Advances in Graphene-based Materials for Dye-sensitized Solar Cell Components, Electronic Devices and Prospective Applications: A Critical Review

Page: [336 - 346] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The investigation of a Dye-Sensitized Solar Cell (DSSC) as an alternative approach to the conventional photovoltaic cell (silicon-based) is attracting remarkable attention recently. This stems from the excellent optical properties of graphene, such as impressive transparency, conductance in near-infrared and visible light spectrums, along with its thermochemical stability, as reported in the literature. However, the main limitation of graphene production is the lack of suitable methods for its industrial-scale synthesis. Consequently, the research on industrial applications of graphene development and understanding of how to pragmatize existing theoretical approaches are still ongoing in the related research domain. This is exemplified in single, few, and adhesive layer mechanical cleavage graphene methods, which are not yet practicable, as these methods will restrict the chance for scaling up. These limitations and inadequate reviews on graphene development impelled the authors to compile the advances in graphene synthesis, properties, recent applications, and future directions. The mechanical exfoliation synthesis technique delivers quality graphene films sized from 5 to 10 μm. Graphene-TiO2 hybridization was also found to possess efficiency acclivity as high as 39%. This review provides significant implications for a better understanding of graphene performance indicators and insight for future research in photovoltaic or optical modulation devices.

Keywords: Dye-sensitized solar cell, graphene, TiO2 hybridization, optical properties, carbon, transparent conductive electrode.

Graphical Abstract

[1]
Hasin, P.; Alpuche-Aviles, M.A.; Wu, Y. Electrocatalytic activity of graphene multilayers toward I−/I3−: Effect of preparation conditions and polyelectrolyte modification. J. Phys. Chem. C, 2010, 114, 15857-15861.
[http://dx.doi.org/10.1021/jp106130v]
[2]
Olalekan, S.; Abdullahi, M.; Olabisi, A. Modeling of solar radiation using artificial neural network for renewable energy application. J. Appl. Phys., 2018, 10, 6-12.
[3]
Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater., 2018, 19(1), 613-648.
[http://dx.doi.org/10.1080/14686996.2018.1494493] [PMID: 30181789]
[4]
Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 2008, 100(1), 016602.
[http://dx.doi.org/10.1103/PhysRevLett.100.016602] [PMID: 18232798]
[5]
Vellei, M.; Herrera, M.; Fosas, D.; Natarajan, S. The influence of relative humidity on adaptive thermal comfort. Build. Environ., 2017, 124, 171-185.
[http://dx.doi.org/10.1016/j.buildenv.2017.08.005]
[6]
Vellei, M.; Herrera, M.; Fosas, D.; Natarajan, S.V. The influence of relative humidity on adaptive thermal comfort. Build. Environ., 2017, 124, 171-185.
[http://dx.doi.org/10.1016/j.buildenv.2017.08.005]
[7]
Surajudeen, S.; Yahya, N.; Soleimani, H.; Musa, A.A.; Afeez, Y.; Rostami, A. Effect of adsorption on saturated sandstone within electric double layer on solid/liquid inter-phase. Petrol. Coal, 2019, 61(6), 1438-1444.
[8]
Aliu, T.; Sakidin, H.; Yahya, N.; Sikiru, S.; Ali, A.M. Dynamics of nanoparticles propagation in porous media. Petrol. Coal, 2019, 161(5), 1084-1088.
[9]
Afeez, Y.; Yahya, N.; Nyuk, C.M.; Al-qaseem, B.; Qureshi, S. Sikiru, Investigation on nanoparticles effect on interfacial forces for enhanced oil recovery. 2019., ,. 209513307. Available from: https://www.semanticscholar.org/paper/ INVESTIGATION-ON-NANOPARTICLES%E2%80%99- EFFECT-ON-FORCES-Afeez-Yahya/7599805f9f0169940f6a 33850f2771e1b0f48418
[10]
Roy-Mayhew, J.D.; Bozym, D.J.; Punckt, C.; Aksay, I.A. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10), 6203-6211.
[http://dx.doi.org/10.1021/nn1016428] [PMID: 20939517]
[11]
Kavan, L.; Yum, J.H.; Grätzel, M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano, 2011, 5(1), 165-172.
