A Review Study of the Influences of Dendrimer Nanoparticles on Stored Platelet in Order to Treat Patients (2001-2020)

Page: [304 - 318] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Platelets are sensitive to chilling, so the optimal storage temperature for maintaining normal function and structure in platelets is 22-24 °C up to 3-5 days.

Introduction: Platelets are important blood cells involved in immunity, inflammation, and thrombosis. Today, platelet products are widely used to prevent bleeding in patients with thrombocytopenia and coagulopathy disorders. As a result, maintaining the quality of these products is very important.

Methods: In this review study, the reported influences of various dendrimers on platelets from 2001 to 2020 were investigated.

Results: The results showed that positively charged dendrimers can cause platelet aggregation and activation during platelet storage time through their amine residues. In addition to surface charge, high generations, molecular weight and concentration are not recommended in the field of platelet storage and treatment. In contrast, negatively charged dendrimers, usually used at lower generations with proper molecular weight, lower size (less than 100 nm) and their carboxyl residues, cannot induce adverse effects on platelets during storage time. In addition, the results of this study revealed that PEGylation of dendrimers and platelets can improve platelet storage conditions.

Conclusion: As anionic dendrimers can improve platelet storage time without inducing significant changes in morphology and function of platelets, they are recommended in the field of platelet storage and treatment.

Keywords: Dendrimer, platelet, storage condition, platelet products, PEGylation, coagulopathy disorders.

Graphical Abstract

[1]
Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth., 2014, 58(5), 515-523.
[http://dx.doi.org/10.4103/0019-5049.144643] [PMID: 25535411]
[2]
Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res., 2018, 122(2), 337-351.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310795] [PMID: 29348254]
[3]
McKay, D.G.; Linder, M.M.; Cruse, V.K. Mechanism of thrombosis of the microcirculation. Am. J. Pathol., 1971, 63(2), 231-254.
[PMID: 5090639]
[4]
Arya, R.C.; Wander, G.; Gupta, P. Blood component therapy: Which, when and how much. J. Anaesthesiol. Clin. Pharmacol., 2011, 27(2), 278-284.
[http://dx.doi.org/10.4103/0970-9185.81849] [PMID: 21772701]
[5]
Dehghanian, M.; Avani, H.; Mirzaei, B.; Shahcheraghi, F.; Zadsar, M. Bacterial contamination rate of platelet concentrates in Tehran blood center. Sci. J. Iranian Blood Transf. Organiz., 2017, 14(3), 164-174.https://bloodjournal.ir/browse.php?a_id=1058&sid=1&slc_lang=en
[6]
Mittal, K.; Kaur, R. Platelet storage lesion: An update. Asian J. Transfus. Sci., 2015, 9(1), 1-3.
[http://dx.doi.org/10.4103/0973-6247.150933] [PMID: 25722562]
[7]
Coêlho, M.J.D. Monteiro, Tde.C.; Vasquez, F.G.; Silva, K.L.; Dos Santos, K.S.; de Oliveira, V.M.; Cavalcante, Fde.O. Platelet aggregation and quality control of platelet concentrates produced in the Amazon Blood Bank. Rev. Bras. Hematol. Hemoter., 2011, 33(2), 110-114.
[http://dx.doi.org/10.5581/1516-8484.20110030] [PMID: 23284257]
[8]
Ringwald, J.; Antoon, M.; Eckstein, R.; Cardoso, M. Residual aggregates in platelet products: What do we know? Vox Sang., 2014, 106(3), 209-218.
[http://dx.doi.org/10.1111/vox.12089] [PMID: 24117793]
[9]
Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. Part I: Benefits of nanotechnology. Nanomedicine (Lond.), 2013, 8(5), 773-784.
[http://dx.doi.org/10.2217/nnm.13.48] [PMID: 23656264]
[10]
Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. In: Handbook of immunological properties of engineered nanomaterials; , 2016; 2, pp. 261-302.
