019, 10(4), 883-900.
[http://dx.doi.org/10.14336/AD.2018.1030] [PMID: 31440392]
[25]
Mayeux, R. Biomarkers: potential uses and limitations. NeuroRx, 2004, 1(2), 182-188.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[26]
Hyman, B.T.; Phelps, C.H.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Carrillo, M.C.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; Mirra, S.S.; Nelson, P.T.; Schneider, J.A.; Thal, D.R.; Thies, B.; Trojanowski, J.Q.; Vinters, H.V.; Montine, T.J. National institute on aging-alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement., 2012, 8(1), 1-13.
[http://dx.doi.org/10.1016/j.jalz.2011.10.007] [PMID: 22265587]
[27]
Kanekiyo, T.; Xu, H.; Bu, G. ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron, 2014, 81(4), 740-754.
[http://dx.doi.org/10.1016/j.neuron.2014.01.045] [PMID: 24559670]
[28]
Braak, H.; Del Tredici, K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 2015, 138(Pt 10), 2814-2833.
[http://dx.doi.org/10.1093/brain/awv236] [PMID: 26283673]
[29]
Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R.P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; Lopez del Amo, J.M.; Grüning, B.A.; Wang, Q.; Schmidt, M.R.; Lurz, R.; Anwyl, R.; Schnoegl, S.; Fändrich, M.; Frank, R.F.; Reif, B.; Günther, S.; Walsh, D.M.; Wanker, E.E. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol., 2011, 8(1), 93-101.
[http://dx.doi.org/10.1038/nchembio.719] [PMID: 22101602]
[30]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3 Pt 1), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[31]
Talebi, M.; İlgün, S.; Ebrahimi, V.; Talebi, M.; Farkhondeh, T.; Ebrahimi, H.; Samarghandian, S. Zingiber officinale ameliorates Alzheimer’s disease and cognitive impairments: Lessons from preclinical studies. Biomed. Pharmacother., 2021, 133111088
[http://dx.doi.org/10.1016/j.biopha.2020.111088] [PMID: 33378982]
[32]
Reitz, C.; Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[33]
van Oijen, M.; Hofman, A.; Soares, H.D.; Koudstaal, P.J.; Breteler, M.M. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol., 2006, 5(8), 655-660.
[http://dx.doi.org/10.1016/S1474-4422(06)70501-4] [PMID: 16857570]
[34]
Karki, H.P.; Jang, Y.; Jung, J.; Oh, J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer’s disease. J. Nanobiotechnology, 2021, 19(1), 72.
[http://dx.doi.org/10.1186/s12951-021-00814-7] [PMID: 33750392]
[35]
Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol., 2018, 14(11), 639-652.
[http://dx.doi.org/10.1038/s41582-018-0079-7] [PMID: 30297701]
[36]
Mayeux, R.; Honig, L. S.; Tang, M.-X.; Manly, J.; Stern, Y.; Schupf, N.; Mehta, P. D. Plasma Aβ40 and Aβ42 and Alzheimer’s disease.Relation to age, mortality, and risk, 2003, 61(9), 1185-1190.,
[37]
Graff-Radford, N.R.; Crook, J.E.; Lucas, J.; Boeve, B.F.; Knopman, D.S.; Ivnik, R.J.; Smith, G.E.; Younkin, L.H.; Petersen, R.C.; Younkin, S.G. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol., 2007, 64(3), 354-362.
[http://dx.doi.org/10.1001/archneur.64.3.354] [PMID: 17353377]
[38]
Zetterberg, H.; Wilson, D.; Andreasson, U.; Minthon, L.; Blennow, K.; Randall, J.; Hansson, O. Plasma tau levels in Alzheimer’s disease. Alzheimers Res. Ther., 2013, 5(2), 9.
[http://dx.doi.org/10.1186/alzrt163] [PMID: 23551972]
[39]
Mattsson, N.; Zetterberg, H.; Janelidze, S.; Insel, P.S.; Andreasson, U.; Stomrud, E.; Palmqvist, S.; Baker, D.; Tan Hehir, C.A.; Jeromin, A.; Hanlon, D.; Song, L.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.W.; Hansson, O.; Blennow, K. Plasma tau in Alzheimer disease. Neurology, 2016, 87(17), 1827-1835.