[http://dx.doi.org/10.1021/nn102353h] [PMID: 21126092]
[12]
Yusuff, A.O.; Yahya, N.; Zakariya, M.A.; Sikiru, S. Investigations of graphene impact on oil mobility and physicochemical interaction with sandstone surface. J. Petrol. Sci. Eng., 2020, 198(2), 108250.
[http://dx.doi.org/10.1016/j.petrol.2020.108250]
[13]
Yusuf, J.Y.; Soleimani, H.; Sanusi, Y.K.; Adebayo, L.L.; Sikiru, S.; Wahaab, F.A. Recent advances and prospect of cobalt based microwave absorbing materials. Ceram. Int., 2020, 46(17), 26466-26485.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.244]
[14]
Gao, X.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C, 2010, 114, 832-842.
[http://dx.doi.org/10.1021/jp909284g]
[15]
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S. KAM khoyan, O. celik, D. mastrogiovanni, G. granozzi, E. garfunkel, and M. chhowalla. evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater., 2009, 9, 2577.
[http://dx.doi.org/10.1002/adfm.200900166]
[16]
Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146, 351-355.
[http://dx.doi.org/10.1016/j.ssc.2008.02.024]
[17]
Sanusi, Y.; Fajinmi, G.; Babatunde, E. Effects of ambient temperature on the performance of a photovoltaic solar system in a tropical area. Pac. J. Sci. Technol., 2011, 12, 176-180. Available at: https://www.researchgate.net/publication/266593060_[Effects_of_Ambient_Temperature_on_the_Performance_of_a_ Photovoltaic_Solar_System_in_a_Tropical_Area
[18]
Sanusi, Y.K.; Abisoye, S.G. Estimation of solar radiation at Ibadan, Nigeria. J. Emerg. Trends Eng. Appl. Sci., 2011, 2, 701-705.
[19]
Sanusi, Y. The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pac. J. Sci. Technol., 2012, 13, 168-175. Available at: https://www.researchgate.net/publication/286234260_The_performance_of_amorphous_silicon_PV_system_under_Harmattan_dust_conditions_in_a_tropical_area
[20]
Sanusi, Y.; Abisoye, S. Estimation of wind energy potential in Southwestern Nigeria. Pac. J. Sci. Technol., 2011, 12, 160-166.
[21]
Sanusi, Y.; Abisoye, S.; Awodugba, A. Application of neural networks for predicitng the optimal sizing parameters of stand-alone photovoltaic systems. SOP Trans Appl Phys, 2014, 1, 1-5.
[22]
Awodugba, A.; Sanusi, Y.; Ajayi, J. Photovoltaic solar cell simulation of shockley diode parameters in matlab. Int. J. Phys. Sci., 2013, 8, 1193-1200.
[23]
Zhang, H.; Wang, W.; Liu, H.; Wang, R.; Chen, Y.; Wang, Z. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull., 2014, 49, 126-131.
[http://dx.doi.org/10.1016/j.materresbull.2013.08.058]
[24]
Saadi, S.; Nazari, B. Recent developments and applications of nanocomposites in solar cells: A review. J. Compos. Comp., 2019, 1, 41-50.
[http://dx.doi.org/10.29252/jcc.1.1.7]
[25]
Wang, X.; Li, Y.; Song, P.; Ma, F.; Yang, Y. Effect of graphene between photoanode and sensitizer on the intramolecular and intermolecular electron transfer process. Phys. Chem. Chem. Phys., 2020, 22(11), 6391-6400.
[http://dx.doi.org/10.1039/C9CP06543A] [PMID: 32142089]
[26]
Sen, T.; Shimpi, N.G.; Mishra, S.; Sharma, R. Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B Chem., 2014, 190, 120-126.
[http://dx.doi.org/10.1016/j.snb.2013.07.091]
[27]
Sanusi, Y.; Asafa, T.; Kazeem, A. Optimization of TiO2 based henna dye sensitized solar cell using Grey-Taguchi technique. Int. J. Renew. Energy Res., 2016, 6, 1119-1128.
