Development of Precision Medical Technology and its Current Clinical Applications

Article ID: e250621194290 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Precision medicine has emerged with the development of science and technology and the rise of big data. This study first defines and presents the advantages of precision medicine and then introduces the development of three technologies: gene sequencing, cellular immunotherapy, and gene editing. The clinical applications of precision medicine in lung cancer, cervical cancer, breast cancer, and prostate cancer are thus analyzed. Lastly, the existing problems and future development directions of precision medicine are identified. The introduction of gene sequencing, bioanalytical techniques, and big data analysis tools has propelled medicine into the era of precision medicine. Key technologies in precision medicine form the foundation of its development. Therefore, this study elaborates on the development of key technologies in precision medicine, the current status of its clinical application, and the main problems that currently exist. This study also suggests solutions to the problems.

To systematically explain the development and principle of three core technologies in precision medicine and to predict the main research trends of precision medicine.

Research in gene sequencing, cell immunotherapy, and gene editing technology has shown significant progress, and accurate medical treatment has achieved remarkable results, effectively prolonging the survival time and improving the quality of life of patients.

Precision medicine has made significant achievements, but problems remain. Ensuring safety and efficiency in precision medicine should be the focus of future research.

Keywords: Precision medicine, big data, gene sequencing, cellular immunotherapy, gene editing, clinical application.