[http://dx.doi.org/10.1212/WNL.0000000000003246] [PMID: 27694257]
[40]
Benussi, A.; Karikari, T.K.; Ashton, N.; Gazzina, S.; Premi, E.; Benussi, L.; Ghidoni, R.; Rodriguez, J.L.; Emeršič, A.; Simrén, J.; Binetti, G.; Fostinelli, S.; Giunta, M.; Gasparotti, R.; Zetterberg, H.; Blennow, K.; Borroni, B. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry, 2020, 91(9), 960-967.
[http://dx.doi.org/10.1136/jnnp-2020-323487] [PMID: 32611664]
[41]
Molinuevo, J.L.; Ayton, S.; Batrla, R.; Bednar, M.M.; Bittner, T.; Cummings, J.; Fagan, A.M.; Hampel, H.; Mielke, M.M.; Mikulskis, A.; O’Bryant, S.; Scheltens, P.; Sevigny, J.; Shaw, L.M.; Soares, H.D.; Tong, G.; Trojanowski, J.Q.; Zetterberg, H.; Blennow, K. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol., 2018, 136(6), 821-853.
[http://dx.doi.org/10.1007/s00401-018-1932-x] [PMID: 30488277]
[42]
Zou, K.; Abdullah, M.; Michikawa, M. Current biomarkers for alzheimer’s disease: From CSF to blood. J. Pers. Med., 2020, 10(3)E85
[http://dx.doi.org/10.3390/jpm10030085] [PMID: 32806668]
[43]
Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol., 2010, 45(1), 30-40.
[http://dx.doi.org/10.1016/j.exger.2009.10.010] [PMID: 19853650]
[44]
Blennow, K.; Dubois, B.; Fagan, A.M.; Lewczuk, P.; de Leon, M.J.; Hampel, H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement., 2015, 11(1), 58-69.
[http://dx.doi.org/10.1016/j.jalz.2014.02.004] [PMID: 24795085]
[45]
Hansson, O.; Zetterberg, H.; Buchhave, P.; Andreasson, U.; Londos, E.; Minthon, L.; Blennow, K. Prediction of Alzheimer’s disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2007, 23(5), 316-320.
[http://dx.doi.org/10.1159/000100926] [PMID: 17374949]
[46]
Bjerke, M.; Engelborghs, S. Cerebrospinal fluid biomarkers for early and differential Alzheimer’s disease diagnosis. J. Alzheimers Dis., 2018, 62(3), 1199-1209.
[http://dx.doi.org/10.3233/JAD-170680] [PMID: 29562530]
[47]
Mikuła, E. Recent advancements in electrochemical biosensors for alzheimer’s disease biomarkers detection. Curr. Med. Chem., 2020, 27, 1-25.
[http://dx.doi.org/10.2174/0929867327666201111141341] [PMID: 33176635]
[48]
Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(3), 131-144.
[http://dx.doi.org/10.1038/nrneurol.2010.4] [PMID: 20157306]
[49]
Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis., 2017, 107, 41-56.
[http://dx.doi.org/10.1016/j.nbd.2016.07.007] [PMID: 27425887]
[50]
Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-Brain barrier: From physiology to disease and back. Physiol. Rev., 2019, 99(1), 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[51]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412-a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[52]
Tibbling, G.; Link, H.; Ohman, S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand. J. Clin. Lab. Invest., 1977, 37(5), 385-390.
[http://dx.doi.org/10.3109/00365517709091496] [PMID: 337459]
[53]
Andersson, M.; Alvarez-Cermeño, J.; Bernardi, G.; Cogato, I.; Fredman, P.; Frederiksen, J.; Fredrikson, S.; Gallo, P.; Grimaldi, L.M.; Grønning, M. Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J. Neurol. Neurosurg. Psychiatry, 1994, 57(8), 897-902.