[28]
Leong, W.S.; Nai, C.T.; Thong, J.T. What does annealing do to metal-graphene contacts? Nano Lett., 2014, 14(7), 3840-3847.
[http://dx.doi.org/10.1021/nl500999r] [PMID: 24912079]
[29]
Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc., 2008, 130(18), 5856-5857.
[http://dx.doi.org/10.1021/ja800745y] [PMID: 18399634]
[30]
Tung, V.C.; Chen, L-M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett., 2009, 9(5), 1949-1955.
[http://dx.doi.org/10.1021/nl9001525] [PMID: 19361207]
[31]
Zhang, Y.; Small, J.P.; Pontius, W.V.; Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett., 2005, 86, 073104.
[http://dx.doi.org/10.1063/1.1862334]
[32]
Chen, J-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 2008, 3(4), 206-209.
[http://dx.doi.org/10.1038/nnano.2008.58] [PMID: 18654504]
[33]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6, 183-191. Available at: https://www.nature.com/articles/nmat1849
[34]
Weatherup, R.S.; Bayer, B.C.; Blume, R.; Ducati, C.; Baehtz, C.; Schlögl, R.; Hofmann, S. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett., 2011, 11(10), 4154-4160.
[http://dx.doi.org/10.1021/nl202036y] [PMID: 21905732]
[35]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[http://dx.doi.org/10.1126/science.1102896]
[36]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197-200.
[http://dx.doi.org/10.1038/nature04233]
[37]
Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008, 92, 237.
[http://dx.doi.org/10.1063/1.2924771]
[38]
Vollmer, A.; Feng, X.; Wang, X.; Zhi, L.; Müllen, K.; Koch, N. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes. Appl. Phys., A Mater. Sci. Process., 2009, 94, 1-4.
[http://dx.doi.org/10.1007/s00339-008-4931-2]
[39]
Coraux, J.; N’Diaye, A.T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett., 2008, 8(2), 565-570.
[http://dx.doi.org/10.1021/nl0728874] [PMID: 18189442]
[40]
Cao, X.; Yin, Z.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci., 2014, 7, 1850-1865.
[http://dx.doi.org/10.1039/C4EE00050A]
[41]
Sutter, P.W.; Flege, J-I.; Sutter, E.A. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5), 406-411.
[http://dx.doi.org/10.1038/nmat2166] [PMID: 18391956]
[42]
Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3), 463-470.
[http://dx.doi.org/10.1021/nn700375n] [PMID: 19206571]
[43]
Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett., 2008, 8(7), 2012-2016.
[http://dx.doi.org/10.1021/nl8011566] [PMID: 18529034]
[44]
Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1), 30-35.
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[45]
Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez-Manchado, M.A. Graphene filled polymer nanocomposites. J. Mater. Chem., 2011, 21, 3301-3310.
[http://dx.doi.org/10.1039/C0JM02708A]
[46]
Park, S.; Ruoff, R. Chemical methods for the production of graphenes. Nat Nanotechnol 4, 2009., 217e24.
[47]
Segal, M. Selling graphene by the ton. Nat. Nanotechnol., 2009, 4(10), 612-614.
[http://dx.doi.org/10.1038/nnano.2009.279] [PMID: 19809441]
[48]
Surajudeen, S.; Rostami, A.; Soleimani, H.; Yahya, N.; Afeez, Y.; Oluwaseyi, A. Graphene: Outlook in the enhance oil recovery (EOR). J. Mol. Liq., 2020, 321, 114519.
[49]
Yahya, N.; Sikiru, S.; Rostami, A.; Soleimani, H.; Alqasem, B.; Qureishi, S. Percolation threshold of multiwall carbon nanotube-PVDF composite for electromagnetic wave propagation. Nano Express, 2020, 1, 010060.
[http://dx.doi.org/10.1088/2632-959X/ab9d69]
[50]
Alqasem, B.; Sikiru, S.; Ali, E.M.; Rostami, A.; Ganeson, M.; Nyuk, C.M. Effect of electromagnetic energy on net spin orientation of nanocatalyst for enhanced green urea synthesis. J. Mater. Res. Technol., 2020, 9(6), 16497-16972.
