Epigenetics of Triple-Negative Breast Cancer via Natural Compounds

Page: [1436 - 1458] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial- to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF- 2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s, KLK12, mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in the treatment of TNBC.

Keywords: TNBC, genes, DNA methylation, natural compounds, breast cancer, estrogen receptor.

[1]
Alitheen, N.B.; Yeap, S.K.; Faujan, N.H.; Ho, W.Y.; Beh, B.K.; Mashitoh, A.R. Leukemia and therapy. Am. J. Immunol., 2011, 7, 54-61.
[http://dx.doi.org/10.3844/ajisp.2011.54.61] [PMID: 21454191]
[2]
Alhosin, M.; Sharif, T.; Mousli, M.; Etienne-Selloum, N.; Fuhrmann, G.; Schini-Kerth, V.B.; Bronner, C. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J. Exp. Clin. Cancer Res., 2011, 30, 41.
[http://dx.doi.org/10.1186/1756-9966-30-41] [PMID: 21496237]
[3]
Selmin, O.I.; Donovan, M.G.; Stillwater, B.J.; Neumayer, L.; Romagnolo, D.F. Epigenetic Regulation and Dietary Control of Triple Negative Breast Cancer. Front. Nutr., 2020, 7, 159.
[http://dx.doi.org/10.3389/fnut.2020.00159] [PMID: 33015128]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Sharma, M.; Sharma, J.D.; Sarma, A.; Ahmed, S.; Kataki, A.C.; Saxena, R.; Sharma, D. Triple negative breast cancer in people of North East India: critical insights gained at a regional cancer centre. Asian Pac. J. Cancer Prev., 2014, 15(11), 4507-4511.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4507] [PMID: 24969877]
[6]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[7]
Jabbarzadeh Kaboli, P.; Salimian, F.; Aghapour, S.; Xiang, S.; Zhao, Q.; Li, M.; Wu, X.; Du, F.; Zhao, Y.; Shen, J.; Cho, C.H.; Xiao, Z. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol. Res., 2020, 156, 104806.
[http://dx.doi.org/10.1016/j.phrs.2020.104806] [PMID: 32294525]
[8]
Anders, C.; Carey, L.A. Understanding and treating triple-negative breast cancer. Oncology (Williston Park), 2008, 22(11), 1233-1239.
[PMID: 18980022]
[9]
Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat., 2009, 115(2), 423-428.
[http://dx.doi.org/10.1007/s10549-008-0086-2] [PMID: 18543098]
[10]
Barton, V.N.; D’Amato, N.C.; Gordon, M.A.; Lind, H.T.; Spoelstra, N.S.; Babbs, B.L.; Heinz, R.E.; Elias, A.; Jedlicka, P.; Jacobsen, B.M.; Richer, J.K. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther., 2015, 14(3), 769-778.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0926] [PMID: 25713333]
[11]
Sultana, R.; Kataki, A.C.; Barthakur, B.B.; Sarma, A.; Bose, S. Clinicopathological and immunohistochemical characteristics of breast cancer patients from Northeast India with special reference to triple negative breast cancer: A prospective study. Curr. Probl. Cancer, 2020, 44(5), 100556.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100556] [PMID: 32044043]
[12]
Sirohi, B.; Arnedos, M.; Popat, S.; Ashley, S.; Nerurkar, A.; Walsh, G.; Johnston, S.; Smith, I.E. Platinum-based chemotherapy in triple-negative breast cancer. Ann. Oncol., 2008, 19(11), 1847-1852.
[http://dx.doi.org/10.1093/annonc/mdn395] [PMID: 18567607]
[13]
Tian, T.; Shan, L.; Yang, W.; Zhou, X.; Shui, R. Evaluation of the BRCAness phenotype and its correlations with clinicopathological features in triple-negative breast cancers. Hum. Pathol., 2019, 84, 231-238.
[http://dx.doi.org/10.1016/j.humpath.2018.10.004] [PMID: 30339969]
[14]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[15]
Lund, M.J.; Trivers, K.F.; Porter, P.L.; Coates, R.J.; Leyland-Jones, B.; Brawley, O.W.; Flagg, E.W.; O’Regan, R.M.; Gabram, S.G.A.; Eley, J.W. Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res. Treat., 2009, 113(2), 357-370.
[http://dx.doi.org/10.1007/s10549-008-9926-3] [PMID: 18324472]
[16]
Ovcaricek, T.; Frkovic, S.G.; Matos, E.; Mozina, B.; Borstnar, S. Triple negative breast cancer - prognostic factors and survival. Radiol. Oncol., 2011, 45(1), 46-52.
[http://dx.doi.org/10.2478/v10019-010-0054-4] [PMID: 22933934]
[17]
da Silva, J.L.; Cardoso Nunes, N.C.; Izetti, P.; de Mesquita, G.G.; de Melo, A.C. Triple negative breast cancer: A thorough review of biomarkers. Crit. Rev. Oncol. Hematol., 2020, 145, 102855.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102855] [PMID: 31927455]
[18]
Chahin, M.; Chhatrala, H.; Krishnan, N.; Brow, D.; Zuberi, L. Triple-Negative Lobular Breast Cancer Causing Hydronephrosis. J. Investig. Med. High Impact Case Rep., 2020, 8, 2324709620905954.
[http://dx.doi.org/10.1177/2324709620905954] [PMID: 32043897]
[19]
Jhan, J.R.; Andrechek, E.R. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 2017, 18(17), 1595-1609.
[http://dx.doi.org/10.2217/pgs-2017-0117] [PMID: 29095114]
[20]
Silver, D.P.; Richardson, A.L.; Eklund, A.C.; Wang, Z.C.; Szallasi, Z.; Li, Q.; Juul, N.; Leong, C.O.; Calogrias, D.; Buraimoh, A.; Fatima, A.; Gelman, R.S.; Ryan, P.D.; Tung, N.M.; De Nicolo, A.; Ganesan, S.; Miron, A.; Colin, C.; Sgroi, D.C.; Ellisen, L.W.; Winer, E.P.; Garber, J.E. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol., 2010, 28(7), 1145-1153.
[http://dx.doi.org/10.1200/JCO.2009.22.4725] [PMID: 20100965]
[21]
Kim, H.; Samuel, S.L.; Zhai, G.; Rana, S.; Taylor, M.; Umphrey, H.R.; Oelschlager, D.K.; Buchsbaum, D.J.; Zinn, K.R. Combination therapy with anti-DR5 antibody and tamoxifen for triple negative breast cancer. Cancer Biol. Ther., 2014, 15(8), 1053-1060.
[http://dx.doi.org/10.4161/cbt.29183] [PMID: 25084100]
[22]
O’Reilly, E.A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M.H.Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M.; McCann, A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin., 2015, 3, 257-275.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[23]
Wein, L.; Loi, S. Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast, 2017, 34(Suppl. 1), S27-S30.
[http://dx.doi.org/10.1016/j.breast.2017.06.023] [PMID: 28668293]
[24]
Wasilewski, D.; Priego, N.; Fustero-Torre, C.; Valiente, M. Reactive Astrocytes in Brain Metastasis. Front. Oncol., 2017, 7, 298.
[http://dx.doi.org/10.3389/fonc.2017.00298] [PMID: 29312881]
[25]
Takai, K.; Le, A.; Weaver, V.M.; Werb, Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 2016, 7(50), 82889-82901.
[http://dx.doi.org/10.18632/oncotarget.12658] [PMID: 27756881]
[26]
Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R. S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res., 2020, 153, 104683.
[http://dx.doi.org/10.1016/j.phrs.2020.104683] [PMID: 32050092]
[27]
Afghahi, A.; Timms, K.M.; Vinayak, S.; Jensen, K.C.; Kurian, A.W.; Carlson, R.W.; Chang, P.J.; Schackmann, E.; Hartman, A.R.; Ford, J.M.; Telli, M.L. Tumor BRCA1 Reversion Mutation Arising during Neoadjuvant Platinum-Based Chemotherapy in Triple-Negative Breast Cancer Is Associated with Therapy Resistance. Clin. Cancer Res., 2017, 23(13), 3365-3370.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2174] [PMID: 28087643]
[28]
Prada, I.; Meldolesi, J. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets. Int. J. Mol. Sci., 2016, 17(8), 17.
[http://dx.doi.org/10.3390/ijms17081296] [PMID: 27517914]
[29]
Fan, H.; Yuan, J.; Li, X.; Ma, Y.; Wang, X.; Xu, B.; Li, X. LncRNA LINC00173 enhances triple-negative breast cancer progression by suppressing miR-490-3p expression. Biomed. Pharmacother., 2020, 125, 109987.