[http://dx.doi.org/10.1142/9789813140455_0008]
[11]
Lateef, A.; Ojo, S.A.; Elegbede, J.A.; Akinola, P.O.; Akanni, E.O. Nanomedical applications of nanoparticles for blood coagulation disorders. Environmental nanotechnology; Springer, 2018, pp. 243-277. Available at: https://www.springerprofessional.de/en/nanomedical-applications-of-nanoparticles-for-blood-coagulation-/15765640
[12]
Guidetti, G.F.; Consonni, A.; Cipolla, L.; Mustarelli, P.; Balduini, C.; Torti, M. Nanoparticles induce platelet activation in vitro through stimulation of canonical signalling pathways. Nanomedicine (Lond.), 2012, 8(8), 1329-1336.
[http://dx.doi.org/10.1016/j.nano.2012.04.001] [PMID: 22542822]
[13]
Sobot, D.; Mura, S.; Couvreur, P. Nanoparticles: Blood components interactions. Encyclopedia of polymeric nanomaterials; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014, pp. 1-10.
[http://dx.doi.org/10.1007/978-3-642-29648-2_227 ]
[14]
McCarthy, J.R.; Jaffer, F.A. The role of nanomedicine in the imaging and therapy of thrombosis. Nanomedicine (Lond.), 2011, 6(8), 1291-1293.
[http://dx.doi.org/10.2217/nnm.11.128] [PMID: 22026372]
[15]
Cicha, I. Thrombosis: Novel nanomedical concepts of diagnosis and treatment. World J. Cardiol., 2015, 7(8), 434-441.
[http://dx.doi.org/10.4330/wjc.v7.i8.434] [PMID: 26322182]
[16]
Rodriguez-Torres. MdP.; Acosta-Torres, LS.; Diaz-Torres, LA. Heparin-based nanoparticles: An overview of their applications. J. Nanomater., 2018, 2018
[http://dx.doi.org/10.1155/2018/9780489]]
[17]
Abed, H.H.; Alwasiti, E.A.; Tawfeeq, A.T. Streptokinase loading fabrication magnetic nanoparticle supported with tannic acid as a modified thrombolytic agent. Ann. Trop. Med. Health., 2019, 22, 34-47.
[http://dx.doi.org/10.36295/ASRO.2019.22125]
[18]
Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview. Renew. Sustain. Energy Rev., 2016, 62, 767-792.
[http://dx.doi.org/10.1016/j.rser.2016.04.050]
[19]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[20]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[21]
Liu, M.; Fréchet, J.M. Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today, 1999, 2(10), 393-401.
[http://dx.doi.org/10.1016/S1461-5347(99)00203-5] [PMID: 10498919]
[22]
Chauhan, A.S. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[23]
Luong, D.; Kesharwani, P.; Deshmukh, R.; Mohd Amin, M.C.I.; Gupta, U.; Greish, K.; Iyer, A.K. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater., 2016, 43, 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[24]
Han, M-H.; Chen, J.; Wang, J.; Chen, S-L.; Wang, X-T. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J. Biomed. Nanotechnol., 2010, 6(1), 82-92.
[http://dx.doi.org/10.1166/jbn.2010.1096] [PMID: 20499836]
[25]
Roeven, E.; Scheres, L.; Smulders, M.M.J.; Zuilhof, H. Design, Synthesis, and characterization of fully zwitterionic, functionalized dendrimers. ACS Omega, 2019, 4(2), 3000-3011.
[http://dx.doi.org/10.1021/acsomega.8b03521] [PMID: 30847431]
[26]
Wu, L.P.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031] [PMID: 25654320]
[27]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials (Basel), 2019, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[28]
Hsu, H.J.; Bugno, J.; Lee, S.R.; Hong, S. Dendrimer-based nanocarriers: A versatile platform for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1)e1409
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[29]
Araújo. RVd.; Santos, SdS.; Igne Ferreira, E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849.
[http://dx.doi.org/10.3390/molecules23112849]
[30]
Maiti, P.K.; Çaǧın, T.; Wang, G.; Goddard, W.A. Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004, 37(16), 6236-6254.