[http://dx.doi.org/10.1136/jnnp.57.8.897] [PMID: 8057110]
[54]
de Souza, L.C.; Chupin, M.; Lamari, F.; Jardel, C.; Leclercq, D.; Colliot, O.; Lehéricy, S.; Dubois, B.; Sarazin, M. CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(7), 1253-1257.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.022] [PMID: 21489655]
[55]
Tapiola, T.; Alafuzoff, I.; Herukka, S.K.; Parkkinen, L.; Hartikainen, P.; Soininen, H.; Pirttilä, T. Cerebrospinal fluid beta-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol., 2009, 66(3), 382-389.
[http://dx.doi.org/10.1001/archneurol.2008.596] [PMID: 19273758]
[56]
Ost, M.; Nylén, K.; Csajbok, L.; Ohrfelt, A.O.; Tullberg, M.; Wikkelsö, C.; Nellgård, P.; Rosengren, L.; Blennow, K.; Nellgård, B. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology, 2006, 67(9), 1600-1604.
[http://dx.doi.org/10.1212/01.wnl.0000242732.06714.0f] [PMID: 17101890]
[57]
Wattamwar, P.R.; Mathuranath, P.S. An overview of biomarkers in Alzheimer’s disease. Ann. Indian Acad. Neurol., 2010, 13(Suppl. 2), S116-S123.
[http://dx.doi.org/10.4103/0972-2327.74256] [PMID: 21369416]
[58]
Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med., 2018, 284(6), 643-663.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[59]
Anoop, A.; Singh, P.K.; Jacob, R.S.; Maji, S.K. CSF Biomarkers for Alzheimer’s disease Diagnosis. Int. J. Alzheimers Dis., 2010, 2010606802
[http://dx.doi.org/10.4061/2010/606802] [PMID: 20721349]
[60]
Brazaca, L.C.; Sampaio, I.; Zucolotto, V.; Janegitz, B.C. Applications of biosensors in Alzheimer’s disease diagnosis. Talanta, 2020, 210120644
[http://dx.doi.org/10.1016/j.talanta.2019.120644] [PMID: 31987214]
[61]
Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie, 2018, 147, 13-24.
[http://dx.doi.org/10.1016/j.biochi.2017.12.015] [PMID: 29307704]
[62]
Loy, C.T.; Schofield, P.R.; Turner, A.M.; Kwok, J.B. Genetics of dementia. Lancet, 2014, 383(9919), 828-840.
[http://dx.doi.org/10.1016/S0140-6736(13)60630-3] [PMID: 23927914]
[63]
Łuc, M.; Misiak, B.; Pawłowski, M.; Stańczykiewicz, B.; Zabłocka, A.; Szcześniak, D.; Pałęga, A.; Rymaszewska, J. Gut microbiota in dementia. Critical review of novel findings and their potential application. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104110039
[http://dx.doi.org/10.1016/j.pnpbp.2020.110039] [PMID: 32687964]
[64]
Talebi, M.; Kakouri, E.; Talebi, M.; Tarantilis, P.A.; Farkhondeh, T.; İlgün, S.; Pourbagher-Shahri, A.M.; Samarghandian, S. Nutraceuticals-based therapeutic approach: Recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev. Neurother., 2021, 21(6), 625-642.
[http://dx.doi.org/10.1080/14737175.2021.1923479] [PMID: 33910446]
[65]
Nho, K.; Kueider-Paisley, A. MahmoudianDehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han, X.; Kastenmüller, G.; Jia, W.; Xie, G.; Ahmad, S.; Hankemeier, T.; van Duijn, C.M.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers Dement., 2019, 15(2), 232-244.
[http://dx.doi.org/10.1016/j.jalz.2018.08.012] [PMID: 30337152]
[66]
Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[67]
Talebi, M.; Ebrahimi, V.; Rasouli, A.; Razi Soofiyani, S.; Soleimanian, A.; Tarhriz, V. A new insight on feasibility of pro/pre/synbiotics-based therapies in Alzheimer’s disease. Probiotics Antimicrob. Proteins, 2021.
[68]
Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[69]
Clavel, T.; Fallani, M.; Lepage, P.; Levenez, F.; Mathey, J.; Rochet, V.; Sérézat, M.; Sutren, M.; Henderson, G.; Bennetau-Pelissero, C.; Tondu, F.; Blaut, M.; Doré, J.; Coxam, V. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J. Nutr., 2005, 135(12), 2786-2792.