[http://dx.doi.org/10.1016/j.biopha.2020.109987] [PMID: 32058222]
[30]
Jiwani, F.; Libby, R.; Gabriel, D.; Patberg, E.; Gibbs, M.; Heldermon, C.D.; Daily, K.; Jr, J.B.; DeGennaro, V. Epidemiological, clinical, and histopathological features of breast cancer in Haiti. J. Glob. Oncol., 2018. 2018
[31]
Lukong, K.E.; Ogunbolude, Y.; Kamdem, J.P. Breast cancer in Africa: prevalence, treatment options, herbal medicines, and socioeconomic determinants. Breast Cancer Res. Treat., 2017, 166(2), 351-365.
[http://dx.doi.org/10.1007/s10549-017-4408-0] [PMID: 28776284]
[32]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[33]
Amirikia, K.C.; Mills, P.; Bush, J.; Newman, L.A. Higher population-based incidence rates of triple-negative breast cancer among young African-American women: Implications for breast cancer screening recommendations. Cancer, 2011, 117(12), 2747-2753.
[http://dx.doi.org/10.1002/cncr.25862] [PMID: 21656753]
[34]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[35]
Wu, S.; Zhang, J.; Li, F.; Du, W.; Zhou, X.; Wan, M.; Fan, Y.; Xu, X.; Zhou, X.; Zheng, L.; Zhou, Y. One-carbon metabolism links nutrition intake to embryonic development via epigenetic mechanisms. Stem Cells Int., 2019. 2019
[http://dx.doi.org/10.1155/2019/3894101]
[36]
Ooi, S.K.T.; O’Donnell, A.H.; Bestor, T.H. Mammalian cytosine methylation at a glance. J. Cell Sci., 2009, 122(Pt 16), 2787-2791.
[http://dx.doi.org/10.1242/jcs.015123] [PMID: 19657014]
[37]
Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3), 247-257.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[38]
Ambrosi, C.; Manzo, M.; Baubec, T. Dynamics and Context-Dependent Roles of DNA Methylation. J. Mol. Biol., 2017, 429(10), 1459-1475.
[http://dx.doi.org/10.1016/j.jmb.2017.02.008] [PMID: 28214512]
[39]
Smith, Z.D.; Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet., 2013, 14(3), 204-220.
[http://dx.doi.org/10.1038/nrg3354] [PMID: 23400093]
[40]
Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev., 2011, 25(10), 1010-1022.
[http://dx.doi.org/10.1101/gad.2037511] [PMID: 21576262]
[41]
Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534.
[http://dx.doi.org/10.1038/nrg.2017.33] [PMID: 28555658]
[42]
Kao, S-H.; Wu, K-J.; Lee, W-H. Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes. J. Clin. Med., 2016, 5(2), 24.
[http://dx.doi.org/10.3390/jcm5020024] [PMID: 26861406]
[43]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[44]
Mao, S. DNA Methylation Promotes Transcription. Science, 2018, 362, 1124.
[45]
Miguel, C.; Marum, L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J. Exp. Bot., 2011, 62(11), 3713-3725.
[http://dx.doi.org/10.1093/jxb/err155] [PMID: 21617249]
[46]
Kurdistani, S.K.; Grunstein, M. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol., 2003, 4(4), 276-284.
[http://dx.doi.org/10.1038/nrm1075] [PMID: 12671650]
[47]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[48]
Gonzalo, S. Epigenetic alterations in aging. J. Appl. Physiol., 2010, 109(2), 586-597.
[http://dx.doi.org/10.1152/japplphysiol.00238.2010] [PMID: 20448029]
[49]
Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res., 2007, 17(3), 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[50]
Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol., 2005, 6(11), 838-849.
[http://dx.doi.org/10.1038/nrm1761] [PMID: 16261189]
[51]
Zhang, Y.; Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev., 2001, 15(18), 2343-2360.
[http://dx.doi.org/10.1101/gad.927301] [PMID: 11562345]
[52]
Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA Structural Characteristics in Epigenetic Regulation. Int. J. Mol. Sci., 2017, 18(12), 2659.
[http://dx.doi.org/10.3390/ijms18122659] [PMID: 29292750]
[53]
Perrone, L.; Matrone, C.; Singh, L.P. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J. Ophtha., 2015. 2014
[54]
Lee, D.; Shin, C. MicroRNA-target interactions: new insights from genome-wide approaches. Ann. N. Y. Acad. Sci., 2012, 1271, 118-128.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06745.x] [PMID: 23050973]
[55]
Chiorean, R.; Braicu, C.; Berindan-Neagoe, I. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast, 2013, 22(6), 1026-1033.
[http://dx.doi.org/10.1016/j.breast.2013.08.007] [PMID: 24063766]
[56]
Temian, D.C.; Pop, L.A.; Irimie, A.I.; Berindan-Neagoe, I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J. Breast Cancer, 2018, 21(3), 233-243.
[http://dx.doi.org/10.4048/jbc.2018.21.e41] [PMID: 30275851]
[57]
Kagara, N.; Huynh, K.T.; Kuo, C.; Okano, H.; Sim, M.S.; Elashoff, D.; Chong, K.; Giuliano, A.E.; Hoon, D.S.B. Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer. Am. J. Pathol., 2012, 181(1), 257-267.
[http://dx.doi.org/10.1016/j.ajpath.2012.03.019] [PMID: 22626806]
[58]
Yamashita, N.; Tokunaga, E.; Kitao, H.; Hitchins, M.; Inoue, Y.; Tanaka, K.; Hisamatsu, Y.; Taketani, K.; Akiyoshi, S.; Okada, S.; Oda, Y.; Saeki, H.; Oki, E.; Maehara, Y. Epigenetic Inactivation of BRCA1 Through Promoter Hypermethylation and Its Clinical Importance in Triple-Negative Breast Cancer. Clin. Breast Cancer, 2015, 15(6), 498-504.
[http://dx.doi.org/10.1016/j.clbc.2015.06.009] [PMID: 26195437]
[59]
Duffy, M.J. Biochemical markers in breast cancer: which ones are clinically useful? Clin. Biochem., 2001, 34(5), 347-352.
[http://dx.doi.org/10.1016/S0009-9120(00)00201-0] [PMID: 11522269]
[60]
McGuire, A.; Brown, J.A.L.; Kerin, M.J. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev., 2015, 34(1), 145-155.
[http://dx.doi.org/10.1007/s10555-015-9551-7] [PMID: 25721950]
[61]
Tsuji, W.; Plock, J.A.; Scully, O.; Bay, B.; Yip, G.; Genomics-Proteomics, Y.Y-C. 2012, undefined; Breast Cancer Metastasis, 2017.
[62]
Szarc Vel Szic, K.; Declerck, K.; Crans, R.A.J.; Diddens, J.; Scherf, D.B.; Gerhäuser, C.; Vanden Berghe, W. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget, 2017, 8(25), 40434-40453.
[http://dx.doi.org/10.18632/oncotarget.17107] [PMID: 28467815]
[63]
Morlando, M.; Fatica, A. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. Int. J. Mol. Sci., 2018, 19(2), 19.
[http://dx.doi.org/10.3390/ijms19020570] [PMID: 29443889]
[64]
Chen, C.; Li, Z.; Yang, Y.; Xiang, T.; Song, W.; Liu, S. Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biol. Ther., 2015, 16(6), 856-865.
[http://dx.doi.org/10.1080/15384047.2015.1040957] [PMID: 25996380]
[65]
Jadaliha, M.; Zong, X.; Malakar, P.; Ray, T.; Singh, D.K.; Freier, S.M.; Jensen, T.; Prasanth, S.G.; Karni, R.; Ray, P.S.; Prasanth, K.V. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget, 2016, 7(26), 40418-40436.
[http://dx.doi.org/10.18632/oncotarget.9622] [PMID: 27250026]
[66]
Bermejo, J.L.; Huang, G.; Manoochehri, M.; Mesa, K.G.; Schick, M.; Silos, R.G.; Ko, Y.D.; Brüning, T.; Brauch, H.; Lo, W.Y.; Hoheisel, J.D.; Hamann, U. Long intergenic noncoding RNA 299 methylation in peripheral blood is a biomarker for triple-negative breast cancer. Epigenomics, 2019, 11(1), 81-93.