Graphical Abstract

[1]
Y.F. Li, H.T. Liu, K. Zeng, and S.J. Zhang, "Hotspot analysis in the field of international precision medicine", Chin. J. Med. Lib. Info. Sci., vol. 25, pp. 24-29, 2016.
[2]
H.W. Zhang, Innovative development and suggestions of 'internet., China Population News, 2019.
[3]
X. Su, and Y.P. Liu, "Director of oncology department of the first hospital of china medical university- the overall situation and future trend of the latest gene detection", Chin. Med. Pharm., vol. 5, pp. 1-6, 2015.
[4]
L. Xie, and W. Li, "Development of key technologies and platforms for the research of precision medicine for renal disease", Zhonghua Yi Xue Za Zhi, vol. 98, pp. 1051-1052, 2018.
[PMID: 29690718]
[5]
E.H. Du, J.W. Huang, Y.J. Yang, C. Qiao, X. Zhang, W.Q. Qiu, and A.Y. Mao, "A review of clinical application of precision medical technology", Zhongguo Weisheng Ziyuan, vol. 23, pp. 265-270, 2020.
[6]
F. Sanger, S. Nicklen, and A.R. Coulson, "DNA sequencing with chain-terminating inhibitors. 1977", Biotechnology, vol. 24, pp. 104-108, 1992.
[PMID: 1422003]
[7]
H. Wang, "Understanding and analysis of new terms of high-throughput sequencing", Chin. Terminol., vol. 19, pp. 51-54, 2017.
[8]
A.M. Maxam, and W. Gilbert, "A new method for sequencing DNA", Proc. Natl. Acad. Sci. USA, vol. 74, no. 2, pp. 560-564, 1977.
[http://dx.doi.org/10.1073/pnas.74.2.560] [PMID: 265521]
[9]
J.M. Heather, and B. Chain, "The sequence of sequencers: The history of sequencing DNA", Genomics, vol. 107, no. 1, pp. 1-8, 2016.
[http://dx.doi.org/10.1016/j.ygeno.2015.11.003] [PMID: 26554401]
[10]
P. Nyrén, and A. Lundin, "Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis", Anal. Biochem., vol. 151, no. 2, pp. 504-509, 1985.
[http://dx.doi.org/10.1016/0003-2697(85)90211-8] [PMID: 3006540]
[11]
J. Berka, Y.J. Chen, J.H. Leamon, S. Lefkowitz, K.L. Lohman, V.B. Makhijani, J.M. Rothberg, G.J. Sarkis, M. Srinivasan, and M.P. Weiner, "Bead emulsion nucleic acid amplification", U. S. Patent 20,050,079,510
[12]
S.M. Xu, "The application and research progress of the new generation dna sequencing", J. Xuzhou Inst.Technol., vol. 33, pp. 60-64, 2018.
[13]
Y.W. Mao, and J.H. Chen, "DNA the development of sequencing technology", Yaredai Zhiwu Kexue, vol. 47, pp. 94-100, 2018.
[14]
S. Roeh, P. Weber, M. Rex-Haffner, J.M. Deussing, E.B. Binder, and M. Jakovcevski, "Sequencing on the SOLiD 5500xl System - in-depth characterization of the GC bias", Nucleus, vol. 8, no. 4, pp. 370-380, 2017.
[http://dx.doi.org/10.1080/19491034.2017.1320461] [PMID: 28448740]
[15]
J. F. Thompson, and K. E. Steinmann, "Single molecule sequencing with a HeliScope genetic analysis system", Curr. Protocol Molec. bio., vol. 92, no.1, pp.7-10, 2010.
[http://dx.doi.org/10.1002/0471142727.mb0710s92]
[16]
S.J. Heerema, and C. Dekker, "Graphene nanodevices for DNA sequencing", Nat. Nanotechnol., vol. 11, no. 2, pp. 127-136, 2016.
[http://dx.doi.org/10.1038/nnano.2015.307] [PMID: 26839258]
[17]
J. Korlach, A. Bibillo, J. Wegener, P. Peluso, T.T. Pham, I. Park, S. Clark, G.A. Otto, and S.W. Turner, "Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides", Nucleosides Nucleotides Nucleic Acids, vol. 27, no. 9, pp. 1072-1083, 2008.
[http://dx.doi.org/10.1080/15257770802260741] [PMID: 18711669]
[18]
J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner, "Real-time DNA sequencing from single polymerase molecules", Science, vol. 323, no. 5910, pp. 133-138, 2009.
[http://dx.doi.org/10.1126/science.1162986] [PMID: 19023044]
[19]
W.J. Ansorge, "Next-generation DNA sequencing techniques", N. Biotechnol., vol. 25, no. 4, pp. 195-203, 2009.
[http://dx.doi.org/10.1016/j.nbt.2008.12.009] [PMID: 19429539]