[http://dx.doi.org/10.1093/jn/135.12.2786] [PMID: 16317121]
[70]
Cuervo, A.; Valdés, L.; Salazar, N.; de los Reyes-Gavilán, C.G.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria. J. Agric. Food Chem., 2014, 62(23), 5330-5336.
[http://dx.doi.org/10.1021/jf501546a] [PMID: 24877654]
[71]
Dueñas, M.; Cueva, C.; Muñoz-González, I.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. Studies on modulation of gut microbiota by wine polyphenols: From isolated cultures to omic approaches. Antioxidants, 2015, 4(1), 1-21.
[http://dx.doi.org/10.3390/antiox4010001] [PMID: 26785335]
[72]
Shinohara, K.; Ohashi, Y.; Kawasumi, K.; Terada, A.; Fujisawa, T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe, 2010, 16(5), 510-515.
[http://dx.doi.org/10.1016/j.anaerobe.2010.03.005] [PMID: 20304079]
[73]
Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr., 2011, 93(1), 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[74]
Vamanu, E.; Ene, M.; Biță, B.; Ionescu, C.; Crăciun, L.; Sârbu, I. In vitro human microbiota response to exposure to silver nanoparticles biosynthesized with mushroom extract. Nutrients, 2018, 10(5), 607.
[http://dx.doi.org/10.3390/nu10050607] [PMID: 29757931]
[75]
Wang, L-S.; Leung, Y.Y.; Chang, S-K.; Leight, S.; Knapik-Czajka, M.; Baek, Y.; Shaw, L.M.; Lee, V.M.Y.; Trojanowski, J.Q.; Clark, C.M. Comparison of xMAP and ELISA assays for detecting cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Alzheimers Dis., 2012, 31(2), 439-445.
[http://dx.doi.org/10.3233/JAD-2012-120082] [PMID: 22571982]
[76]
DeBiasi, R.L.; Tyler, K.L. Polymerase chain reaction in the diagnosis and management of central nervous system infections. Arch. Neurol., 1999, 56(10), 1215-1219.
[http://dx.doi.org/10.1001/archneur.56.10.1215] [PMID: 10520937]
[77]
Martinez, B.; Peplow, P.V. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: Advances and limitations. Neural Regen. Res., 2019, 14(2), 242-255.
[http://dx.doi.org/10.4103/1673-5374.244784] [PMID: 30531004]
[78]
Ghosh, R.; Gilda, J.E.; Gomes, A.V. The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev. Proteomics, 2014, 11(5), 549-560.
[http://dx.doi.org/10.1586/14789450.2014.939635] [PMID: 25059473]
[79]
Yao, F.; Zhang, K.; Zhang, Y.; Guo, Y.; Li, A.; Xiao, S.; Liu, Q.; Shen, L.; Ni, J. Identification of blood biomarkers for alzheimer’s disease through computational prediction and experimental validation. Front. Neurol., 2019, 9, 1158-1158.
[http://dx.doi.org/10.3389/fneur.2018.01158] [PMID: 30671019]
[80]
Putzbach, W.; Ronkainen, N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors (Basel), 2013, 13(4), 4811-4840.
[http://dx.doi.org/10.3390/s130404811] [PMID: 23580051]
[81]
Shankar, G.M.; Leissring, M.A.; Adame, A.; Sun, X.; Spooner, E.; Masliah, E.; Selkoe, D.J.; Lemere, C.A.; Walsh, D.M. Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol. Dis., 2009, 36(2), 293-302.
[http://dx.doi.org/10.1016/j.nbd.2009.07.021] [PMID: 19660551]
[82]
Liu, Y.; Qing, H.; Deng, Y. Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int. J. Mol. Sci., 2014, 15(5), 7865-7882.
[http://dx.doi.org/10.3390/ijms15057865] [PMID: 24806343]
[83]
Kehoe, E.G.; McNulty, J.P.; Mullins, P.G.; Bokde, A.L. Advances in MRI biomarkers for the diagnosis of Alzheimer’s disease. Biomarkers Med., 2014, 8(9), 1151-1169.
[http://dx.doi.org/10.2217/bmm.14.42] [PMID: 25402585]
[84]
Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(4), a006213-a006213.