[http://dx.doi.org/10.2217/epi-2018-0121] [PMID: 30208740]
[67]
Yomtoubian, S.; Lee, S.B.; Verma, A.; Izzo, F.; Markowitz, G.; Choi, H.; Cerchietti, L.; Vahdat, L.; Brown, K.A.; Andreopoulou, E.; Elemento, O.; Chang, J.; Inghirami, G.; Gao, D.; Ryu, S.; Mittal, V. Inhibition of EZH2 Catalytic Activity Selectively Targets a Metastatic Subpopulation in Triple-Negative Breast Cancer. Cell Rep., 2020, 30(3), 755-770.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.12.056] [PMID: 31968251]
[68]
Ottaviano, Y.L.; Issa, J.P.; Parl, F.F.; Smith, H.S.; Baylin, S.B.; Davidson, N.E. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res., 1994, 54(10), 2552-2555.
[PMID: 8168078]
[69]
Ferguson, A.T.; Lapidus, R.G.; Baylin, S.B.; Davidson, N.E. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res., 1995, 55(11), 2279-2283.
[PMID: 7538900]
[70]
Lapidus, R.G.; Ferguson, A.T.; Ottaviano, Y.L.; Parl, F.F.; Smith, H.S.; Weitzman, S.A.; Baylin, S.B.; Issa, J.P.J.; Davidson, N.E. Methylation of estrogen and progesterone receptor gene 5¢ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin. Cancer Res., 1996, 2(5), 805-810.
[PMID: 9816234]
[71]
Watts, C.K.W.; Handel, M.L.; King, R.J.B.; Sutherland, R.L. Oestrogen receptor gene structure and function in breast cancer. J. Steroid Biochem. Mol. Biol., 1992, 41(3-8), 529-536.
[http://dx.doi.org/10.1016/0960-0760(92)90378-V] [PMID: 1562523]
[72]
Martínez-Galán, J.; Torres-Torres, B.; Núñez, M.I.; López-Peñalver, J.; Del Moral, R.; Ruiz De Almodóvar, J.M.; Menjón, S.; Concha, A.; Chamorro, C.; Ríos, S.; Delgado, J.R. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients. BMC Cancer, 2014, 14, 59.
[http://dx.doi.org/10.1186/1471-2407-14-59] [PMID: 24495356]
[73]
Pineda, B.; Diaz-Lagares, A.; Pérez-Fidalgo, J.A.; Burgués, O.; González-Barrallo, I.; Crujeiras, A.B.; Sandoval, J.; Esteller, M.; Lluch, A.; Eroles, P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin. Epigenetics, 2019, 11(1), 33.
[http://dx.doi.org/10.1186/s13148-019-0626-0] [PMID: 30786922]
[74]
Zhang, Y.; Subbaiah, V.K.; Rajagopalan, D.; Tham, C.Y.; Abdullah, L.N.; Toh, T.B.; Gong, M.; Tan, T.Z.; Jadhav, S.P.; Pandey, A.K.; Karnani, N.; Chow, E.K.; Thiery, J.P.; Jha, S. TIP60 inhibits metastasis by ablating DNMT1-SNAIL2-driven epithelial-mesenchymal transition program. J. Mol. Cell Biol., 2016, 8(5), 384-399.
[http://dx.doi.org/10.1093/jmcb/mjw038] [PMID: 27651430]
[75]
Ramadan, W.S.; Vazhappilly, C.G.; Saleh, E.M.; Menon, V.; AlAzawi, A.M.; El-Serafi, A.T.; Mansour, W.; El-Awady, R. Interplay between Epigenetics, Expression of Estrogen Receptor- α, HER2/ERBB2 and Sensitivity of Triple Negative Breast Cancer Cells to Hormonal Therapy. Cancers (Basel), 2018, 11(1), 13.
[http://dx.doi.org/10.3390/cancers11010013] [PMID: 30583472]
[76]
Shin, E.; Lee, Y.; Koo, J.S. Differential expression of the epigenetic methylation-related protein DNMT1 by breast cancer molecular subtype and stromal histology. J. Transl. Med., 2016, 14, 87.
[http://dx.doi.org/10.1186/s12967-016-0840-x] [PMID: 27071379]
[77]
Xu, H.; Xiao, Q.; Fan, Y.; Xiang, T.; Li, C.; Li, C.; Li, S.; Hui, T.; Zhang, L.; Li, H.; Li, L.; Ren, G. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-κB signaling. Cancer Med., 2017, 6(6), 1399-1408.
[http://dx.doi.org/10.1002/cam4.1076] [PMID: 28503860]
[78]
Ward, A.K.; Mellor, P.; Smith, S.E.; Kendall, S.; Just, N.A.; Vizeacoumar, F.S.; Sarker, S.; Phillips, Z.; Alvi, R.; Saxena, A.; Vizeacoumar, F.J.F.S.; Carlsen, S.A.; Anderson, D.H. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res., 2016, 18(1), 12.
[http://dx.doi.org/10.1186/s13058-016-0672-x] [PMID: 26810754]
[79]
Kong, B.; Lv, Z-D.; Wang, Y.; Jin, L-Y.; Ding, L.; Yang, Z-C. Down-regulation of BRMS1 by DNA hypermethylation and its association with metastatic progression in triple-negative breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11076-11083.
[PMID: 26617826]
[80]
Donaldson-Collier, M.C.; Sungalee, S.; Zufferey, M.; Tavernari, D.; Katanayeva, N.; Battistello, E.; Mina, M.; Douglass, K.M.; Rey, T.; Raynaud, F.; Manley, S.; Ciriello, G.; Oricchio, E. EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat. Genet., 2019, 51(3), 517-528.
[http://dx.doi.org/10.1038/s41588-018-0338-y] [PMID: 30692681]
[81]
Hirukawa, A.; Smith, H.W.; Zuo, D.; Dufour, C.R.; Savage, P.; Bertos, N.; Johnson, R.M.; Bui, T.; Bourque, G.; Basik, M.; Giguère, V.; Park, M.; Muller, W.J. Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat. Commun., 2018, 9(1), 2547.
[http://dx.doi.org/10.1038/s41467-018-04864-8] [PMID: 29959321]
[82]
Perreault, A.A.; Sprunger, D.M.; Venters, B.J. Epigenetic and transcriptional profiling of triple negative breast cancer. Sci. Data, 2019, 6, 190033.
[http://dx.doi.org/10.1038/sdata.2019.33] [PMID: 30835260]
[83]
Huang, J.P.; Ling, K. EZH2 and histone deacetylase inhibitors induce apoptosis in triple negative breast cancer cells by differentially increasing H3 Lys27 acetylation in the BIM gene promoter and enhancers. Oncol. Lett., 2017, 14(5), 5735-5742.
[http://dx.doi.org/10.3892/ol.2017.6912] [PMID: 29113202]
[84]
Dagdemir, A.; Durif, J.; Ngollo, M.; Bignon, Y.J.; Bernard-Gallon, D. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics, 2013, 5(1), 51-63.
[http://dx.doi.org/10.2217/epi.12.74] [PMID: 23414320]
[85]
Hsieh, I.Y.; He, J.; Wang, L.; Lin, B.; Liang, Z.; Lu, B.; Chen, W.; Lu, G.; Li, F.; Lv, W.; Zhao, W.; Li, J. H3K27me3 loss plays a vital role in CEMIP mediated carcinogenesis and progression of breast cancer with poor prognosis. Biomed. Pharmacother., 2020, 123, 109728.
[http://dx.doi.org/10.1016/j.biopha.2019.109728] [PMID: 31846842]
[86]
Taube, J.H.; Sphyris, N.; Johnson, K.S.; Reisenauer, K.N.; Nesbit, T.A.; Joseph, R.; Vijay, G.V.; Sarkar, T.R.; Bhangre, N.A.; Song, J.J.; Chang, J.T.; Lee, M.G.; Soundararajan, R.; Mani, S.A. The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget, 2017, 8(39), 65548-65565.
[http://dx.doi.org/10.18632/oncotarget.19214] [PMID: 29029452]
[87]
Zhao, Z.; Sun, C.; Li, F.; Han, J.; Li, X.; Song, Z. Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10325-10334.
[PMID: 26617740]
[88]
Rahman, M.M.; Brane, A.C.; Tollefsbol, T.O. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells, 2019, 8(10), 1214.
[http://dx.doi.org/10.3390/cells8101214] [PMID: 31597272]
[89]
Mekala, J.R.; Naushad, S.M.; Ponnusamy, L.; Arivazhagan, G.; Sakthiprasad, V.; Pal-Bhadra, M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene, 2018, 641, 248-258.