[http://dx.doi.org/10.1021/ma035629b]
[31]
Dobrovolskaia, M.A.; Patri, A.K.; Simak, J.; Hall, J.B.; Semberova, J.; De Paoli Lacerda, S.H.; McNeil, S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm., 2012, 9(3), 382-393.
[http://dx.doi.org/10.1021/mp200463e] [PMID: 22026635]
[32]
Dobrovolskaia, M.A.; Patri, A.K.; Potter, T.M.; Rodriguez, J.C.; Hall, J.B.; McNeil, S.E. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond.), 2012, 7(2), 245-256.
[http://dx.doi.org/10.2217/nnm.11.105] [PMID: 21957862]
[33]
McGuinnes, C.; Duffin, R.; Brown, S.L.; Mills, N.; Megson, I.L.; Macnee, W.; Johnston, S.; Lu, S.L.; Tran, L.; Li, R.; Wang, X.; Newby, D.E.; Donaldson, K. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol. Sci., 2011, 119(2), 359-368.
[http://dx.doi.org/10.1093/toxsci/kfq349] [PMID: 21123846]
[34]
Greish, K.; Thiagarajan, G.; Herd, H.; Price, R.; Bauer, H.; Hubbard, D.; Burckle, A.; Sadekar, S.; Yu, T.; Anwar, A.; Ray, A.; Ghandehari, H. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 2012, 6(7), 713-723.
[http://dx.doi.org/10.3109/17435390.2011.604442] [PMID: 21793770]
[35]
Jones, C.F.; Campbell, R.A.; Brooks, A.E.; Assemi, S.; Tadjiki, S.; Thiagarajan, G.; Mulcock, C.; Weyrich, A.S.; Brooks, B.D.; Ghandehari, H.; Grainger, D.W. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano, 2012, 6(11), 9900-9910.
[http://dx.doi.org/10.1021/nn303472r] [PMID: 23062017]
[36]
Jones, C.F.; Campbell, R.A.; Franks, Z.; Gibson, C.C.; Thiagarajan, G.; Vieira-de-Abreu, A.; Sukavaneshvar, S.; Mohammad, S.F.; Li, D.Y.; Ghandehari, H.; Weyrich, A.S.; Brooks, B.D.; Grainger, D.W. Cationic PAMAM dendrimers disrupt key platelet functions. Mol. Pharm., 2012, 9(6), 1599-1611.
[http://dx.doi.org/10.1021/mp2006054] [PMID: 22497592]
[37]
Chitlur, M.; Ware, E.; Kannan, S.; Hollon, W.; Buck, S.; Rajyalakshmi, I. Influence of nanopolymers with different end-functionalities on platelets and coagulation. An ex-vivo study. Blood, 2006, 108(11), 4038.
[38]
Šemberová, J. Nanotechnology in the intensive care: Intravascular biocompatibility of carbon nanomaterials-effect of carbon nanotubes on blood platelets. 2012.
[39]
Aisina, R.; Mukhametova, L.; Ivanova, E. Influence cationic and anionic PAMAM dendrimers of low generation on selected hemostatic parameters in vitro. Mater. Sci. Eng. C, 2020, 109, 110605.
[http://dx.doi.org/10.1016/j.msec.2019.110605] [PMID: 32228918]
[40]
Enciso, A.E.; Neun, B.; Rodriguez, J.; Ranjan, A.P.; Dobrovolskaia, M.A.; Simanek, E.E. Nanoparticle effects on human platelets in vitro: A comparison between PAMAM and triazine dendrimers. Molecules, 2016, 21(4), 428.
[http://dx.doi.org/10.3390/molecules21040428] [PMID: 27043508]
[41]
Watala, C.; Karolczak, K.; Kassassir, H.; Talar, M.; Przygodzki, T.; Maczynska, K.; Labieniec-Watala, M. How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of “fibrinogen aggregates” in the presence of polycations. Int. J. Pharm., 2016, 503(1-2), 247-261.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.073] [PMID: 26319628]
[42]
Fu, Y.; Hu, R.; Li, C.; Wang, Q.; Liu, Z.; Xue, W. Effects of poly (amidoamine) dendrimers on the structure and function of key blood components. J. Bioact. Compat. Polym., 2014, 29(2), 165-179.