[20]
E.A. Jares-Erijman, and T.M. Jovin, "FRET imaging", Nat. Biotechnol., vol. 21, no. 11, pp. 1387-1395, 2003.
[http://dx.doi.org/10.1038/nbt896] [PMID: 14595367]
[21]
T.Y. Dong, "DNA sequencing technology", Mod. Chem. Res., pp. 71-73, 2018.
[22]
Y. Liu, Y.Q. Xu, T.T. Zhou, M.Z. Liu, and Y.Y. Li, "Analysis of gene detection technology", Doctor., vol. 3, pp. 73-74, 2018.
[23]
Q.J. Qian, and M.C. Wu, "Accurate cellular immunotherapy for tumor: A dream into reality", Zhongguo Zhongliu Shengwu Zhiliao Zazhi, vol. 22, pp. 151-158, 2015.
[24]
T.G. Yu, J. Zhao, X.L. Li, Y.L. Liu, and G.Z. Liu, "CIK effect on immune function of patients with ovarian and cervical cancer", J. Med. Forum., vol. 41, pp. 8-11, 2020.
[25]
Q. Ren, R.H. Xiong, Y.C. He, J.K. Zhuge, D.L. Lu, and X.Y. Jiang, "The effect of autologous CIK cells on tumor markers and immune function of nasopharyngeal carcinoma", Prac. J. Cancer., vol. 35, pp. 1829-1832, 2020.
[26]
J. Wang, and W.Y. Cao, "Progress in the study of cell killing mechanism and effect CIK peripheral blood and cord blood", Curr. Immun., vol. 37, pp. 165-169, 2017.
[27]
L. Okjae, J.M. Young, H.Y. Kyeong, and S. Eui-Cheol, "Present and future of allogeneic natural killer cell therapy", Front. Immun, vol. Vol. 6, 2015.
[28]
M. Cheng, Y. Chen, W. Xiao, R. Sun, and Z. Tian, "NK cell-based immunotherapy for malignant diseases", Cell. Mol. Immunol., vol. 10, no. 3, pp. 230-252, 2013.
[http://dx.doi.org/10.1038/cmi.2013.10] [PMID: 23604045]
[29]
X.W. Lin, Y.Q. Xie, L.J. Huang, X.F. Chen, and Q.H. Zheng, "Function study of tumor invasive lymphocyte subgroup and its receptor cloning", Prac. J. Cancer., vol. 35, pp. 1749-1752, 2020.
[30]
L.P. Yang, F. Zhang, J. Zhang, Y.Y. Fei, and X. Li, "“Clinical study of DC-CIK cell maintenance in the treatment of advanced gastric cancer”, Chin. J. Meta", Cancer, vol. 3, pp. 25-29, 2020.
[31]
J.S. Kim, "Genome editing comes of age", Nat. Protoc., vol. 11, no. 9, pp. 1573-1578, 2016.
[http://dx.doi.org/10.1038/nprot.2016.104] [PMID: 27490630]
[32]
I. Hatada, and T. Horii, "Genome editing: A breakthrough in life science and medicine", Endocr. J., vol. 63, no. 2, pp. 105-110, 2016.
[http://dx.doi.org/10.1507/endocrj.EJ15-0716] [PMID: 26698412]
[33]
J.M. Wilson, "The Past, present, and future of gene therapy from Nobel Laureate David Baltimore", Hum. Gene Ther. Clin. Dev., vol. 28, no. 2, pp. 65-67, 2017.
[http://dx.doi.org/10.1089/humc.2017.29024.int] [PMID: 28530842]
[34]
A.C. Komor, Y.B. Kim, M.S. Packer, J.A. Zuris, and D.R. Liu, "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage", Nature, vol. 533, no. 7603, pp. 420-424, 2016.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[35]
Y.X. Ren, R.D. Xiao, and X.M. Lou, "Gene editing technology and its application in gene therapy", Hereditas, vol. 41, pp. 18-28, 2019.
[PMID: 30686782]
[36]
L.P. Wang, "Current situation and prospect of immunotherapy for lung cancer", Journal of Chin. Prac. Diag. Ther., vol. 31, pp. 105-110, 2017.
[37]
Z. Yang, A. Hackshaw, Q. Feng, X. Fu, Y. Zhang, C. Mao, and J. Tang, "Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis", Int. J. Cancer, vol. 140, no. 12, pp. 2805-2819, 2017.
[http://dx.doi.org/10.1002/ijc.30691] [PMID: 28295308]
[38]
J.J. Liu, S. Zhang, C.J. Wu, L.X. Ma, Y. Liu, H. Li, H.X. Cui, and Y. Cheng, "Comparison of clinical outcomes of patients with non-small cell lung cancer harboring different types of epidermal growth factor receptor sensitive mutations after first-line EGFR-TKI treatment", Zhonghua Zhong Liu Za Zhi, vol. 38, no. 3, pp. 211-217, 2016.
[39]