[http://dx.doi.org/10.1016/j.gene.2017.10.018] [PMID: 29038000]
[90]
Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer, 2010, 10(7), 489-503.
[http://dx.doi.org/10.1038/nrc2875] [PMID: 20555359]
[91]
Pulkoski-Gross, M.J.; Obeid, L.M. Molecular mechanisms of regulation of sphingosine kinase 1. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(11), 1413-1422.
[http://dx.doi.org/10.1016/j.bbalip.2018.08.015] [PMID: 30591148]
[92]
Abuhussein, O.; Yang, J. Evaluating the antitumor activity of sphingosine-1-phosphate against human triple-negative breast cancer cells with basal-like morphology. Invest. New Drugs, 2020, 38(5), 1316-1325.
[http://dx.doi.org/10.1007/s10637-020-00909-2] [PMID: 32060788]
[93]
Kosok, M.; Alli-Shaik, A.; Bay, B.H.; Gunaratne, J. Comprehensive Proteomic Characterization Reveals Subclass- Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience, 2020, 23(2), 100868.
[http://dx.doi.org/10.1016/j.isci.2020.100868] [PMID: 32058975]
[94]
Ramos, C.A.; Ouyang, C.; Qi, Y.; Chung, Y.; Cheng, C.T.; LaBarge, M.A.; Seewaldt, V.L.; Ann, D.K. A Noncanonical Function of BMAL1 Metabolically Limits Obesity- Promoted Triple-Negative Breast Cancer. iScience, 2020, 23(2), 100839.
[http://dx.doi.org/10.1016/j.isci.2020.100839] [PMID: 32058954]
[95]
Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 275-283.
[http://dx.doi.org/10.1038/nrm2147] [PMID: 17380161]
[96]
Zonneville, J.; Wong, V.; Limoge, M.; Nikiforov, M.; Bakin, A.V. TAK1 signaling regulates p53 through a mechanism involving ribosomal stress. Sci. Rep., 2020, 10(1), 2517.
[http://dx.doi.org/10.1038/s41598-020-59340-5] [PMID: 32054925]
[97]
Bai, J.; Chen, W.B.; Zhang, X.Y.; Kang, X.N.; Jin, L.J.; Zhang, H.; Wang, Z.Y. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J. Stem Cells, 2020, 12(1), 87-99.
[http://dx.doi.org/10.4252/wjsc.v12.i1.87] [PMID: 32110277]
[98]
Lai, H.; Wang, R.; Li, S.; Shi, Q.; Cai, Z.; Li, Y.; Liu, Y. LIN9 confers paclitaxel resistance in triple negative breast cancer cells by upregulating CCSAP. Sci. China Life Sci., 2020, 63(3), 419-428.
[http://dx.doi.org/10.1007/s11427-019-9581-8] [PMID: 31420851]
[99]
Roberts, M.S.; Sahni, J.M.; Schrock, M.S.; Piemonte, K.M.; Weber-Bonk, K.L.; Seachrist, D.D.; Avril, S.; Anstine, L.J.; Singh, S.; Sizemore, S.T.; Varadan, V.; Summers, M.K.; Keri, R.A. LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Res., 2020, 80(8), 1693-1706.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3466] [PMID: 32054769]
[100]
Shen, H.; Yan, W.; Yuan, J.; Wang, Z.; Wang, C. Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemothezrapy-resistance by stabilizing β-catenin. J. Exp. Clin. Cancer Res., 2019, 38(1), 243.
[http://dx.doi.org/10.1186/s13046-019-1231-y] [PMID: 31174562]
[101]
Huang, R.; Li, J.; Pan, F.; Zhang, B.; Yao, Y. The activation of GPER inhibits cells proliferation, invasion and EMT of triple-negative breast cancer via CD151/miR-199a-3p bio-axis. Am. J. Transl. Res., 2020, 12(1), 32-44.
[PMID: 32051735]
[102]
Yu, J.; Shen, W.; Gao, B.; Xu, J.; Gong, B. Metastasis suppressor 1 acts as a tumor suppressor by inhibiting epithelial-to-mesenchymal transition in triple-negative breast cancer. Int. J. Biol. Markers, 2020, 35(1), 74-81.
[http://dx.doi.org/10.1177/1724600820905114] [PMID: 32052679]
[103]
Yu, M.; Chen, Y.; Wang, Z.; Ding, X. pHLIP(Var7)-P1AP suppresses tumor cell proliferation in MDA-MB-231 triple-negative breast cancer by targeting protease activated receptor 1. Breast Cancer Res. Treat., 2020, 180(2), 379-384.
[http://dx.doi.org/10.1007/s10549-020-05560-2] [PMID: 32034579]
[104]
Mao, L.; Zuo, M.L.; Hu, G.H.; Duan, X.M.; Yang, Z.B. mir-193 targets ALDH2 and contributes to toxic aldehyde accumulation and tyrosine hydroxylase dysfunction in cerebral ischemia/reperfusion injury. Oncotarget, 2017, 8(59), 99681-99692.
[http://dx.doi.org/10.18632/oncotarget.21129] [PMID: 29245933]
[105]
Xu, J.H.; Zhao, J.X.; Jiang, M.Y.; Yang, L.P.; Sun, M.L.; Wang, H.W. MiR-193 promotes cell proliferation and invasion by ING5/PI3K/AKT pathway of triple-negative breast cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3122-3129.
[PMID: 32271430]
[106]
Findeis-Hosey, J.J.; Xu, H. The use of insulin like-growth factor II messenger RNA binding protein-3 in diagnostic pathology. Hum. Pathol., 2011, 42(3), 303-314.
[http://dx.doi.org/10.1016/j.humpath.2010.06.003] [PMID: 20970161]
[107]
Sjekloča, N.; Tomić, S.; Mrklić, I.; Vukmirović, F.; Vučković, L.; Lovasić, I.B.; Maras-Šimunić, M. Prognostic Value of IMP3 Immunohistochemical Expression in Triple Negative Breast Cancer. Med. (United States), 2020, 99(7), e19091.
[108]
Do, S-I.; Kim, Y.W.; Park, H-R.; Park, Y-K. Expression of insulin-like growth factor-II mRNA binding protein 3 (IMP3) in osteosarcoma. Oncol. Res., 2008, 17(6), 269-272.
[http://dx.doi.org/10.3727/096504008786991639] [PMID: 19192721]
[109]
Samanta, S.; Sharma, V.M.; Khan, A.; Mercurio, A.M. Regulation of IMP3 by EGFR signaling and repression by ERβ: implications for triple-negative breast cancer. Oncogene, 2012, 31(44), 4689-4697.
[http://dx.doi.org/10.1038/onc.2011.620] [PMID: 22266872]
[110]
Mohammed, R.A.A.; Ellis, I.O.; Mahmmod, A.M.; Hawkes, E.C.; Green, A.R.; Rakha, E.A.; Martin, S.G. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod. Pathol., 2011, 24(6), 774-785.
[http://dx.doi.org/10.1038/modpathol.2011.4] [PMID: 21378756]
[111]
Kim, S.; Lee, J.; Jeon, M.; Lee, J.E.; Nam, S.J. Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway. Oncotarget, 2016, 7(2), 1544-1558.
[http://dx.doi.org/10.18632/oncotarget.6441] [PMID: 26637807]
[112]
Tang, X.; Zhou, Y.; Liu, Y.; Zhang, W.; Liu, C.; Yan, C. Potentiation of cancerous progression by LISCH7 via direct stimulation of TGFB1 transcription in triple‐negative breast cancer. J. Cell. Biochem., 2020. jcb.29679.
[113]
Zhang, Z.; Wang, J.; Tacha, D.E.; Li, P.; Bremer, R.E.; Chen, H.; Wei, B.; Xiao, X.; Da, J.; Skinner, K.; Hicks, D.G.; Bu, H.; Tang, P. Folate receptor α associated with triple-negative breast cancer and poor prognosis. Arch. Pathol. Lab. Med., 2014, 138(7), 890-895.
[http://dx.doi.org/10.5858/arpa.2013-0309-OA] [PMID: 24028341]
[114]
Hamurcu, Z.; Ashour, A.; Kahraman, N.; Ozpolat, B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget, 2016, 7(13), 16619-16635.
[http://dx.doi.org/10.18632/oncotarget.7672] [PMID: 26918606]
[115]
Hait, W.N.; Wu, H.; Jin, S.; Yang, J.M. Elongation factor-2 kinase: its role in protein synthesis and autophagy. Autophagy, 2006, 2(4), 294-296.