[http://dx.doi.org/10.1177/0883911514521921]
[43]
Durán-Lara, E.; Guzmán, L.; John, A.; Fuentes, E.; Alarcón, M.; Palomo, I.; Santos, L.S. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur. J. Med. Chem., 2013, 69, 601-608.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.047] [PMID: 24095753]
[44]
Liu, Y.; Pang, Y.; Toh, M.R.; Chiu, G.N. Dual-functionalized poly(amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J. Pharm. Pharmacol., 2015, 67(11), 1492-1502.
[http://dx.doi.org/10.1111/jphp.12457] [PMID: 26303576]
[45]
Li, G.; Zhang, Y.; Tang, W.; Zheng, J. Comprehensive investigation of in vitro hemocompatibility of surface modified polyamidoamine nanocarrier. Clin. Hemorheol. Microcirc., 2019, 74(3), 267-279.
[http://dx.doi.org/10.3233/CH-190641]]
[46]
Li, P.; Zheng, W.; Ma, W.; Li, X.; Li, S.; Zhao, Y. In situ preparation of amino-terminated dendrimers on TiO2 films by generational growth for potential and efficient surface functionalization. Appl. Surf. Sci., 2018, 459, 438-445.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.044]
[47]
Kim, Y.; Hechler, B.; Klutz, A.M.; Gachet, C.; Jacobson, K.A. Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers. Bioconjug. Chem., 2008, 19(2), 406-411.
[http://dx.doi.org/10.1021/bc700327u] [PMID: 18176997]
[48]
de Castro, S.; Maruoka, H.; Hong, K.; Kilbey, S.M., II; Costanzi, S.; Hechler, B.; Brown, G.G., Jr; Gachet, C.; Harden, T.K.; Jacobson, K.A. Functionalized congeners of P2Y1 receptor antagonists: 2-alkynyl (N)-methanocarba 2¢-deoxyadenosine 3¢,5¢-bisphosphate analogues and conjugation to a polyamidoamine (PAMAM) dendrimer carrier. Bioconjug. Chem., 2010, 21(7), 1190-1205.
[http://dx.doi.org/10.1021/bc900569u] [PMID: 20565071]
[49]
Nanda, H.S.; Singh, M.; Steele, T.W. Thrombogenic responses from electrocured tissue adhesives. ECS Trans., 2017, 77(11), 547.
[http://dx.doi.org/10.1149/07711.0547ecst]
[50]
Shah, A.H.; Pokholenko, O.; Nanda, H.S.; Steele, T.W.J. Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. Mater. Sci. Eng. C, 2019, 100, 215-225.
[http://dx.doi.org/10.1016/j.msec.2019.03.001] [PMID: 30948055]
[51]
Hong, S.; Leroueil, P.R.; Janus, E.K.; Peters, J.L.; Kober, M-M.; Islam, M.T.; Orr, B.G.; Baker, J.R., Jr; Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem., 2006, 17(3), 728-734.
[http://dx.doi.org/10.1021/bc060077y] [PMID: 16704211]
[52]
Lee, H.; Larson, R.G. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J. Phys. Chem. B, 2006, 110(37), 18204-18211.
[http://dx.doi.org/10.1021/jp0630830] [PMID: 16970437]
[53]
Mecke, A.; Majoros, I.J.; Patri, A.K.; Baker, J.R., Jr; Holl, M.M.; Orr, B.G. Lipid bilayer disruption by polycationic polymers: The roles of size and chemical functional group. Langmuir, 2005, 21(23), 10348-10354.
[http://dx.doi.org/10.1021/la050629l] [PMID: 16262291]
[54]
Liu, Z.; Jiao, Y.; Wang, T.; Zhang, Y.; Xue, W. Interactions between solubilized polymer molecules and blood components. J. Control. Release, 2012, 160(1), 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.005] [PMID: 22356934]
[55]
Tomaszewski, K.A.; Radomski, M.W.; Santos-Martinez, M.J. Nanodiagnostics, nanopharmacology and nanotoxicology of platelet-vessel wall interactions. Nanomedicine (Lond.), 2015, 10(9), 1451-1475.