D.S.W. Tan, S.S. Yom, M.S. Tsao, H.I. Pass, K. Kelly, N. Peled, R.C. Yung, I.I. Wistuba, Y. Yatabe, M. Unger, P.C. Mack, M.W. Wynes, T. Mitsudomi, W. Weder, D. Yankelevitz, R.S. Herbst, D.R. Gandara, D.P. Carbone, P.A. Bunn Jr, T.S. Mok, and F.R. Hirsch, "The international association for the study of lung cancer consensus statement on optimizing management of EGFR mutation-positive non-small cell lung cancer: Status in 2016", J. Thorac. Oncol., vol. 11, no. 7, pp. 946-963, 2016.
[http://dx.doi.org/10.1016/j.jtho.2016.05.008] [PMID: 27229180]
[40]
J.C. Soria, Y. Ohe, J. Vansteenkiste, T. Reungwetwattana, B. Chewaskulyong, K.H. Lee, A. Dechaphunkul, F. Imamura, N. Nogami, T. Kurata, I. Okamoto, C. Zhou, B.C. Cho, Y. Cheng, E.K. Cho, P.J. Voon, D. Planchard, W.C. Su, J.E. Gray, S.M. Lee, R. Hodge, M. Marotti, Y. Rukazenkov, and S.S. Ramalingam, "Osimertinib in untreated egfr-mutated advanced non-small-cell lung cancer", N. Engl. J. Med., vol. 378, no. 2, pp. 113-125, 2018.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[41]
Q. Lai, H. Wang, A. Li, Y. Xu, L. Tang, Q. Chen, C. Zhang, Y. Gao, J. Song, and Z. Du, "Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells", Oncogene, vol. 37, no. 17, pp. 2302-2312, 2018.
[http://dx.doi.org/10.1038/s41388-018-0125-3] [PMID: 29422611]
[42]
S.Y. Mahati, D.N. Ainiwaer, L. Xiao, Y.X. Bao, and Y.L.Y.E. Xiaheding, "Current situation and trend of accurate medical target screening for lung cancer", Oncol. Prog., vol. 18, pp. 331-334, 2020.
[43]
C. Wang, Z.Z. Li, X.T. Lin, N. Yu, Q.Q. Gao, and X.H. Qiu, "Advances in early screening and prevention of cervical cancer in the context of precision medicine", J. Chin. Phys., vol. 22, pp. 941-944, 2020.
[44]
R. Song, "Advances in precision medicine in the treatment of breast cancer", Smart Health., vol. 6, pp. 26-28, 2020.
[45]
G.W. Ji, "Breast cancer therapy in the age of precision medicine", J. Prac. Med., vol. 33, pp. 1369-1372, 2017.
[46]
X. Gao, and J. Li, "Prostate cancer and precision medicine", Acad. J. Sec. Milit. Med. Uni., vol. 39, pp. 581-590, 2018.
[47]
N. Zhang, China’s legal protection of genetic rights of human genetic information providers., Shandong University, 2019.
[48]
K. Chen, "Medical ethics under the reform of precision medicine", Med. Phil., vol. 37, pp. 23-25, 2016.
[49]
H.N. Ma, "Precision Medicine brings a new dawn to cancer patients", Cap. Med., vol. 23, pp. 48-49, 2016.
[50]
M. Yang, X.L. Yang, X.W. Feng, Y.F. Xiao, and Y. He, "Dilemma and outlet in the development of precision medicine in china", Chin. Health Ser. Manag., vol. 34, pp. 249-251, 2017.
[51]
Y.C. Qin, A. Wu, X. Zhang, and J. He, "Comparison of domestic and foreign legislation on privacy protection of patients and analysis on the principles of foreign basic legislation protection", Chin. Health Ser. Manag., vol. 33, pp. 48-50, 2016.
[52]
S.C. Huang, and H.J. Zhang, "A study on the ethics of precision medicine", J. Liaoning Med. Uni., vol. 17, pp. 12-16, 2019. [Natural Sciences Edition].
[53]
M.E. Bayrakdar, "Priority based health data monitoring with IEEE 802.11af technology in wireless medical sensor networks", Med. Biol. Eng. Comput., vol. 57, no. 12, pp. 2757-2769, 2019.
[http://dx.doi.org/10.1007/s11517-019-02060-4] [PMID: 31741289]
[54]
M.E. Bayrakdar, "Fuzzy logic based coordinator node selection approach in wireless medical sensor networks", IEEE 4th International Conference on Computer Science and Engineering (UBMK 2019), 2019 Quito, Ecuador.
[http://dx.doi.org/10.1109/UBMK.2019.8907097]
[55]
A. Çalhan, K. Gündoğdu, M. Cicioğlu, and M.E. Bayrakdar, "Energy harvesting unit design for body area networks", Sakarya Uni. J. Comput. Info. Sci., vol. 2, pp. 41-52, 2019.
[http://dx.doi.org/10.35377/saucis.02.01.512210]