[http://dx.doi.org/10.4161/auto.2857] [PMID: 16921268]
[116]
Xie, C.M.; Liu, X.Y.; Sham, K.W.Y.; Lai, J.M.Y.; Cheng, C.H.K. Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells. Autophagy, 2014, 10(9), 1495-1508.
[http://dx.doi.org/10.4161/auto.29164] [PMID: 24955726]
[117]
Wang, R-X.; Xu, X-E.; Huang, L.; Chen, S.; Shao, Z-M. eEF2 kinase mediated autophagy as a potential therapeutic target for paclitaxel-resistant triple-negative breast cancer. Ann. Transl. Med., 2019, 7(23), 783-783.
[http://dx.doi.org/10.21037/atm.2019.11.39] [PMID: 32042799]
[118]
Ryu, J.S.; Ko, K.; Ko, K.; Kim, J.S.; Kim, S.U.; Chang, K.T.; Choo, Y.K. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Mol. Med. Rep., 2017, 16(2), 987-993. [Review]
[http://dx.doi.org/10.3892/mmr.2017.6719] [PMID: 29067451]
[119]
Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10231-10233.
[http://dx.doi.org/10.1073/pnas.172380699] [PMID: 12149519]
[120]
Furukawa, K.; Arita, Y.; Satomi, N.; Eisinger, M.; Lloyd, K.O. Tumor necrosis factor enhances GD3 ganglioside expression in cultured human melanocytes. Arch. Biochem. Biophys., 1990, 281(1), 70-75.
[http://dx.doi.org/10.1016/0003-9861(90)90414-T] [PMID: 2383025]
[121]
Pukel, C.S.; Lloyd, K.O.; Travassos, L.R.G.; Dippold, W.G.; Oettgen, H.F.; Old, L.J. GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J. Exp. Med., 1982, 155(4), 1133-1147.
[http://dx.doi.org/10.1084/jem.155.4.1133] [PMID: 7061953]
[122]
Carubia, J.M.; Yu, R.K.; Macala, L.J.; Kirkwood, J.M.; Varga, J.M. Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun., 1984, 120(2), 500-504.
[http://dx.doi.org/10.1016/0006-291X(84)91282-8] [PMID: 6732768]
[123]
Li, W.; Zheng, X.; Ren, L.; Fu, W.; Liu, J.; Xv, J.; Liu, S.; Wang, J.; Du, G. Epigenetic hypomethylation and upregulation of GD3s in triple negative breast cancer. Ann. Transl. Med., 2019, 7(23), 723-723.
[http://dx.doi.org/10.21037/atm.2019.12.23] [PMID: 32042739]
[124]
Gong, W.; Liu, Y.; Preis, S.; Geng, X.; Petit-Courty, A.; Kiechle, M.; Muckenhuber, A.; Dreyer, T.; Dorn, J.; Courty, Y.; Magdolen, V. Prognostic value of kallikrein-related peptidase 12 (KLK12) mRNA expression in triple-negative breast cancer patients. Mol. Med., 2020, 26(1), 19.
[http://dx.doi.org/10.1186/s10020-020-0145-7] [PMID: 32028882]
[125]
Pang, J.; Shen, N.; Yan, F.; Zhao, N.; Dou, L.; Wu, L.C.; Seiler, C.L.; Yu, L.; Yang, K.; Bachanova, V.; Weaver, E.; Tretyakova, N.Y.; Liu, S. Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget, 2017, 8(21), 34453-34467.
[http://dx.doi.org/10.18632/oncotarget.16431] [PMID: 28415607]
[126]
Qadi, S.A.; Hassan, M.A.; Sheikh, R.A.; Baothman, O.A.; Zamzami, M.A.; Choudhry, H.; Al-Malki, A.L.; Albukhari, A.; Alhosin, M. Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms. Epigenet. Insights, 2019, 12, 2516865719839011.
[http://dx.doi.org/10.1177/2516865719839011] [PMID: 31058255]
[127]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[128]
Parbin, S.; Shilpi, A.; Kar, S.; Pradhan, N.; Sengupta, D.; Deb, M.; Rath, S.K.; Patra, S.K. Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer. Mol. Biosyst., 2016, 12(1), 48-58.
[http://dx.doi.org/10.1039/C5MB00412H] [PMID: 26540192]
[129]
Arafa, S.A.; Zhu, Q.; Shah, Z.I.; Wani, G.; Barakat, B.M.; Racoma, I.; El-Mahdy, M.A.; Wani, A.A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res., 2011, 706(1-2), 28-35.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.10.007] [PMID: 21040738]
[130]
Khan, M.A.; Zheng, M.; Fu, J. Epigenetic Modification of Oncogenes or Tumor Suppressor Genes by Thymoquinone in Triple Negative Breast Cancer In: Proceedings of the Cancer Research; American Association for Cancer Research (AACR), 2019. Vol. 79, pp. 3834-3834.
[131]
Khan, M.A.; Tania, M.; Fu, J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov. Today, 2019, 24(12), 2315-2322.
[http://dx.doi.org/10.1016/j.drudis.2019.09.007] [PMID: 31541714]
[132]
Li, J.; Khan, M.A.; Wei, C.; Cheng, J.; Chen, H.; Yang, L.; Ijaz, I.; Fu, J. Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki in vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules, 2017, 22(12), 2105.
[http://dx.doi.org/10.3390/molecules22122105] [PMID: 29207526]
[133]
Imani, S.; Wei, C.; Cheng, J.; Khan, M.A.; Fu, S.; Yang, L.; Tania, M.; Zhang, X.; Xiao, X.; Zhang, X.; Fu, J. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8(13), 21362-21379.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]
[134]
Ramos, E.A.S.; Grochoski, M.; Braun-Prado, K.; Seniski, G.G.; Cavalli, I.J.; Ribeiro, E.M.S.F.; Camargo, A.A.; Costa, F.F.; Klassen, G. Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One, 2011, 6(12), e29461.
[http://dx.doi.org/10.1371/journal.pone.0029461] [PMID: 22220212]
[135]
Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; Arfuso, F.; Huang, R.Y-J.; Lim, L.H.K.; Sethi, G.; Kumar, A.P. Thymoquinone Inhibits Bone Metastasis of Breast Cancer Cells Through Abrogation of the CXCR4 Signaling Axis. Front. Pharmacol., 2018, 9, 1294.
[http://dx.doi.org/10.3389/fphar.2018.01294] [PMID: 30564115]
[136]
Rajput, S.; Kumar, B.N.P.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[137]
Sutton, K.M.; Greenshields, A.L.; Hoskin, D.W. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer, 2014, 66(3), 408-418.
[http://dx.doi.org/10.1080/01635581.2013.878739] [PMID: 24579801]
[138]
Chang, C.T.; Korivi, M.; Huang, H.C.; Thiyagarajan, V.; Lin, K.Y.; Huang, P.J.; Liu, J.Y.; Hseu, Y.C.; Yang, H.L. Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food Chem. Toxicol., 2017, 103, 1-17.
[http://dx.doi.org/10.1016/j.fct.2017.02.019] [PMID: 28219700]
[139]
Roux, C.; Jafari, S.M.; Shinde, R.; Duncan, G.; Cescon, D.W.; Silvester, J.; Chu, M.F.; Hodgson, K.; Berger, T.; Wakeham, A.; Palomero, L.; Garcia-Valero, M.; Pujana, M.A.; Mak, T.W.; McGaha, T.L.; Cappello, P.; Gorrini, C. Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4326-4335.
[http://dx.doi.org/10.1073/pnas.1819473116] [PMID: 30770442]
[140]
Mahmoud, Y.K.; Abdelrazek, H.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother., 2019, 115, 108783.
[http://dx.doi.org/10.1016/j.biopha.2019.108783] [PMID: 31060003]
[141]
di Gennaro, A.; Damiano, V.; Brisotto, G.; Armellin, M.; Perin, T.; Zucchetto, A.; Guardascione, M.; Spaink, H.P.; Doglioni, C.; Snaar-Jagalska, B.E.; Santarosa, M.; Maestro, R.A. p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ., 2018, 25(12), 2165-2180.