[http://dx.doi.org/10.2217/nnm.14.232] [PMID: 25996119]
[56]
Fröhlich, E. Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem., 2016, 23(5), 408-430.
[http://dx.doi.org/10.2174/0929867323666160106151428] [PMID: 26063498]
[57]
Simak, J. The effects of engineered nanomaterials on platelets. In: Handbook of immunological properties of engineered nanomaterials;; , 2016; 2, pp. 193-259.
[http://dx.doi.org/10.1142/9789813140455_0007]
[58]
Matus, M.F.; Vilos, C.; Cisterna, B.A.; Fuentes, E.; Palomo, I. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses. Vascul. Pharmacol., 2018, 101, 1-8.
[http://dx.doi.org/10.1016/j.vph.2017.11.004] [PMID: 29174014]
[59]
Potter, T.M.; Rodriguez, J.C.; Neun, B.W.; Ilinskaya, A.N.; Cedrone, E.; Dobrovolskaia, M.A. In vitro assessment of nanoparticle effects on blood coagulation.Characterization of nanoparticles intended for drug delivery; Springer, 2018, pp. 103-124.
[http://dx.doi.org/10.1007/978-1-4939-7352-1_10]
[60]
de la Harpe, K.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis. Cells, 2019, 8(10), 1209.
[http://dx.doi.org/10.3390/cells8101209] [PMID: 31591302]
[61]
Kumar, S.; Pandey, R.; Bharti, V.; Sharma, N.; Singh, J.B.; Chanchal, A. Evaluation of nanoparticles pyrogenicity. Eur. J. Biomed. Pharm. Sci., 2017, 4, 168-183.
[62]
Dobrovolskaia, M.A. Understanding nanoparticle immunotoxicity to develop safe medical devices; Immune Res. Implanted Mater. Dev, 2017, pp. 63-80.
[http://dx.doi.org/10.1007/978-3-319-45433-7_4]
[63]
Gajbhiye, V.; Kumar, P.; Sharma, A.; Jain, N. Novel pegylated ppi dendritic nanostructures for sustained delivery of anti- inflammatory agent. Curr. Nanosci., 2008, 4, 267-277.
[http://dx.doi.org/10.2174/157341308785161136]
[64]
Ziemba, B.; Janaszewska, A.; Ciepluch, K.; Krotewicz, M.; Fogel, W.A.; Appelhans, D.; Voit, B.; Bryszewska, M.; Klajnert, B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. A, 2011, 99(2), 261-268.
[http://dx.doi.org/10.1002/jbm.a.33196] [PMID: 21976451]
[65]
Ziemba, B.; Halets, I.; Shcharbin, D.; Appelhans, D.; Voit, B.; Pieszynski, I.; Bryszewska, M.; Klajnert, B. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J. Biomed. Mater. Res. A, 2012, 100(11), 2870-2880.
[http://dx.doi.org/10.1002/jbm.a.34222] [PMID: 22623362]
[66]
Franiak-Pietryga, I.; Ziolkowska, E.; Ziemba, B.; Appelhans, D.; Voit, B.; Gora-Tybor, J. Nanoparticles – a novel approach to chronic lymphocytic leukemia treatment? Blood, 2012, 120(21), 4601.
[http://dx.doi.org/10.1182/blood.V120.21.4601.4601]
[67]
Franiak-Pietryga, I.; Ziółkowska, E.; Ziemba, B.; Appelhans, D.; Voit, B.; Szewczyk, M.; Góra-Tybor, J.; Robak, T.; Klajnert, B.; Bryszewska, M. The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: Dense shell G4 PPI. Mol. Pharm., 2013, 10(6), 2490-2501.