[51]
Jiang, M.; Ren, Z.; Lu, B.; Guo, T.; Wan, L.; Zhang, Y. Low-repetition-rate high-energy passively Q-switched Nd: YAG solid laser based on graphene saturable absorber operating at 1064nm. Curr. Nanosci., 2012, 8, 60-63.
[http://dx.doi.org/10.2174/1573413711208010060]
[52]
Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru (0001). Phys. Rev. B, 2007, 76, 075429.
[http://dx.doi.org/10.1103/PhysRevB.76.075429]
[53]
Esfe, M.H.; Wongwises, S.; Esfandeh, S.; Alirezaie, A. Development of a new correlation and post processing of heat transfer coefficient and pressure drop of functionalized COOH MWCNT nanofluid by artificial neural network. Curr. Nanosci., 2018, 14, 104-112.
[http://dx.doi.org/10.2174/1573413713666170913122649]
[54]
Durán, N.; Seabra, A. Biogenic synthesized Ag/Au nanoparticles: Production, characterization, and applications. Curr. Nanosci., 2018, 14, 82-94.
[55]
Vázquez de Parga, A.L.; Calleja, F.; Borca, B.; Passeggi, M.C., Jr; Hinarejos, J.J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett., 2008, 100(5), 056807.
[http://dx.doi.org/10.1103/PhysRevLett.100.056807] [PMID: 18352412]
[56]
Edwards, R.S.; Coleman, K.S. Graphene synthesis: Relationship to applications. Nanoscale, 2013, 5(1), 38-51.
[http://dx.doi.org/10.1039/C2NR32629A] [PMID: 23160190]
[57]
Na, M.Y.; Lee, S-M.; Kim, D.H.; Chang, H.J. Dark-field transmission electron microscopy imaging technique to visualize the local structure of two-dimensional material; graphene. Applied Microscopy, 2015, 45, 23-31.
[http://dx.doi.org/10.9729/AM.2015.45.1.23]
[58]
MacKenzie, K.J.; Dunens, O.M.; See, C.H.; Harris, A.T. Large-scale carbon nanotube synthesis. Recent Pat. Nanotechnol., 2008, 2(1), 25-40.
[http://dx.doi.org/10.2174/187221008783478617] [PMID: 19076041]
[59]
Randviir, E.P.; Brownson, D.A.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today, 2014, 17, 426-432.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[60]
Jayasena, B.; Subbiah, S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett., 2011, 6(1), 95.
[http://dx.doi.org/10.1186/1556-276X-6-95] [PMID: 21711598]
[61]
Amini, S.; Garay, J.; Liu, G.; Balandin, A.A.; Abbaschian, R. Growth of large-area graphene films from metal-carbon melts. J. Appl. Phys., 2010, 108, 094321.
[http://dx.doi.org/10.1063/1.3498815]
[62]
Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’diaye, A.T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett., 2009, 102(5), 056808.
[http://dx.doi.org/10.1103/PhysRevLett.102.056808] [PMID: 19257540]
[63]
Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett., 2008, 8(8), 2458-2462.
[http://dx.doi.org/10.1021/nl801457b] [PMID: 18630972]
[64]
Yang, Y.; Liu, R.; Wu, J.; Jiang, X.; Cao, P.; Hu, X.; Pan, T.; Qiu, C.; Yang, J.; Song, Y.; Wu, D.; Su, Y. Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep., 2015, 5, 13480.
[http://dx.doi.org/10.1038/srep13480] [PMID: 26311022]
[65]
Tiwari, S.K.; Mishra, R.K.; Ha, S.K.; Huczko, A. Evolution of graphene oxide and graphene: From imagination to industrialization. ChemNanoMat, 2018, 4, 598-620.
[http://dx.doi.org/10.1002/cnma.201800089]
[66]
Chen, T.; Hu, W.; Song, J.; Guai, G.H.; Li, C.M. Interface functionalization of photoelectrodes with graphene for high performance dye‐sensitized solar cells. Adv. Funct. Mater., 2012, 22, 5245-5250.
[http://dx.doi.org/10.1002/adfm.201201126]
[67]
Yan, H.; Wang, J.; Feng, B.; Duan, K.; Weng, J. Graphene and Ag nanowires co-modified photoanodes for high-efficiency dye-sensitized solar cells. Sol. Energy, 2015, 122, 966-975.
