Spin-casting of Micron-Scale Thick PMMA Films with Embedded Au Nanoparticles Formed by Laser Ablation in Liquid

Page: [155 - 162] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: A Facile, scalable approach to fabrication of organic thin films with an embedded layer of nanoparticles in the ambient environment. The approach is based on step-bystep spin-coating of polymethylmethacrylate (PMMA) films and a nanoparticle layer.

Objective: The goal of the present work is to fabricate a sandwich structure of the PMMA films for the top and bottom layers of a sandwich structure as well as a middle layer of nanoparticles formed in solution by the Laser Ablation in Liquid (LAL) method.

Methods: First, a PMMA thin film was fabricated by spin-casting of PMMA solution in ethylacetate. Secondly, a solution of Au nanoparticles synthesized by laser ablation in ethanol was spin-cast on a prefabricated PMMA film. The distribution of Au nanoparticles and the morphology of the resulting film were analyzed using scanning electron microscopy (SEM), optical microscopy, and atomic microscopy (AFM). Finally, another PMMA layer was spin-cast on the nanoparticle-decorated film.

Results: A hybrid organic film with the embedded layer of nanoparticles was fabricated using the spin-casting method for top and bottom layers as well as for the middle layer of Au nanoparticles fabricated by laser ablation in ethanol by a pulsed UV laser. Statistical and fractal analysis shows uniform distribution of nanoparticles on length scale above ten microns.

Conclusion: Spin-cast-based layer-by-layer approach to fabrication of sandwich structures of organic films with embedded nanoparticlesis a facile and scalable method for hybrid organic - nanoparticle films. This approach can be extended for the fabrication of multi-layered hybrid structures.

Keywords: Laser ablation, nanoparticles, PMMA, spin-casting, hybrid thin films, scale length.