[http://dx.doi.org/10.1021/mp400142p] [PMID: 23641871]
[68]
Peña-González, C.E.; Pedziwiatr-Werbicka, E.; Shcharbin, D.; Guerrero-Beltrán, C.; Abashkin, V.; Loznikova, S.; Jiménez, J.L.; Muñoz-Fernández, M.Á.; Bryszewska, M.; Gómez, R.; Sánchez-Nieves, J.; de la Mata, F.J. Gold nanoparticles stabilized by cationic carbosilane dendrons: Synthesis and biological properties. Dalton Trans., 2017, 46(27), 8736-8745.
[http://dx.doi.org/10.1039/C6DT03791G] [PMID: 28091639]
[69]
Pedziwiatr-Werbicka, E; Peña-González, C; Stasiak, K; Ionov, M; Abashkin, V; Loznikova, S.; Gomez, R.; Sanchez-Niever, J.; de la Mata, F.J.; Bryszewska, M. Toxicity of gold nanoparticles stabilized by cationic carbosilane dendrons., 2016.
[70]
Barrios-Gumiel, A.; Sánchez-Nieves, J.; Pedziwiatr-Werbicka, E.; Abashkin, V.; Shcharbina, N.; Shcharbin, D.; Glińska, S.; Ciepluch, K.; Kuc-Ciepluch, D.; Lach, D.; Bryszewska, M.; Gómez, R.; de la Mata, F.J. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int. J. Pharm., 2020, 573118867
[http://dx.doi.org/10.1016/j.ijpharm.2019.118867] [PMID: 31765788]
[71]
Dzmitruk, V.; Pedziwiatr-Werbicka, E.; Shcharbin, D.; de la Mata, F.J.; Gomez, R.; Majoral, J.P. Platelets aggregation induced by dendrimers and their complexes with siRNA and ODN, albumins impact on the process. Platelets, 2015, 12, 139-143.
[72]
Mirzaei, M.; Mohagheghi, M.; Shahbazi-Gahrouei, D.; Khatami, A. Novel nanosized Gd3+-ALGD-G2-C595: In vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J. Nanomed. Nanotechnol., 2012, 3(7), 147-152.
[http://dx.doi.org/10.4172/2157-7439.1000147]
[73]
Hashempour Alamdari, N; Alaei-Beirami, M.; Sadat Shandiz, S.A.; Hejazinia, H.; Rasouli, R.; Saffari, M. Gd3+-asparagine-anionic linear globular dendrimer second-generation G2 complexes: Novel nanobiohybrid theranostics. Contrast Media Mol. Imag., 2017.
[74]
Mehrizi, T.Z.; Ardestani, M.S.; Khamesipour, A.; Hoseini, M.H.M.; Mosaffa, N.; Anissian, A.; Ramezani, A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J. Mater. Sci. Mater. Med., 2018, 29(8), 125.
[http://dx.doi.org/10.1007/s10856-018-6122-9] [PMID: 30056571]
[75]
Zadeh Mehrizi, T.; Khamesipour, A.; Shafiee Ardestani, M.; Ebrahimi Shahmabadi, H.; Haji Molla Hoseini, M.; Mosaffa, N.; Ramezani, A. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: Real-time PCR assay plus. Int. J. Nanomedicine, 2019, 14, 7593-7607.
[http://dx.doi.org/10.2147/IJN.S220410] [PMID: 31802863]
[76]
Zadeh Mehrizi, T.; Mosaffa, N.; Shafiee Ardestani, M.; Khamesipour, A.; Ebrahimi Shahmabadi, H.; Pirali Hamedani, M. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch. Clin. Infect. Dis., 2018, 13(5)
[http://dx.doi.org/10.5812/archcid.80314]
[77]
Alavidjeh, M.S.; Haririan, I.; Khorramizadeh, M.R.; Ghane, Z.Z.; Ardestani, M.S.; Namazi, H. Anionic linear-globular dendrimers: Biocompatible hybrid materials with potential uses in nanomedicine. J. Mater. Sci. Mater. Med., 2010, 21(4), 1121-1133.