[http://dx.doi.org/10.1016/j.solener.2015.10.026]
[68]
Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res., 2013, 46(10), 2329-2339.
[http://dx.doi.org/10.1021/ar300203n] [PMID: 23480816]
[69]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4, 611.
[http://dx.doi.org/10.1038/nphoton.2010.186]
[70]
Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 2008, 8(1), 323-327.
[http://dx.doi.org/10.1021/nl072838r] [PMID: 18069877]
[71]
Bi, H.; Sun, S.; Huang, F.; Xie, X.; Jiang, M. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J. Mater. Chem., 2012, 22, 411-416.
[http://dx.doi.org/10.1039/C1JM14778A]
[72]
Sharifi, N.; Tajabadi, F.; Taghavinia, N. Recent developments in dye-sensitized solar cells. ChemPhysChem, 2014, 15(18), 3902-3927.
[http://dx.doi.org/10.1002/cphc.201402299] [PMID: 25277957]
[73]
Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO nanostructures for dye‐sensitized solar cells. Adv. Mater., 2009, 21, 4087-4108.
[http://dx.doi.org/10.1002/adma.200803827]
[74]
Raj, C.C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources, 2016, 317, 120-132.
[http://dx.doi.org/10.1016/j.jpowsour.2016.03.016]
[75]
Boda, M.A.; Çırak, B.B.; Demir, Z.; Çırak, Ç. Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell. Mater. Lett., 2019, 248, 143-145.
[http://dx.doi.org/10.1016/j.matlet.2019.04.023]
[76]
Shittu, H.; Bello, I.; Kareem, M.; Awodele, M.; Sanusi, Y.; Adedokun, O. Recent developments on the photoanodes employed in dye-sensitized solar cell. IOP Conf. Ser. Mater. Sci. Eng., 2020, 805, 012019.
[77]
Umar, A.; Ibrahim, A.A. Fabrication and characterization of dye-sensitized solar cells based on flower shaped ZnO nanostructures. J. Nanosci. Nanotechnol., 2018, 18(5), 3697-3701.
[http://dx.doi.org/10.1166/jnn.2018.14657] [PMID: 29442886]
[78]
Zhang, L.; Konno, A. Development of flexible dye-sensitized solar cell based on predyed zinc oxide nanoparticle. Int. J. Electrochem. Sci., 2018, 13, 344-352.
[http://dx.doi.org/10.20964/2018.01.07]
[79]
Kumara, G.; Deshapriya, U.; Ranasinghe, C.; Jayaweera, E.; Rajapakse, R. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye. J. Semicond., 2018, 39, 033005.
[http://dx.doi.org/10.1088/1674-4926/39/3/033005]
[80]
Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A. Prud’Homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6), 327-331.
[http://dx.doi.org/10.1038/nnano.2008.96] [PMID: 18654541]
[81]
Wang, H.; Leonard, S.L.; Hu, Y.H. Promoting effect of graphene on dye-sensitized solar cells. Ind. Eng. Chem. Res., 2012, 51, 10613-10620.
[http://dx.doi.org/10.1021/ie300563h]
[82]
Tang, Y-B.; Lee, C-S.; Xu, J.; Liu, Z-T.; Chen, Z-H.; He, Z.; Cao, Y.L.; Yuan, G.; Song, H.; Chen, L.; Luo, L.; Cheng, H.M.; Zhang, W.J.; Bello, I.; Lee, S.T. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 2010, 4(6), 3482-3488.
[http://dx.doi.org/10.1021/nn100449w] [PMID: 20455548]
[83]
Du, A.; Ng, Y.H.; Bell, N.J.; Zhu, Z.; Amal, R.; Smith, S.C. Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett., 2011, 2(8), 894-899.
[http://dx.doi.org/10.1021/jz2002698] [PMID: 26295625]
[84]
Ajadi, D.; Sanusi, Y. Effect of relative humidity on oven temperature of locally design solar carbinet dryer; Global J. Sci. Front. Res. Phys. Space Sci, 2013, p. 13.
