The Impacts of PLGA/PEG Triblock Copolymers with Variable Molecular Weights on the Sustained Release of Buprenorphine

Page: [357 - 368] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Objective: Current in-situ injectable implants of buprenorphine (BP) such as Sublocade® consist of N-methyl-2-pyrrolidone (NMP)-dissolved PLGA. To control the initial burst release of Sublocade® during the first 24 hours after injection, we here used a BP in-situ forming composite (ISFC) employing different molecular weights of PLGA-PEG-PLGA triblock.

Methods: The triblock was synthesized by Ring-Opening Polymerization (ROP) using PEG molecules with weights of 1500, 3000, and 4000 Da via the melting method. The specifications of the triblocks were evaluated by 1H-NMR, FTIR, GPC, and DSC. The sol-gel, gel-precipitate temperatures, in-vitro release, and composites’ morphology, degradation, and toxicity were assessed for determining the features of ISFC 1500, ISFC 3000, and ISFC 4000 formulations. ROP was performed successfully via the melting method. The yields of all polymerization reactions were greater than 83.4%.

Results: The PEG 1500 triblock showed both sol-gel and gel-precipitate temperatures, but PEG 3000 and 4000 only showed a sol-precipitate temperature. The values of initial burst release of BP from ISFC 1500, ISFC 3000, and ISFC 4000 were 6.52 ± 0.22%, 12.39 ± 0.61%, and 15.80 ± 0.98%, respectively. BP release from the ISFCs wascompleted over three weeks for ISFC 1500 and 10 days for ISFC 3000 and ISFC 4000. The composites containing PEG 3000 and PEG 4000 were more spongy and porous than PEG 1500. The ISFC 1500 delivered a higher cell viability (95.17 ± 1.15%) compared with ISFC 3000 (86.37 ± 2.25%) and ISFC 4000 (79.70 ± 3.77%).

Conclusion: These results indicated that ISFC 1500 wasbiocompatible and delivered suitable early initial burst reactions compared with ISFC 3000 and 4000 and might be a good candidate for preparing sustained-release formulation of BP.

Keywords: In-situ forming composite, PLGA/PEG triblock, buprenorphine, initial burst release, sustained-release, biodegradable polymers.