[http://dx.doi.org/10.1007/s10856-009-3978-8] [PMID: 20082119]
[78]
Mirzaei, H.; Kazemi, B.; Bandehpour, M.; Shoari, A.; Asgary, V.; Ardestani, M.S.; Madadkar-Sobhani, A.; Cohan, R.A. Computational and nonglycosylated systems: A simpler approach for development of nanosized PEGylated proteins. Drug Des. Devel. Ther., 2016, 10, 1193-1200.
[PMID: 27042012]
[79]
Fernandes, E.G.R.; de Queiroz, A.A.A.; Abraham, G.A.; San Román, J. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J. Mater. Sci. Mater. Med., 2006, 17(2), 105-111.
[http://dx.doi.org/10.1007/s10856-006-6813-5] [PMID: 16502242]
[80]
Wen, J. The chemical modification of hyperbranched polyglycerols for improved bioadhesive and hemostatic properties; University of British Columbia, 2015.
[81]
ibrahimUArdaAHalimeSPreparation of PVA/PAA/PEG/PVP nanofibers with HPMC and aloe vera. Curr. Nanosci., 2013, 9(4), 489-493.
[http://dx.doi.org/10.2174/15734137113099990054]
[82]
Scott, M.D.; Nakane, N.; Maurer-Spurej, E. Cryoprotection of platelets by grafted polymers.Cryopreservation-current advances and evaluations; IntechOpen, 2019.
[83]
Scott, M.D.; Murad, K.L.; Koumpouras, F.; Talbot, M.; Eaton, J.W. Chemical camouflage of antigenic determinants: Stealth erythrocytes. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7566-7571.
[http://dx.doi.org/10.1073/pnas.94.14.7566] [PMID: 9207132]
[84]
Murad, K.L.; Mahany, K.L.; Brugnara, C.; Kuypers, F.A.; Eaton, J.W.; Scott, M.D. Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol). Blood, 1999, 93(6), 2121-2127.
[http://dx.doi.org/10.1182/blood.V93.6.2121.406a30_2121_2127] [PMID: 10068687]
[85]
Bradley, A.J.; Murad, K.L.; Regan, K.L.; Scott, M.D. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: Size does matter. Biochim. Biophys. Acta, 2002, 1561(2), 147-158.
[http://dx.doi.org/10.1016/S0005-2736(02)00339-5] [PMID: 11997115]
[86]
Scott, M.D.; Toyofuku, W.M.; Yang, X.; Raj, M.; Kang, N. Immunocamouflaged RBC for alloimmunized patients. Transfusion medicine and scientific developments,, 2017, 23
[87]
Tarrand, J.; Andersson, B. Compositions and methods for prolonged cell storage; Google Patents, 2018.
[88]
Maurer, E.; Scott, M.D.; Kitamura, N. Cold storage of pegylated platelets at about or below 0° C; Google Patents, 2011.
[89]
Kerrigan, S.W.; Cox, D. Platelet-bacterial interactions. Cell. Mol. Life Sci., 2010, 67(4), 513-523.
[http://dx.doi.org/10.1007/s00018-009-0207-z] [PMID: 20091082]
[90]
Greco, C.A.; Maurer-Spurej, E.; Scott, M.D.; Kalab, M.; Nakane, N.; Ramírez-Arcos, S.M. PEGylation prevents bacteria-induced platelet activation and biofilm formation in platelet concentrates. Vox Sang., 2011, 100(3), 336-339.
[http://dx.doi.org/10.1111/j.1423-0410.2010.01419.x] [PMID: 21392023]
[91]
Nomura, S.; Dan, K.; Hotta, T.; Fujimura, K.; Ikeda, Y. Effects of pegylated recombinant human megakaryocyte growth and development factor in patients with idiopathic thrombocytopenic purpura. Blood, 2002, 100(2), 728-730.
[http://dx.doi.org/10.1182/blood.V100.2.728] [PMID: 12091377]
[92]
Snyder, E.; Perrotta, P.; Rinder, H.; Baril, L.; Nichol, J.; Gilligan, D. Effect of recombinant human megakaryocyte growth and development factor coupled with polyethylene glycol on the platelet storage lesion. Transfusion, 1999, 39(3), 258-264.