[http://dx.doi.org/10.1038/s41418-018-0103-x] [PMID: 29666469]
[142]
Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; Wilson, R.K.; Ally, A.; Balasundaram, M.; Butterfield, Y.S.N.; Carlsen, R.; Carter, C.; Chu, A.; Chuah, E.; Chun, H.J.E.; Coope, R.J.N.; Dhalla, N.; Guin, R.; Hirst, C.; Hirst, M.; Holt, R.A.; Lee, D.; Li, H.I.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Pleasance, E.; Robertson, A.G.; Schein, J.E.; Shafiei, A.; Sipahimalani, P.; Slobodan, J.R.; Stoll, D.; Tam, A.; Thiessen, N.; Varhol, R.J.; Wye, N.; Zeng, T.; Zhao, Y.; Birol, I.; Jones, S.J.M.; Marra, M.A.; Cherniack, A.D.; Saksena, G.; Onofrio, R.C.; Pho, N.H.; Carter, S.L.; Schumacher, S.E.; Tabak, B.; Hernandez, B.; Gentry, J.; Nguyen, H.; Crenshaw, A.; Ardlie, K.; Beroukhim, R.; Winckler, W.; Getz, G.; Gabriel, S.B.; Meyerson, M.; Chin, L.; Kucherlapati, R.; Hoadley, K.A.; Auman, J.T.; Fan, C.; Turman, Y.J.; Shi, Y.; Li, L.; Topal, M.D.; He, X.; Chao, H.H.; Prat, A.; Silva, G.O.; Iglesia, M.D.; Zhao, W.; Usary, J.; Berg, J.S.; Adams, M.; Booker, J.; Wu, J.; Gulabani, A.; Bodenheimer, T.; Hoyle, A.P.; Simons, J.V.; Soloway, M.G.; Mose, L.E.; Jefferys, S.R.; Balu, S.; Parker, J.S.; Hayes, D.N.; Perou, C.M.; Malik, S.; Mahurkar, S.; Shen, H.; Weisenberger, D.J.; Triche, T.; Lai, P.H.; Bootwalla, M.S.; Maglinte, D.T.; Berman, B.P.; Van Den Berg, D.J.; Baylin, S.B.; Laird, P.W.; Creighton, C.J.; Donehower, L.A.; Noble, M.; Voet, D.; Gehlenborg, N.; Di Cara, D.; Zhang, J.; Zhang, H.; Wu, C.J.; Liu, Y.S.; Lawrence, M.S.; Zou, L.; Sivachenko, A.; Lin, P.; Stojanov, P.; Jing, R.; Cho, J.; Sinha, R.; Park, R.W.; Nazaire, M.D.; Robinson, J.; Thorvaldsdottir, H.; Mesirov, J.; Park, P.J.; Reynolds, S.; Kreisberg, R.B.; Bernard, B.; Bressler, R.; Erkkila, T.; Lin, J.; Thorsson, V.; Zhang, W.; Shmulevich, I.; Ciriello, G.; Weinhold, N.; Schultz, N.; Gao, J.; Cerami, E.; Gross, B.; Jacobsen, A.; Sinha, R.; Aksoy, B.A.; Antipin, Y.; Reva, B.; Shen, R.; Taylor, B.S.; Ladanyi, M.; Sander, C.; Anur, P.; Spellman, P.T.; Lu, Y.; Liu, W.; Verhaak, R.R.G.; Mills, G.B.; Akbani, R.; Zhang, N.; Broom, B.M.; Casasent, T.D.; Wakefield, C.; Unruh, A.K.; Baggerly, K.; Coombes, K.; Weinstein, J.N.; Haussler, D.; Benz, C.C.; Stuart, J.M.; Benz, S.C.; Zhu, J.; Szeto, C.C.; Scott, G.K.; Yau, C.; Paull, E.O.; Carlin, D.; Wong, C.; Sokolov, A.; Thusberg, J.; Mooney, S.; Ng, S.; Goldstein, T.C.; Ellrott, K.; Grifford, M.; Wilks, C.; Ma, S.; Craft, B.; Yan, C.; Hu, Y.; Meerzaman, D.; Gastier-Foster, J.M.; Bowen, J.; Ramirez, N.C.; Black, A.D.; Pyatt, R.E.; White, P.; Zmuda, E.J.; Frick, J.; Lichtenberg, T.M.; Brookens, R.; George, M.M.; Gerken, M.A.; Harper, H.A.; Leraas, K.M.; Wise, L.J.; Tabler, T.R.; McAllister, C.; Barr, T.; Hart-Kothari, M.; Tarvin, K.; Saller, C.; Sandusky, G.; Mitchell, C.; Iacocca, M.V.; Brown, J.; Rabeno, B.; Czerwinski, C.; Petrelli, N.; Dolzhansky, O.; Abramov, M.; Voronina, O.; Potapova, O.; Marks, J.R.; Suchorska, W.M.; Murawa, D.; Kycler, W.; Ibbs, M.; Korski, K.; Spychała, A.; Murawa, P.; Brzeziński, J.J.; Perz, H.; Łaźniak, R.; Teresiak, M.; Tatka, H.; Leporowska, E.; Bogusz-Czerniewicz, M.; Malicki, J.; Mackiewicz, A.; Wiznerowicz, M.; Van Le, X.; Kohl, B.; Viet Tien, N.; Thorp, R.; Van Bang, N.; Sussman, H.; Phu, B.D.; Hajek, R.; Hung, N.P.; Phuong, T.V.T.; Thang, H.Q.; Khan, K.Z.; Penny, R.; Mallery, D.; Curley, E.; Shelton, C.; Yena, P.; Ingle, J.N.; Couch, F.J.; Lingle, W.L.; King, T.A.; Gonzalez-Angulo, A.M.; Dyer, M.D.; Liu, S.; Meng, X.; Patangan, M.; Waldman, F.; Stöppler, H.; Rathmell, W.K.; Thorne, L.; Huang, M.; Boice, L.; Hill, A.; Morrison, C.; Gaudioso, C.; Bshara, W.; Daily, K.; Egea, S.C.; Pegram, M.D.; Gomez-Fernandez, C.; Dhir, R.; Bhargava, R.; Brufsky, A.; Shriver, C.D.; Hooke, J.A.; Campbell, J.L.; Mural, R.J.; Hu, H.; Somiari, S.; Larson, C.; Deyarmin, B.; Kvecher, L.; Kovatich, A.J.; Ellis, M.J.; Stricker, T.; White, K.; Olopade, O.; Luo, C.; Chen, Y.; Bose, R.; Chang, L.W.; Beck, A.H.; Pihl, T.; Jensen, M.; Sfeir, R.; Kahn, A.; Chu, A.; Kothiyal, P.; Wang, Z.; Snyder, E.; Pontius, J.; Ayala, B.; Backus, M.; Walton, J.; Baboud, J.; Berton, D.; Nicholls, M.; Srinivasan, D.; Raman, R.; Girshik, S.; Kigonya, P.; Alonso, S.; Sanbhadti, R.; Barletta, S.; Pot, D.; Sheth, M.; Demchok, J.A.; Shaw, K.R.M.; Yang, L.; Eley, G.; Ferguson, M.L.; Tarnuzzer, R.W.; Zhang, J.; Dillon, L.A.L.; Buetow, K.; Fielding, P.; Ozenberger, B.A.; Guyer, M.S.; Sofia, H.J.; Palchik, J.D. Comprehensive Molecular Portraits of Human Breast Tumours. Nature, 2012, 490, 61-70.
[143]
Craig, D.W.; O’Shaughnessy, J.A.; Kiefer, J.A.; Aldrich, J.; Sinari, S.; Moses, T.M.; Wong, S.; Dinh, J.; Christoforides, A.; Blum, J.L.; Aitelli, C.L.; Osborne, C.R.; Izatt, T.; Kurdoglu, A.; Baker, A.; Koeman, J.; Barbacioru, C.; Sakarya, O.; De La Vega, F.M.; Siddiqui, A.; Hoang, L.; Billings, P.R.; Salhia, B.; Tolcher, A.W.; Trent, J.M.; Mousses, S.; Von Hoff, D.; Carpten, J.D. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol. Cancer Ther., 2013, 12(1), 104-116.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0781] [PMID: 23171949]
[144]
Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev., 2013, 39(8), 935-946.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.009] [PMID: 23643661]
[145]
Wang, C.; Li, J.; Ye, S.; Zhang, Y.; Li, P.; Wang, L.; Wang, T.H. Oestrogen Inhibits VEGF Expression And Angiogenesis In Triple-Negative Breast Cancer By Activating GPER-1. J. Ind. Manage. Optim., 2018, 9(20), 3802-3811.