Graphical Abstract

[1]
von Fabeck, K.; Boulamery, A.; Glaizal, M.; de Haro, L.; Simon, N. Buprenorphine poisoning in children: A 10-year-experience of Marseille Poison Center. Fundam. Clin. Pharmacol., 2020, 34(2), 265-269.
[http://dx.doi.org/10.1111/fcp.12518] [PMID: 31675453]
[2]
Andersen, J.M.; Høiseth, G.; Nygaard, E. Prenatal exposure to methadone or buprenorphine and long-term outcomes: A meta-analysis. Early Hum. Dev., 2020, 143, 104997.
[http://dx.doi.org/10.1016/j.earlhumdev.2020.104997] [PMID: 32146140]
[3]
Lavonas, E.J.; Banner, W.; Bradt, P.; Bucher-Bartelson, B.; Brown, K.R.; Rajan, P.; Murrelle, L.; Dart, R.C.; Green, J.L. Green, Root causes, clinical effects, and outcomes of unintentional exposures to buprenorphine by young children. J. Pediatrics, 2013, 163(2013), 1377-1383. e1373.
[4]
Walsh, S.; Preston, K.; Stitzer, M.; Cone, E.; Bigelow, G. Clinical pharmacology of buprenorphine: Ceiling effects at high doses. Surv. Anesthesiol., 1995, 39(1), 10.
[http://dx.doi.org/10.1097/00132586-199502000-00012]
[5]
Oroojalian, F.; Haghbin, A.; Baradaran, B.; Hemat, N.; Shahbazi, M.-A. Baghi, H.B. Mokhtarzadeh, A. Hamblin, M.R. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int. J. Biolog. Macromol., 2020, 165(Pt A), 18-43.
[6]
Yamaguchi, K.; Anderson, J.M. Biocompatibility studies of naltrexone sustained release formulations. J. Control. Release, 1992, 19(1-3), 299-314.
[http://dx.doi.org/10.1016/0168-3659(92)90085-6]
[7]
Hulse, G.K.; Stalenberg, V.; McCallum, D.; Smit, W.; O’neil, G.; Morris, N.; Tait, R.J. Histological changes over time around the site of sustained release naltrexone-poly(DL-lactide) implants in humans. J. Control. Release, 2005, 108(1), 43-55.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.001] [PMID: 16154223]
[8]
Ling, W.; Nadipelli, V.R.; Solem, C.T.; Ronquest, N.A.; Yeh, Y.C.; Learned, S.M.; Mehra, V.; Heidbreder, C. Effects of monthly buprenorphine extended-release injections on patient-centered outcomes: A long-term study. J. Subst. Abuse Treat., 2020, 110, 1-8.
[http://dx.doi.org/10.1016/j.jsat.2019.11.004] [PMID: 31952623]
[9]
Soyka, M. Long-acting buprenorphine medications as a novel pharmacological option in opioid dependence. Suchttherapie, 2020, 21, 13-18.
[10]
Lézard, L.; Camurus, AB US FDA issues a tentative approval of brixaditm (buprenorphine) extended-release injection for treatment of opioid use disorder. 2018.
[11]
Parida, S.; Carroll, K.M.; Petrakis, I.L.; Sofuoglu, M. Buprenorphine treatment for opioid use disorder: Recent progress. Expert Rev. Clin. Pharmacol., 2019, 12(8), 791-803.
[http://dx.doi.org/10.1080/17512433.2019.1635454] [PMID: 31232604]
[12]
Astaneh, R.; Erfan, M.; Moghimi, H.; Mobedi, H. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. J. Pharm. Sci., 2009, 98(1), 135-145.
[http://dx.doi.org/10.1002/jps.21415] [PMID: 18493999]
[13]
Liu, F.; Xu, N.; Ling, L.; Hu, J.; Zhang, H. Regio- and stereoselective ring-opening metathesis polymerization of 3-ferrocenyl substituted cyclooctenes and copolymerization with norbornene derivatives. Eur. Polym. J., 2020, 124, 109472.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109472]
[14]
Khodaverdi, E.; Delroba, K.; Mohammadpour, F.; Khameneh, B.; Sajadi Tabassi, S.A.; Tafaghodi, M.; Kamali, H.; Hadizadeh, F. In-vitro release evaluation of growth hormone from an injectable in-situ forming gel using pcl-peg-pcl thermosensitive triblock. Curr. Drug Deliv., 2020, 17(2), 174-183.
[http://dx.doi.org/10.2174/1567201817666200120120105] [PMID: 31987020]
[15]
Pagels, R.F.; Pinkerton, N.M.; York, A.W.; Prud’homme, R.K. Synthesis of heterobifunctional thiol-poly(lactic acid)-b-poly(ethylene glycol)-hydroxyl for nanoparticle drug delivery applications. Macromol. Chem. Phys., 2020, 221(2), 1900396.
[http://dx.doi.org/10.1002/macp.201900396]
[16]
Sulaiman, T.N.S.; Larasati, D.; Nugroho, A.K.; Choiri, S. Assessment of the effect of PLGA Co-polymers and PEG on the formation and characteristics of PLGA-PEG-PLGA co-block polymer using statistical approach. Adv. Pharm. Bull., 2019, 9(3), 382-392.
[http://dx.doi.org/10.15171/apb.2019.045] [PMID: 31592431]
[17]
Negrea, P.; Caunii, A.; Sarac, I.; Butnariu, M. The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass. Dig. J. Nanomater. Biostruct., 2015, 10(4), 1129-1138.
[18]
Khodaverdi, E.; Tekie, F.S.M.; Mohajeri, S.A.; Ganji, F.; Zohuri, G.; Hadizadeh, F. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA-PEG-PLGA. AAPS PharmSciTech, 2012, 13(2), 590-600.