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[85]
Sarin, H. Magnetic resonance imageable macromolecular probes for the diagnosis of solid malignancies and inflammatory disease states.Proc 9th Indo Global Summit on Cancer Therapy, 2015, 7(Suppl (10))51. J Cancer Sci Ther.
[86]
Bloudek, L.M.; Spackman, D.E.; Blankenburg, M.; Sullivan, S.D. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(4), 627-645.
[http://dx.doi.org/10.3233/JAD-2011-110458] [PMID: 21694448]
[87]
Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med., 2014, 39(10), e413-e422.
[http://dx.doi.org/10.1097/RLU.0000000000000547] [PMID: 25199063]
[88]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[89]
Carneiro, P.; Morais, S.; Pereira, M.C. Nanomaterials towards biosensing of Alzheimer’s disease biomarkers. Nanomaterials (Basel), 2019, 9(12), 1663.
[http://dx.doi.org/10.3390/nano9121663] [PMID: 31766693]
[90]
Damborský, P.; Švitel, J. Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[91]
Qie, Z.; Ning, B.; Liu, M.; Bai, J.; Peng, Y.; Song, N.; Lv, Z.; Wang, Y.; Sun, S.; Su, X.; Zhang, Y.; Gao, Z. Fast detection of atrazine in corn using thermometric biosensors. Analyst (Lond.), 2013, 138(17), 5151-5156.
[http://dx.doi.org/10.1039/C3AN00490B] [PMID: 23837172]
[92]
Hernandez-Vargas, G.; Sosa-Hernández, J.E.; Saldarriaga-Hernandez, S.; Villalba-Rodríguez, A.M.; Parra-Saldivar, R.; Iqbal, H.M.N. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors (Basel), 2018, 8(2), 29.
[http://dx.doi.org/10.3390/bios8020029] [PMID: 29587374]
[93]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2017, 178.
[PMID: 29136925]
[94]
Ameri, M.; Shabaninejad, Z.; Movahedpour, A.; Sahebkar, A.; Mohammadi, S.; Hosseindoost, S.; Ebrahimi, M.S.; Savardashtaki, A.; Karimipour, M.; Mirzaei, H. Biosensors for detection of Tau protein as an Alzheimer’s disease marker. Int. J. Biol. Macromol., 2020, 162, 1100-1108.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.239] [PMID: 32603732]
[95]
Mehrotra, P. Biosensors and their applications – A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[96]
Zhang, X.; Guo, Q.; Cui, D. Recent advances in nanotechnology applied to biosensors. Sensors (Basel), 2009, 9(2), 1033-1053.
[http://dx.doi.org/10.3390/s90201033] [PMID: 22399954]
[97]
Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(3), 291-304.
[http://dx.doi.org/10.1002/wnan.84] [PMID: 20336708]
[98]
Ma, F.; Li, C.C.; Zhang, C.Y. Development of quantum dot-based biosensors: Principles and applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(39), 6173-6190.
[http://dx.doi.org/10.1039/C8TB01869C] [PMID: 32254608]
[99]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2(63), 63.
[PMID: 25221775]
[100]
Li, Y.; Schluesener, H.J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bull., 2010, 43(1), 29-41.
[http://dx.doi.org/10.1007/BF03214964]
[101]
Tîlmaciu, C-M.; Morris, M.C. Carbon nanotube biosensors. Front Chem., 2015, 3(59), 59.
[PMID: 26579509]
[102]
Lee, J.; Kim, J.; Kim, S.; Min, D-H. Biosensors based on graphene oxide and its biomedical application.Adv. Drug Deliv. Rev.,, 2016, 105((Pt B)), 275-287.
[http://dx.doi.org/10.1016/j.addr.2016.06.001] [PMID: 27302607]
[103]
Sireesha, M.; Jagadeesh Babu, V.; Kranthi Kiran, A.S.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites, 2018, 4(2), 36-57.
[http://dx.doi.org/10.1080/20550324.2018.1478765]
[104]
Blennow, K.; Wallin, A.; Fredman, P.; Karlsson, I.; Gottfries, C.G.; Svennerholm, L. Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol. Scand., 1990, 81(4), 323-326.