[85]
Liang, J.; Zhang, G.; Yang, J.; Sun, W.; Shi, M. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells. AIP Adv., 2015, 5, 017141.
[http://dx.doi.org/10.1063/1.4906988]
[86]
Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano, 2010, 4(2), 887-894.
[http://dx.doi.org/10.1021/nn901660v] [PMID: 20088539]
[87]
Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39, 507-514.
[http://dx.doi.org/10.1016/S0008-6223(00)00155-X]
[88]
Wojcik, A.; Kamat, P.V. Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano, 2010, 4(11), 6697-6706.
[http://dx.doi.org/10.1021/nn102185q] [PMID: 21028793]
[89]
Bogue, R. Graphene sensors: A review of recent developments. Sens. Rev., 2014, 34(3), 233-238.
[http://dx.doi.org/10.1108/SR-03-2014-631]
[90]
Song, J.; Yu, Z.; Gordin, M.L.; Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett., 2016, 16(2), 864-870.
[http://dx.doi.org/10.1021/acs.nanolett.5b03217] [PMID: 26709841]
[91]
Hong, J.Y.; Jung, Y.; Park, D-W.; Chung, S.; Kim, S. Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. Electrochim. Acta, 2018, 259, 1021-1029.
[http://dx.doi.org/10.1016/j.electacta.2017.11.016]
[92]
He, S.; Qian, Y.; Liu, K.; Macosko, C.W.; Stein, A. Modified-graphene-oxide-containing styrene masterbatches for thermosets. Ind. Eng. Chem. Res., 2017, 56, 11443-11450.
[http://dx.doi.org/10.1021/acs.iecr.7b02583]
[93]
Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109.
[http://dx.doi.org/10.1103/RevModPhys.81.109]
[94]
Amiri, A.; Sadri, R.; Shanbedi, M.; Ahmadi, G.; Chew, B.; Kazi, S.N. Performance dependence of thermosyphon on the functionalization approaches: An experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers. Manage., 2015, 92, 322-330.
[http://dx.doi.org/10.1016/j.enconman.2014.12.051]
[95]
Blaschke, B.M.; Lottner, M.; Drieschner, S.; Calia, A.B.; Stoiber, K.; Rousseau, L. Flexible graphene transistors for recording cell action potentials. 2D Materials, 2016, 3, 025007.
[http://dx.doi.org/10.1088/2053-1583/3/2/025007]
[96]
Xu, J.; Gu, Z.; Yang, W.; Wang, Q.; Zhang, X. Graphene-based nanoscale vacuum channel transistor. Nanoscale Res. Lett., 2018, 13(1), 311.
[http://dx.doi.org/10.1186/s11671-018-2736-6] [PMID: 30288627]
[97]
Zhao, Y.; Li, X-G.; Zhou, X.; Zhang, Y-N. Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuators B Chem., 2016, 231, 324-340.
[http://dx.doi.org/10.1016/j.snb.2016.03.026]
[98]
Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Defence Technol., 2020, 16, 107-118.
[http://dx.doi.org/10.1016/j.dt.2019.04.008]
[99]
Moupfouma, F. Electrostatic discharge phenomenon: A potential threat to aircraft safety. SAE Techn. Paper, 2007, 0148-7191.
[http://dx.doi.org/10.4271/2007-01-3833]
[100]
Liu, X.; Chen, T.; Chu, H.; Niu, L.; Sun, Z.; Pan, L. Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim. Acta, 2015, 166, 12-16.
[http://dx.doi.org/10.1016/j.electacta.2015.03.081]
[101]
Fitra, M.; Daut, I.; Irwanto, M.; Gomesh, N.; Irwan, Y. Effect of TiO2 thickness dye solar cell on charge generation. Energy Procedia, 2013, 36, 278-286.
[http://dx.doi.org/10.1016/j.egypro.2013.07.032]
[102]
Tributsch, H. Dye sensitization solar cells: A critical assessment of the learning curve. Coord. Chem. Rev., 2004, 248, 1511-1530.
[http://dx.doi.org/10.1016/j.ccr.2004.05.030]
[103]
Zhuge, Z.; Liu, X.; Chen, T.; Gong, Y.; Li, C.; Niu, L. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chem. Eng. J., 2020, 421, 127838.