[http://dx.doi.org/10.7150/jca.29233] [PMID: 30405852]
[146]
Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124] [PMID: 18644991]
[147]
Shaw, R.J.; Kosmatka, M.; Bardeesy, N.; Hurley, R.L.; Witters, L.A.; DePinho, R.A.; Cantley, L.C. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3329-3335.
[http://dx.doi.org/10.1073/pnas.0308061100] [PMID: 14985505]
[148]
Huang, X.; Li, X.; Xie, X.; Ye, F.; Chen, B.; Song, C.; Tang, H.; Xie, X. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast, 2016, 30, 39-46.
[http://dx.doi.org/10.1016/j.breast.2016.08.014] [PMID: 27598996]
[149]
Kou, B.; Kou, Q.; Ma, B.; Zhang, J.; Sun, B.; Yang, Y.; Li, J.; Zhou, J.; Liu, W. Thymoquinone inhibits metastatic phenotype and epithelial mesenchymal transition in renal cell carcinoma by regulating the LKB1/AMPK signaling pathway. Oncol. Rep., 2018, 40(3), 1443-1450.
[http://dx.doi.org/10.3892/or.2018.6519] [PMID: 29956793]
[150]
Lalitha, P.; Veena, V.; Vidhyapriya, P.; Lakshmi, P.; Krishna, R.; Sakthivel, N. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis, 2016, 21(5), 566-577.
[http://dx.doi.org/10.1007/s10495-016-1221-x] [PMID: 26852140]
[151]
Kgk, D.; Kumari, S.G.S.; Malla, R.R. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem. Biol. Interact., 2020, 315, 108872.
[http://dx.doi.org/10.1016/j.cbi.2019.108872] [PMID: 31669320]
[152]
Srinivas, G.; Babykutty, S.; Sathiadevan, P.P.; Srinivas, P. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med. Res. Rev., 2007, 27(5), 591-608.
[http://dx.doi.org/10.1002/med.20095] [PMID: 17019678]
[153]
Zou, G.; Zhang, X.; Wang, L.; Li, X.; Xie, T.; Zhao, J.; Yan, J.; Wang, L.; Ye, H.; Jiao, S.; Xiang, R.; Shi, Y. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics, 2020, 10(15), 6839-6853.
[http://dx.doi.org/10.7150/thno.43622] [PMID: 32550907]
[154]
Calixto, J.B.; Viana, A.F.; MacIel, I.S.; Motta, E.M.; Leal, P.C.; Pianowski, L.; Campos, M.M. Antinociceptive activity of trichilia catigua hydroalcoholic extract: New evidence on its dopaminergic effects. Evidence-based Complement. Altern. Med., 2011. 2011
[155]
Tundis, R.; Loizzo, M.R.; Menichini, F. An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Crit. Rev. Food Sci. Nutr., 2014, 54(2), 225-250.
[http://dx.doi.org/10.1080/10408398.2011.581400] [PMID: 24188270]
[156]
Becceneri, A.B.; Fuzer, A.M.; Popolin, C.P.; Cazal, C.M.; Domingues, V.C.; Fernandes, J.B.; Vieira, P.C.; Cominetti, M.R. Acetylation of cedrelone increases its cytotoxic activity and reverts the malignant phenotype of breast cancer cells in 3D culture. Chem. Biol. Interact., 2020, 316, 108920.
[http://dx.doi.org/10.1016/j.cbi.2019.108920] [PMID: 31857088]
[157]
Yao, H.; Xie, S.; Ma, X.; Liu, J.; Wu, H.; Lin, A.; Yao, H.; Li, D.; Xu, S.; Yang, D.H.; Chen, Z.S.; Xu, J. Identification of a Potent Oridonin Analogue for Treatment of Triple-Negative Breast Cancer. J. Med. Chem., 2020, 63(15), 8157-8178.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00408] [PMID: 32610904]
[158]
Gao, S.; Sun, D.; Wang, G.; Zhang, J.; Jiang, Y.; Li, G.; Zhang, K.; Wang, L.; Huang, J.; Chen, L. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg. Chem., 2016, 69, 121-128.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.005] [PMID: 27814565]
[159]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[160]
Elkhalifa, D.; Alali, F.; Al Moustafa, A-E.; Khalil, A. Targeting triple negative breast cancer heterogeneity with chalcones: a molecular insight. J. Drug Target., 2019, 27(8), 830-838.
[http://dx.doi.org/10.1080/1061186X.2018.1561889] [PMID: 30582377]
[161]
Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem., 2020, 187, 111954.
[http://dx.doi.org/10.1016/j.ejmech.2019.111954] [PMID: 31838326]
[162]
Cao, H.; Sethumadhavan, K.; Bland, J.M. Isolation of Cottonseed Extracts That Affect Human Cancer Cell Growth. Sci. Rep., 2018, 8(1), 10458.
[http://dx.doi.org/10.1038/s41598-018-28773-4] [PMID: 29993017]
[163]
He, Z.; Zhang, H.; Olk, D.C. Chemical Composition of Defatted Cottonseed and Soy Meal Products. PLoS One, 2015, 10(6), e0129933.
[http://dx.doi.org/10.1371/journal.pone.0129933] [PMID: 26079931]
[164]
Sharifi-Rad, M.; Fokou, P.V.T.; Sharopov, F.; Martorell, M.; Ademiluyi, A.O.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules, 2018, 23(7), 1751.
[http://dx.doi.org/10.3390/molecules23071751] [PMID: 30018251]
[165]
Messeha, S.S.; Zarmouh, N.O.; Mendonca, P.; Cotton, C.; Soliman, K.F.A. Molecular mechanism of gossypol mediating CCL2 and IL 8 attenuation in triple negative breast cancer cells. Mol. Med. Rep., 2020, 22(2), 1213-1226.
[http://dx.doi.org/10.3892/mmr.2020.11240] [PMID: 32627003]
[166]
L.; HeZhen, W.; YongPing, H.; YanFang, Y.; YanWen, L.; JianWen, L. 6-O-Angeloylenolin Induces Apoptosis through a Mitochondrial/Caspase and NF-KB Pathway in Human Leukemia HL60 Cells. Biomed. Pharmacother., 2008, 62, 401-409.
[http://dx.doi.org/10.1016/j.biopha.2007.10.010] [PMID: 18077129]
[167]
Wang, J.; Li, M.; Cui, X.; Lv, D.; Jin, L.; Khan, M.; Ma, T.; Brevilin, A. Brevilin A promotes oxidative stress and induces mitochondrial apoptosis in U87 glioblastoma cells. OncoTargets Ther., 2018, 11, 7031-7040.
[http://dx.doi.org/10.2147/OTT.S179730] [PMID: 30410360]
[168]
Wang, Y.; Yu, R.Y.; Zhang, J.; Zhang, W.X.; Huang, Z.H.; Hu, H.F.; Li, Y.L.; Li, B.; He, Q.Y. Inhibition of Nrf2 enhances the anticancer effect of 6-O-angeloylenolin in lung adenocarcinoma. Biochem. Pharmacol., 2017, 129, 43-53.
[http://dx.doi.org/10.1016/j.bcp.2017.01.006] [PMID: 28104435]
[169]
You, P.; Wu, H.; Deng, M.; Peng, J.; Li, F.; Yang, Y.; Brevilin, A. Brevilin A induces apoptosis and autophagy of colon adenocarcinoma cell CT26 via mitochondrial pathway and PI3K/AKT/mTOR inactivation. Biomed. Pharmacother., 2018, 98, 619-625.
[http://dx.doi.org/10.1016/j.biopha.2017.12.057] [PMID: 29289836]
[170]
Liu, R.; Qu, Z.; Lin, Y.; Lee, C-S.; Tai, W.C-S.; Chen, S.; Brevilin, A.; Brevilin, A. Induces Cell Cycle Arrest and Apoptosis in Nasopharyngeal Carcinoma. Front. Pharmacol., 2019, 10, 594.
[http://dx.doi.org/10.3389/fphar.2019.00594] [PMID: 31178739]
[171]
Liu, R.; Dow Chan, B.; Mok, D.K-W.; Lee, C-S.; Tai, W.C-S.; Chen, S. Arnicolide D, from the herb Centipeda minima, Is a Therapeutic Candidate against Nasopharyngeal Carcinoma. Molecules, 2019, 24(10), 1908.
[http://dx.doi.org/10.3390/molecules24101908] [PMID: 31108969]
[172]
Guo, Y.Q.; Sun, H.Y.; Chan, C.O.; Liu, B.B.; Wu, J.H.; Chan, S.W.; Mok, D.K.W.; Tse, A.K.W.; Yu, Z.L.; Chen, S.B. Centipeda minima (Ebushicao) extract inhibits PI3K-Akt-mTOR signaling in nasopharyngeal carcinoma CNE-1 cells. Chin. Med., 2015, 10, 26.