[http://dx.doi.org/10.1046/j.1537-2995.1999.39399219281.x] [PMID: 10204587]
[93]
Cerneus, D.; Brown, K.; Harris, R.; End, D.; Molloy, C.; Yurkow, E. Stimulation of platelet production in healthy volunteers by a novel pegylated peptide-based thrombopoietin (tpo) receptor agonist. Blood, 2005, 106(11), 1249.
[http://dx.doi.org/10.1182/blood.V106.11.1249.1249]
[94]
Knight, D.M.; Jordan, R.E.; Kruszynski, M.; Tam, S.H.; Giles-Komar, J.; Treacy, G.; Heavner, G.A. Pharmacodynamic enhancement of the anti-platelet antibody fab abciximab by site-specific pegylation. Platelets, 2004, 15(7), 409-418.
[http://dx.doi.org/10.1080/09537100410001723135] [PMID: 15745312]
[95]
Kim, Y.; Hechler, B.; Gao, Z-G.; Gachet, C.; Jacobson, K.A. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors. Bioconjug. Chem., 2009, 20(10), 1888-1898.
[http://dx.doi.org/10.1021/bc9001689] [PMID: 19785401]
[96]
Fuentes, E.; Yameen, B.; Bong, S-J.; Salvador-Morales, C.; Palomo, I.; Vilos, C. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine (Lond.), 2017, 13(3), 1089-1094.
[http://dx.doi.org/10.1016/j.nano.2016.10.010] [PMID: 27789259]
[97]
Awasthi, V.; Goins, B.; Phillips, W.T. Insertion of poly (ethylene glycol)-lipid reduces the liposome-encapsulated hemoglobin-induced thrombocytopenic reaction. Am. J. Pharmacol. Toxicol., 2007, 2, 98-105.
[http://dx.doi.org/10.3844/ajptsp.2007.98.105]
[98]
Wakamoto, S.; Fujihara, M.; Abe, H.; Sakai, H.; Takeoka, S.; Tsuchida, E.; Ikeda, H.; Ikebuchi, K. Effects of poly(ethyleneglycol)-modified hemoglobin vesicles on agonist-induced platelet aggregation and RANTES release in vitro. Artif. Cells Blood Substit. Immobil. Biotechnol., 2001, 29(3), 191-201.
[http://dx.doi.org/10.1081/BIO-100103043] [PMID: 11358035]
[99]
Bakhaidar, R.; Green, J.; Alfahad, K.; Samanani, S.; Moollan, N.; O’Neill, S.; Ramtoola, Z. Effect of size and concentration of plga-peg nanoparticles on activation and aggregation of washed human platelets. Pharmaceutics, 2019, 11(10), 514.
[http://dx.doi.org/10.3390/pharmaceutics11100514] [PMID: 31590303]
[100]
Santos-Martinez, M.J.; Rahme, K.; Corbalan, J.J.; Faulkner, C.; Holmes, J.D.; Tajber, L.; Medina, C.; Radomski, M.W. Pegylation increases platelet biocompatibility of gold nanoparticles. J. Biomed. Nanotechnol., 2014, 10(6), 1004-1015.
[http://dx.doi.org/10.1166/jbn.2014.1813] [PMID: 24749395]
[101]
He, Z; Li, C; Zhang, X; Zhong, R; Wang, H; Liu, J The effects of gold nanoparticles on the human blood functions. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 720-726.
[http://dx.doi.org/10.1080/21691401.2018.1468769]
[102]
Hajtuch, J.; Hante, N.; Tomczyk, E.; Wojcik, M.; Radomski, M.W.; Santos-Martinez, M.J.; Inkielewicz-Stepniak, I. Effects of functionalized silver nanoparticles on aggregation of human blood platelets. Int. J. Nanomedicine, 2019, 14, 7399-7417.
[http://dx.doi.org/10.2147/IJN.S213499] [PMID: 31571858]
[103]
Vakhrusheva, T.V.; Gusev, A.A.; Gusev, S.A.; Vlasova, I.I. Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicol. Lett., 2013, 221(2), 137-145.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.642] [PMID: 23747415]