Graphical Abstract

[1]
Zhao J, Zheng X, Schartner EP, et al. Upconversion nanocrystal- doped glass: a new paradigm for photonic materials. Adv Opt Mater 2016; 4: 1507-17.
[http://dx.doi.org/10.1002/adom.201600296]
[2]
Mao Y, Li J, Cao W, et al. General incorporation of diverse components inside metal-organic framework thin films at room temperature. Nat Commun 2014; 5: 5532.
[http://dx.doi.org/10.1038/ncomms6532] [PMID: 25405547]
[3]
Chang TC, Chang KC, Tsai TM, Chu TJ, Sze SM. Resistance random access memory. Mater Today 2016; 19: 254-64.
[http://dx.doi.org/10.1016/j.mattod.2015.11.009]
[4]
Molodtsova OV, Aristova IM, Babenkov SV, Vilkov OV, Aristov VY. Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film. J Appl Phys 2014; 115: 164310.
[http://dx.doi.org/10.1063/1.4874161]
[5]
Ramana CH, Moodley MK, Kannan V, Maity A. Solution based-spin cast processed organic bistable memory device. Solid-State Electron 1913; 81: 45-50.
[http://dx.doi.org/10.1016/j.sse.2012.10.011]
[6]
Heilmann A, Kiesow A, Gruner M, Kreibig U. Optical and electrical properties of embedded silver nanoparticles at low temperatures. Thin Solid Films 1999; 343-344: 175-8.
[http://dx.doi.org/10.1016/S0040-6090(98)01599-5]
[7]
Heilmann A. Polymer films with embedded metal nanoparticles. Berlin Springer-Verlag 2003.
[http://dx.doi.org/10.1007/978-3-662-05233-4]
[8]
Ramesh GV, Porel S, Radhakrishnan TP. Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 2009; 38(9): 2646-56.
[http://dx.doi.org/10.1039/b815242j] [PMID: 19690744]
[9]
Shanshool HM, Yahaya M, Yunus WMM, Abdullah IY. The 2014 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium, 2014; 136-41.
[10]
Shanmugam S, Viswanathan B, Varadarajan TK. A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films. Mater Chem Phys 2006; 95: 51-5.
[http://dx.doi.org/10.1016/j.matchemphys.2005.05.047]
[11]
Tsoukalas D. From silicon to organic nanoparticle memory devices. Philos Trans Royal Soc, Math Phys Eng Sci 2009; 367(1905): 4169-79.
[http://dx.doi.org/10.1098/rsta.2008.0280] [PMID: 19770141]
[12]
Zhou Y, Han ST, Xu ZX, Roy VAL. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Nanotechnology 2012; 23(34): 344014.
[http://dx.doi.org/10.1088/0957-4484/23/34/344014] [PMID: 22885601]
[13]
Tian H, Yang Y, Ding J, et al. Surface dynamics of poly(methyl methacrylate) films affected by the concentration of casting solutions. Soft Matter 2014; 10(33): 6347-56.
[http://dx.doi.org/10.1039/C4SM00918E] [PMID: 25036734]
[14]
Danglad-Flores J, Eickelmann S, Riegler H. Deposition of polymer films by spin casting: A quantitative analysis. Chem Eng Sci 2018; 179: 257-64.
[http://dx.doi.org/10.1016/j.ces.2018.01.012]
[15]
Baumgardner WJ, Choi JJ, Bian K, et al. Pulsed laser annealing of thin films of self-assembled nanocrystals. ACS Nano 2011; 5(9): 7010-9.
[http://dx.doi.org/10.1021/nn201588p] [PMID: 21800845]
[16]
Gysling HJ. Nanoinks in inkjet metallization - evolution of simple additive-type metal patterning. Curr Opin Colloid Interface Sci 2014; 19: 155-62.
[http://dx.doi.org/10.1016/j.cocis.2014.03.013]
[17]
Zeng H, Du XW, Singh SC, et al. Nanomaterials via laser ablation / irradiation in liquid: A review. Adv Funct Mater 2012; 22: 1333-53.
[http://dx.doi.org/10.1002/adfm.201102295]
[18]
Zhang D, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev 2017; 117(5): 3990-4103.
[http://dx.doi.org/10.1021/acs.chemrev.6b00468] [PMID: 28191931]
[19]
Musaev OR, Sutter EA, Wrobel JM, Au Kruger MB. Ge, and AuGe nanoparticles fabricated by laser ablation. J Nanopart Res 2012; 14: 654.
[http://dx.doi.org/10.1007/s11051-011-0654-y]
[20]
Mitchell GR. Encyclopedia of materials: Science and technologyNetherlands Elsevier. 2001.
[21]
Azevedo S, Diéguez L, Carvalho P, et al. Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices. J Nano Res 2012; 17: 75-83.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.17.75]
[22]
Zhang HQ, Jin Y, Qiu Y. The optical and electrical characteristics of PMMA film prepared by spin coating method. IOP Conference Series: Materials Science and Engineering, Volume 87, Global Conference on Polymer and Composite Materials (PCM2015) 16-18 May 2015, Beijing, China.
[http://dx.doi.org/10.1088/1757-899X/87/1/012032]
[23]
Shekar BC, Sathisha S, Sengoden R. Spin coated nano scale PMMA films for organic thin film transistors. Phys Procedia 2013; 49: 145-57.
[http://dx.doi.org/10.1016/j.phpro.2013.10.021]
[24]
Padilha GS, Giacon VM, Bartoli JR. Effect of solvents on the morphology of PMMA flms fabricated by spin-coating. Polymeros 2017; 27: 195-200.
[http://dx.doi.org/10.1590/0104-1428.12516]
[25]
El-Nasser HM. Morphology and spectroscopic ellipsometry of PMMA thin films. Appl Phys Rev 2017; 9: 5-11.
[26]
Semaltianos NG. Spin-coated PMMA films. Microelectronics J 2007; 38: 754-61.
[http://dx.doi.org/10.1016/j.mejo.2007.04.019]
[27]
Birnie DP III. A model for drying control cosolvent selection for spin-coating uniformity: The thin film limit. Langmuir 2013; 29(29): 9072-8.
[http://dx.doi.org/10.1021/la401106z] [PMID: 23808408]
[28]
Fowler PD, Ruscher C, McGraw JD, Forrest JA, Dalnoki-Veress K. Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. Eur Phys J E Soft Matter 2016; 39(9): 90.
[http://dx.doi.org/10.1140/epje/i2016-16090-9] [PMID: 27681887]
[29]
Cai XJ, Genzer J, Spontak RJ. Evolution of homopolymer thin- film instability on surface-anchored diblock copolymers varying in composition. Langmuir 2014; 30(39): 11689-95.
[http://dx.doi.org/10.1021/la503046n] [PMID: 25259655]
[30]
Marthelot J, Strong EF, Reis PM, Brun PT. Designing soft materials with interfacial instabilities in liquid films. Nat Commun 2018; 9(1): 4477.
[http://dx.doi.org/10.1038/s41467-018-06984-7] [PMID: 30367125]
[31]
Krechetnikov R. Stability of liquid sheet edges. Phys Fluids 2010; 22: 092101.
[http://dx.doi.org/10.1063/1.3474640]
[32]
Park JY, Suh KY, Seo SM, Lee HH. Anisotropic rupture of polymer strips driven by Rayleigh instability. J Chem Phys 2006; 124(21): 214710.
[http://dx.doi.org/10.1063/1.2206580] [PMID: 16774434]
[33]
Walheim S, Sch¨affer E, Mlynek J, Steiner U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 1999; 283(5401): 520-2.
[http://dx.doi.org/10.1126/science.283.5401.520] [PMID: 9915695]
[34]
Rabani E, Reichman DR, Geissler PL, Brus LE. Drying-mediated self-assembly of nanoparticles. Nature 2003; 426(6964): 271-4.
[http://dx.doi.org/10.1038/nature02087] [PMID: 14628047]
[35]
Zhou J, Man X, Jiang Y, Doi M. Structure formation in soft-matter solutions induced by solvent evaporation. Adv Mater 2017; 29(45): 1703769.
[http://dx.doi.org/10.1002/adma.201703769] [PMID: 29058825]
[36]
Freeman RG, Grabar KC, Allison KJ, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 1995; 267(5204): 1629-32.
[http://dx.doi.org/10.1126/science.267.5204.1629] [PMID: 17808180]
[37]
Ge G, Brus L. Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J Phys Chem B 2000; 104: 9573-5.
[http://dx.doi.org/10.1021/jp002280a]
[38]
Sefiane K. Patterns from drying drops. Adv Colloid Interface Sci 2014; 206: 372-81.
[http://dx.doi.org/10.1016/j.cis.2013.05.002] [PMID: 23746427]
[39]
Pham T, Kumar S. Drying of droplets of colloidal suspensions on rough substrates. Langmuir 2017; 33(38): 10061-76.
[http://dx.doi.org/10.1021/acs.langmuir.7b02341] [PMID: 28828859]
[40]
Thiele U, Vancea I, Archer AJ, et al. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions. J Phys Condens Matter 2009; 21(26): 264016.
[http://dx.doi.org/10.1088/0953-8984/21/26/264016] [PMID: 21828464]
[41]
Thiele U. Thin films of soft matter. Wien Springer. 2007; pp. 25-93.
[http://dx.doi.org/10.1007/978-3-211-69808-2_2]
[42]
Musaev OR, Midgley AE, Wrobel JM, Yan J, Kruger MB. Fractal character of titania nanoparticles formed by laser ablation. J Appl Phys 2009; 106: 054306.
[http://dx.doi.org/10.1063/1.3208058]