[http://dx.doi.org/10.1186/s13020-015-0058-5] [PMID: 26388933]
[173]
Lee, M.M.L.; Chan, B.D.; Wong, W.Y.; Qu, Z.; Chan, M.S.; Leung, T.W.; Lin, Y.; Mok, D.K.W.; Chen, S.; Tai, W.C.S. Anti-cancer activity of centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-KB, and STAT3 signaling pathways. Front. Oncol., 2020, 10, 491.
[http://dx.doi.org/10.3389/fonc.2020.00491] [PMID: 32328465]
[174]
Chuda, Y.; Ono, H.; Ohnishi-Kameyama, M.; Nagata, T.; Tsushida, T. Structural identification of two antioxidant quinic acid derivatives from Garland (Chrysanthemum Coronarium L.). J. Agricul. Food Chem., 1996, 44, 2037-2039.
[http://dx.doi.org/10.1021/jf960182+]
[175]
Yang, P.F.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Neuroprotective caffeoylquinic acid derivatives from the flowers of chrysanthemum morifolium. J. Nat. Prod., 2017, 80(4), 1028-1033.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01026] [PMID: 28248102]
[176]
Puangpraphant, S.; Berhow, M.A.; Vermillion, K.; Potts, G.; Gonzalez de Mejia, E. Dicaffeoylquinic acids in Yerba mate (Ilex paraguariensis St. Hilaire) inhibit NF-κB nucleus translocation in macrophages and induce apoptosis by activating caspases-8 and -3 in human colon cancer cells. Mol. Nutr. Food Res., 2011, 55(10), 1509-1522.
[http://dx.doi.org/10.1002/mnfr.201100128] [PMID: 21656672]
[177]
Zhou, Y.; Fu, X.; Guan, Y.; Gong, M.; He, K.; Huang, B. 1,3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway. Biochem. Pharmacol., 2020, 172, 113752.
[http://dx.doi.org/10.1016/j.bcp.2019.113752] [PMID: 31836387]
[178]
Brandão, P.; Moreira, J.; Almeida, J.; Nazareth, N.; Sampaio-Dias, I.E.; Vasconcelos, V.; Martins, R.; Leão, P.; Pinto, M.; Saraíva, L.; Cidade, H. Norhierridin B, a new hierridin B-based hydroquinone with improved antiproliferative activity. Molecules, 2020, 25(7), 25.
[http://dx.doi.org/10.3390/molecules25071578] [PMID: 32235535]
[179]
Kuroda, M.; Mimaki, Y.; Yokosuka, A.; Sashida, Y.; Beutler, J.A. Cytotoxic cholestane glycosides from the bulbs of Ornithogalum saundersiae. J. Nat. Prod., 2001, 64(1), 88-91.
[http://dx.doi.org/10.1021/np0003084] [PMID: 11170674]
[180]
Zhou, Y.; Garcia-Prieto, C.; Carney, D.A.; Xu, R.H.; Pelicano, H.; Kang, Y.; Yu, W.; Lou, C.; Kondo, S.; Liu, J.; Harris, D.M.; Estrov, Z.; Keating, M.J.; Jin, Z.; Huang, P. OSW-1: a natural compound with potent anticancer activity and a novel mechanism of action. J. Natl. Cancer Inst., 2005, 97(23), 1781-1785.
[http://dx.doi.org/10.1093/jnci/dji404] [PMID: 16333034]
[181]
Jin, J.; Jin, X.; Qian, C.; Ruan, Y.; Jiang, H. Signaling network of OSW 1 induced apoptosis and necroptosis in hepatocellular carcinoma. Mol. Med. Rep., 2013, 7(5), 1646-1650.
[http://dx.doi.org/10.3892/mmr.2013.1366] [PMID: 23503804]
[182]
Ding, X.; Li, Y.; Li, J.; Yin, Y. OSW-1 inhibits tumor growth and metastasis by NFATc2 on triple-negative breast cancer. Cancer Med., 2020, 9(15), 5558-5569.
[http://dx.doi.org/10.1002/cam4.3196] [PMID: 32515123]
[183]
Wu, R.; Yang, X.; Zhou, Q.; Yu, W.; Li, M.; Wo, J.; Shan, W.; Zhao, H.; Chen, Y.; Zhan, Z.; Aurovertin, B. Aurovertin B exerts potent antitumor activity against triple-negative breast cancer in vivo and in vitro via regulating ATP synthase activity and DUSP1 expression. Pharmazie, 2020, 75(6), 261-265.
[PMID: 32539922]
[184]
Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010, 15(5), 3135-3170.
[http://dx.doi.org/10.3390/molecules15053135] [PMID: 20657468]
[185]
Lang, S.J.; Schmiech, M.; Hafner, S.; Paetz, C.; Werner, K.; El Gaafary, M.; Schmidt, C.Q.; Syrovets, T.; Simmet, T. Chrysosplenol d, a Flavonol from Artemisia annua, induces ERK1/2-Mediated apoptosis in triple negative human breast cancer cells. Int. J. Mol. Sci., 2020, 21(11), 4090.
[http://dx.doi.org/10.3390/ijms21114090] [PMID: 32521698]
[186]
Guo, Y.; Fan, Y.; Pei, X. Fangjihuangqi decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model. Cancer Med., 2020, 9(7), 2564-2578.
[http://dx.doi.org/10.1002/cam4.2894] [PMID: 32037729]
[187]
Mehta, M.; Griffith, J.; Panneerselvam, J.; Babu, A.; Mani, J.; Herman, T.; Ramesh, R.; Munshi, A. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int. J. Radiat. Biol., 2021, 97(8), 1109-1120.
[http://dx.doi.org/10.1080/09553002.2020.1730012] [PMID: 32052681]
[188]
Huang, E.H.; Singh, B.; Cristofanilli, M.; Gelovani, J.; Wei, C.; Vincent, L.; Cook, K.R.; Lucci, A.A. CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res., 2009, 155(2), 231-236.
[http://dx.doi.org/10.1016/j.jss.2008.06.044] [PMID: 19482312]
[189]
Pernas, S.; Martin, M.; Kaufman, P.A.; Gil-Martin, M.; Gomez Pardo, P.; Lopez-Tarruella, S.; Manso, L.; Ciruelos, E.; Perez-Fidalgo, J.A.; Hernando, C.; Ademuyiwa, F.O.; Weilbaecher, K.; Mayer, I.; Pluard, T.J.; Martinez Garcia, M.; Vahdat, L.; Perez-Garcia, J.; Wach, A.; Barker, D.; Fung, S.; Romagnoli, B.; Cortes, J. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol., 2018, 19(6), 812-824.
[http://dx.doi.org/10.1016/S1470-2045(18)30147-5] [PMID: 29706375]
[190]
Li, X.; Li, X.; Huang, N.; Liu, R.; Sun, R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine, 2018, 50, 73-87.
[http://dx.doi.org/10.1016/j.phymed.2018.09.174] [PMID: 30466994]
[191]
Chen, J.C.; Chang, N.W.; Chung, J.G.; Chen, K.C. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. Am. J. Chin. Med., 2003, 31(3), 363-377.
[http://dx.doi.org/10.1142/S0192415X03001065] [PMID: 12943168]
[192]
Wang, Y.; Zhao, L.; Han, X.; Wang, Y.; Mi, J.; Wang, C.; Sun, D.; Fu, Y.; Zhao, X.; Guo, H.; Wang, Q.; Saikosaponin, A. Saikosaponin A inhibits triple-negative breast cancer growth and metastasis through downregulation of CXCR4. Front. Oncol., 2020, 9, 1487.
[http://dx.doi.org/10.3389/fonc.2019.01487] [PMID: 32047724]
[193]
Song, X.; Li, Y.; Zhang, H.; Yang, Q. The anticancer effect of Huaier (Review). Oncol. Rep., 2015, 34(1), 12-21.
[http://dx.doi.org/10.3892/or.2015.3950] [PMID: 25955759]
[194]
Wang, M.; Hu, Y.; Hou, L.; Pan, Q.; Tang, P.; Jiang, J. A clinical study on the use of Huaier granules in post-surgical treatment of triple-negative breast cancer. Gland Surg., 2019, 8(6), 758-765.
[http://dx.doi.org/10.21037/gs.2019.12.08] [PMID: 32042684]