[http://dx.doi.org/10.1111/j.1600-0404.1990.tb01563.x] [PMID: 2360400]
[105]
Blennow, K.; Wallin, A.; Fredman, P.; Gottfries, C.G.; Karlsson, I.; Svennerholm, L. Intrathecal synthesis of immunoglobulins in patients with Alzheimer’s disease. Eur. Neuropsychopharmacol., 1990, 1(1), 79-81.
[http://dx.doi.org/10.1016/0924-977X(90)90017-5] [PMID: 2136219]
[106]
Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx, 2004, 1(2), 213-225.
[http://dx.doi.org/10.1602/neurorx.1.2.213] [PMID: 15717022]
[107]
Blennow, K.; Hampel, H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol., 2003, 2(10), 605-613.
[http://dx.doi.org/10.1016/S1474-4422(03)00530-1] [PMID: 14505582]
[108]
Kaushik, A.; Shah, P.; Vabbina, P.K.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Yndart, A.; Nair, M. A label-free electrochemical immunosensor for beta-amyloid detection. Anal. Methods, 2016, 8(31), 6115-6120.
[http://dx.doi.org/10.1039/C6AY01910B]
[109]
El-Said, W.A.; Abd El-Hameed, K.; Abo El-Maali, N.; Sayyed, H.G. Label-free electrochemical sensor for ex-vivo monitoring of alzheimer’s disease biomarker. Electroanalysis, 2017, 29(3), 748-755.
[http://dx.doi.org/10.1002/elan.201600467]
[110]
Lien, T.T.N.; Takamura, Y.; Tamiya, E.; Vestergaard, M.C. Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal. Chim. Acta, 2015, 892, 69-76.
[http://dx.doi.org/10.1016/j.aca.2015.08.036] [PMID: 26388476]
[111]
Lee, Y.K.; Lee, K-S.; Kim, W.M.; Sohn, Y-S. Detection of amyloid-β42 using a waveguide-coupled bimetallic surface plasmon resonance sensor chip in the intensity measurement mode. PLoS One, 2014, 9(6)e98992
[http://dx.doi.org/10.1371/journal.pone.0098992] [PMID: 24911167]
[112]
Kang, M.K.; Lee, J.; Nguyen, A.H.; Sim, S.J. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer’s disease. Biosens. Bioelectron., 2015, 72, 197-204.
[http://dx.doi.org/10.1016/j.bios.2015.05.017] [PMID: 25982728]
[113]
Diba, F.S.; Kim, S.; Lee, H.J. Electrochemical immunoassay for amyloid-beta 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Catal. Today, 2017, 295, 41-47.
[http://dx.doi.org/10.1016/j.cattod.2017.02.039]
[114]
Oh, J.; Yoo, G.; Chang, Y.W.; Kim, H.J.; Jose, J.; Kim, E.; Pyun, J.C.; Yoo, K.H. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron., 2013, 50, 345-350.
[http://dx.doi.org/10.1016/j.bios.2013.07.004] [PMID: 23891796]
[115]
Yoo, Y.K.; Yoon, D.S.; Kim, G.; Kim, J.; Han, S.I.; Lee, J.; Chae, M-S.; Lee, S-M.; Lee, K.H.; Hwang, K.S.; Lee, J.H. An enhanced platform to analyse low-affinity amyloid β protein by integration of electrical detection and preconcentrator. Sci. Rep., 2017, 7(1), 14303-14303.
[http://dx.doi.org/10.1038/s41598-017-14338-4] [PMID: 29084978]
[116]
Yu, Y.; Wang, P.; Zhu, X.; Peng, Q.; Zhou, Y.; Yin, T.; Liang, Y.; Yin, X. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst (Lond.), 2017, 143(1), 323-331.
[http://dx.doi.org/10.1039/C7AN01683B] [PMID: 29192910]
[117]
Rushworth, J.V.; Ahmed, A.; Griffiths, H.H.; Pollock, N.M.; Hooper, N.M.; Millner, P.A. A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron., 2014, 56, 83-90.