[http://dx.doi.org/10.1208/s12249-012-9781-8] [PMID: 22528547]
[19]
Khodaverdi, E.; Ganji, F.; Tafaghodi, M.; Sadoogh, M. Effects of formulation properties on sol–gel behavior of chitosan/glycerolphosphate hydrogel. Iran. Polym. J., 2013, 22, 785-790.
[http://dx.doi.org/10.1007/s13726-013-0177-8]
[20]
Zentner, G.M.; Rathi, R.; Shih, C.; McRea, J.C.; Seo, M-H.; Oh, H.; Rhee, B.G.; Mestecky, J.; Moldoveanu, Z.; Morgan, M.; Weitman, S. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release, 2001, 72(1-3), 203-215.
[http://dx.doi.org/10.1016/S0168-3659(01)00276-0] [PMID: 11389999]
[21]
Khodaverdi, E.; Aboumaashzadeh, M.; Tekie, F.S.M.; Hadizadeh, F.; Tabassi, S.A.S.; Mohajeri, S.A.; Khashyarmanesh, Z.; Haghighi, H.M. Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran. Polym. J., 2014, 23, 707-716.
[http://dx.doi.org/10.1007/s13726-014-0265-4]
[22]
Pharmacopeia, U. National Formulary USP 39–NF 34; The US Pharmacopeial Convention Inc: Rockville, MD, 2016.
[23]
Coltescu, A.-R.; Butnariu, M.; Sarac, I. The importance of solubility for new drug molecules. Biomed. Pharmacol. J., 2020, 13, 577-583.
[24]
Butnariu, M.; Sarac, I.; Samfira, I. Spectrophotometric and chromatographic strategies for exploring of the nanostructure pharmaceutical formulations which contains testosterone undecanoate. Sci. Rep., 2020, 10(1), 3569.
[http://dx.doi.org/10.1038/s41598-020-60657-4] [PMID: 32107451]
[25]
Bakhshi, R.; Vasheghani-Farahani, E.; Mobedi, H.; Jamshidi, A.; Khakpour, M. The effect of additives on naltrexone hydrochloride release and solvent removal rate from an injectable in situ forming PLGA implant. Polym. Adv. Technol., 2006, 17(5), 354-359.
[http://dx.doi.org/10.1002/pat.717]
[26]
Rahimi, M.; Mobedi, H.; Behnamghader, A. In situ forming poly (lactic acid-co-glycolic acid) implants containing leuprolide acetate/β-cyclodextrin complexes: Preparation, characterization, and in vitro drug release. Intl. J. Polymer. Mat. Polym. Biomater., 2016, 65(2), 75-84.
[http://dx.doi.org/10.1080/00914037.2015.1055633]
[27]
Mashayekhi, R.; Mobedi, H.; Najafi, J.; Enayati, M. In-vitro/In- vivo comparison of leuprolide acetate release from an in-situ forming plga system. Daru, 2013, 21(1), 57.
[http://dx.doi.org/10.1186/2008-2231-21-57] [PMID: 23856431]
[28]
Tan, G.; Zhong, Y.; Yang, L.; Jiang, Y.; Liu, J.; Ren, F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem. Eng. J., 2020, 390, 124446.
[http://dx.doi.org/10.1016/j.cej.2020.124446]
[29]
Barbat, C.; Rodino, S.; Petrache, P.; Butu, M.; Butnariu, M. Microencapsulation of the allelochemical compounds and study of their release from different products. Dig. J. Nanomater. Biostruct., 2013, 8, 945-953.
[30]
Fekri, A.S.; Akbarzadeh, A.; Yamchi, M.R.; Zarghami, F.; Nejati-Koshki, K.; Zarghami, N. Gene silencing effect of SiRNA- magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 188-193.
[http://dx.doi.org/10.3109/21691401.2014.934456] [PMID: 25020049]
[31]
Wang, X.; Wang, Y.; Yan, M.; Liang, X.; Zhao, N.; Ma, Y.; Gao, Y. Thermosensitive hydrogel based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide)-poly(2-ethyl-2-oxazoline) for sustained salmon calcitonin delivery. AAPS PharmSciTech, 2020, 21(2), 71.
[http://dx.doi.org/10.1208/s12249-020-1619-1] [PMID: 31953574]
[32]
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2), 103-114.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[33]
Körber, M. PLGA erosion: Solubility- or diffusion-controlled? Pharm. Res., 2010, 27(11), 2414-2420.
[http://dx.doi.org/10.1007/s11095-010-0232-5] [PMID: 20721605]
[34]
Brodbeck, K.J.; DesNoyer, J.R.; McHugh, A.J. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. J. Control. Release, 1999, 62(3), 333-344.
[http://dx.doi.org/10.1016/S0168-3659(99)00159-5] [PMID: 10528071]
[35]
Amini-Fazl, M.S.; Mobedi, H. Investigation of mathematical models based on diffusion control release for Paclitaxel from in-situ forming PLGA microspheres containing HSA microparticles. Mater. Technol., 2020, 35(1), 50-59.
[http://dx.doi.org/10.1080/10667857.2019.1651549]
[36]
Jensen, C.E.; dos Santos, R.A.S.; Denadai, A.M.L.; Santos, C.F.F.; Braga, A.N.G.; Sinisterra, R.D. Pharmaceutical composition of valsartan: β-cyclodextrin: Physico-chemical characterization and anti-hypertensive evaluation. Molecules, 2010, 15(6), 4067-4084.
[http://dx.doi.org/10.3390/molecules15064067] [PMID: 20657427]