[http://dx.doi.org/10.1016/j.cej.2020.127838]
[104]
Ren, Z.; Liu, X.; Zhuge, Z.; Gong, Y.; Sun, C.Q. MoSe2/ZnO/ZnSe hybrids for efficient Cr (VI) reduction under visible light irradiation. Chin. J. Catal., 2020, 41, 180-187.
[http://dx.doi.org/10.1016/S1872-2067(19)63484-4]
[105]
Wei, L.; Chen, S.; Yang, Y.; Dong, Y.; Song, W.; Fan, R. Effect of graphene/TiO2 composite layer on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol., 2018, 18(2), 976-983.
[http://dx.doi.org/10.1166/jnn.2018.14186] [PMID: 29448522]
[106]
Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881), 1308-1308.
[http://dx.doi.org/10.1126/science.1156965] [PMID: 18388259]
[107]
Stankovich, S.; Dikin, D.; Dommett, G.; Kohlhaas, K.; Zimney, E.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442, 7100.
[108]
Li, D.; Kaner, R.B. Materials science. Graphene-based materials. Science, 2008, 320(5880), 1170-1171.
[http://dx.doi.org/10.1126/science.1158180] [PMID: 18511678]
[109]
Alzate, M.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S. Biochemical methane potential of microalgae biomass after lipid extraction. Chem. Eng. J., 2014, 243, 405-410.
[http://dx.doi.org/10.1016/j.cej.2013.07.076]
[110]
Anjum, U.; Khan, T.S.; Agarwal, M.; Haider, M.A. Identifying the origin of the limiting process in a double perovskite PrBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ thin-film electrode for solid oxide fuel cells. ACS Appl. Mater. Interfaces, 2019, 11(28), 25243-25253.
[http://dx.doi.org/10.1021/acsami.9b06666] [PMID: 31260249]
[111]
O’hayre, R.; Cha, S-W.; Colella, W.; Prinz, F.B. Fuel cell fundamentals; John Wiley & Sons, 2016.
[http://dx.doi.org/10.1002/9781119191766]
[112]
Oladosu, T.L.; Baheta, A.T.; Hussain, P. Liquid desiccant membrane regeneration of des for air conditioning systems using electrodialysis technique.Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering; Emamian, S.S.; Awang, M.; Yusof, F., Eds.; Springer: Singapore, 2020, pp. 243-252.
[113]
La Cerva, M.; Gurreri, L.; Tedesco, M.; Cipollina, A.; Ciofalo, M.; Tamburini, A. Determination of limiting current density and current efficiency in electrodialysis units. Desalination, 2018, 445, 138-148.
[http://dx.doi.org/10.1016/j.desal.2018.07.028]
[114]
Du, D-J.; Pu, W-F.; Zhang, S.; Jin, F-Y.; Wang, S-K.; Ren, F. Preparation and migration study of graphene oxide-grafted polymeric microspheres: EOR implications. J. Petrol. Sci. Eng., 2020, 192, 107286.
[http://dx.doi.org/10.1016/j.petrol.2020.107286]
[115]
Sikiru, S.; Yahya, N.; Soleimani, H.; Ali, A.M.; Afeez, Y. Impact of ionic-electromagnetic field interaction on Maxwell-Wagner polarization in porous medium. J. Mol. Liq., 2020, 318, 114039.
[http://dx.doi.org/10.1016/j.molliq.2020.114039]
[116]
Sikiru, S.; Yahya, N.; Soleimani, H. Photon–phonon interaction of surface ionic adsorption within electric double layer in reservoir sandstone. J. Mater. Res. Technol., 2020, 9, 10957-10969.
[http://dx.doi.org/10.1016/j.jmrt.2020.07.095]
[117]
Wu, T.; Ma, Y.; Qu, Z.; Fan, J.; Li, Q.; Shi, P.; Xu, Q.; Min, Y. Black phosphorus–graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation. ACS Appl. Mater. Interfaces, 2019, 11(5), 5136-5145.
[http://dx.doi.org/10.1021/acsami.8b20240] [PMID: 30648393]