[http://dx.doi.org/10.1016/j.bios.2013.12.036] [PMID: 24480125]
[118]
Qin, J.; Cho, M.; Lee, Y. Ferrocene-encapsulated zn zeolitic imidazole framework (zif-8) for optical and electrochemical sensing of amyloid-β oligomers and for the early diagnosis of alzheimer’s disease. ACS Appl. Mater. Interfaces, 2019, 11(12), 11743-11748.
[http://dx.doi.org/10.1021/acsami.8b21425] [PMID: 30843389]
[119]
Li, H.; Cao, Y.; Wu, X.; Ye, Z.; Li, G. Peptide-based electrochemical biosensor for amyloid β 1-42 soluble oligomer assay. Talanta, 2012, 93, 358-363.
[http://dx.doi.org/10.1016/j.talanta.2012.02.055] [PMID: 22483923]
[120]
Wang, S.X.; Acha, D.; Shah, A.J.; Hills, F.; Roitt, I.; Demosthenous, A.; Bayford, R.H. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens. Bioelectron., 2017, 92, 482-488.
[http://dx.doi.org/10.1016/j.bios.2016.10.077] [PMID: 27829556]
[121]
Esteves-Villanueva, J.O.; Trzeciakiewicz, H.; Martic, S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst (Lond.), 2014, 139(11), 2823-2831.
[http://dx.doi.org/10.1039/C4AN00204K] [PMID: 24740472]
[122]
Cheng, X.R.; Hau, B.Y.; Endo, T.; Kerman, K. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens. Bioelectron., 2014, 53, 513-518.
[http://dx.doi.org/10.1016/j.bios.2013.10.003] [PMID: 24220345]
[123]
Congur, G.; Eksin, E.; Erdem, A. Impedimetric detection of microrna at graphene oxide modified sensors.Electrochim Acta,, 2015, 172(Cmplete), 20-27.
[http://dx.doi.org/10.1016/j.electacta.2015.03.210]
[124]
Azimzadeh, M.; Nasirizadeh, N.; Rahaie, M.; Naderi-Manesh, H. Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Advances, 2017, 7(88), 55709-55719.
[http://dx.doi.org/10.1039/C7RA09767K]
[125]
Moreira, F.T.C.; Sale, M.G.F.; Di Lorenzo, M. Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens. Bioelectron., 2017, 87, 607-614.
[http://dx.doi.org/10.1016/j.bios.2016.08.104] [PMID: 27616286]
[126]
Chae, M-S.; Yoo, Y.K.; Kim, J.; Kim, T.G.; Hwang, K.S. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sens. Actuators B Chem., 2018, 272, 448-458.
[http://dx.doi.org/10.1016/j.snb.2018.06.010]
[127]
Farkhondeh, T; Samarghandian, S; Pourbagher-Shahri, A.M; Sedaghat, M The impact of curcumin and its modified formulations on Alzheimer’s disease. J. Cell. Physiol., 2019, 234(10), 16953-65.
[http://dx.doi.org/10.3791/55418] [PMID: 28518111]
[128]
Doong, R.A.; Lee, P.S.; Anitha, K. Simultaneous determination of biomarkers for Alzheimer’s disease using sol-gel-derived optical array biosensor. Biosens. Bioelectron., 2010, 25(11), 2464-2469.
[http://dx.doi.org/10.1016/j.bios.2010.04.005] [PMID: 20444591]
[129]
Zhu, G.; Lee, H.J. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens. Bioelectron., 2017, 89(Pt 2), 959-963.
[http://dx.doi.org/10.1016/j.bios.2016.09.080] [PMID: 27816594]
[130]
Islam, K.; Damiati, S.; Sethi, J.; Suhail, A.; Pan, G. Development of a label-free immunosensor for clustering detection as an Alzheimer’s biomarker. Sensors (Basel), 2018, 18(1)E308
[http://dx.doi.org/10.3390/s18010308] [PMID: 29361679]
[131]
Brazaca, L.C.; Moreto, J.R.; Martín, A.; Tehrani, F.; Wang, J.; Zucolotto, V. Colorimetric paper-based immunosensor for simultaneous determination of fetuin b and clusterin toward early Alzheimer’s diagnosis. ACS Nano, 2019, 13(11), 13325-13332.
[http://dx.doi.org/10.1021/acsnano.9b06571] [PMID: 31661258]