An Overview of Phytotherapy Used in the Management of Type II Diabetes

Article ID: e170621194148 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus is related to unconstrained high blood sugar and linked with long-term impairment, dysfunction and failure of several organs. Since 1980, the global frequency of diabetes has almost doubled in the adult population. In very rare cases due to poor prevention and management programs, diabetes causes worsening of health and reduced lifespan of the world population, thus impacting on the world’s economy. Supplements, however, help in the improvement of nutritional deficiencies. Phytotherapeutics has the advantage of being economical and easy to access with marginal side effects. So, it is a preferred candidate for the management of diabetes. Currently, a multitude of pharmaceuticals are used which are obtained from natural sources having medicinal properties. The mechanistic approaches are based on the regulation of insulin signaling pathways, translocation of GLUT-4 receptors and/or activation of PPAR γ. These natural compounds include numerous flavonoids which help in preventing glucose absorption by preventing the absorption of α-amylase and α-glucosidase. But to validate the efficacy and safety profile of these compounds, detailed validatory clinical studies are required. This review majorly focuses on the mechanistic approaches of various naturally derived compounds relevant for the condition of Diabetes Mellitus.

Keywords: Diabetes, phytocompound, antioxidant, natural medicine, diabetes mellitus, hyperlipidemia, metabolic syndrome.

[1]
Vieira R, Souto SB, Sánchez-López E, et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome-strategies for in vivo administration: Part-II. J Clin Med 2019; 8(9): 1332.
[http://dx.doi.org/10.3390/jcm8091332] [PMID: 31466386]
[2]
Heckler K, Kroll J. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci 2017; 18(9): 2002.
[http://dx.doi.org/10.3390/ijms18092002] [PMID: 28925940]
[3]
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J Diabetes Res 2017; 2017: 8379327.
[http://dx.doi.org/10.1155/2017/8379327]
[4]
Obengo TJ. A utilitarian assessment of the relevance of genetic therapies for HIV-AIDS in Africa, with special reference to the situation in Kenya. 2020.
[5]
Warner SO, Yao MV, Cason RL, Winnick JJ. Exercise-induced improvements to whole cody glucose metabolism in type 2 diabetes: the essential role of the liver. Front Endocrinol (Lausanne) 2020; 11: 567.
[http://dx.doi.org/10.3389/fendo.2020.00567] [PMID: 32982968]
[6]
van Baar MJB, van Ruiten CC, Muskiet MHA, van Bloemendaal L, IJzerman RG, van Raalte DH. SGLT2 inhibitors in combination therapy: From mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 2018; 41(8): 1543-56.
[http://dx.doi.org/10.2337/dc18-0588] [PMID: 30030256]
[7]
Ellis C, Ramzy A, Kieffer TJ. Regenerative medicine and cell-based approaches to restore pancreatic function. Nat Rev Gastroenterol Hepatol 2017; 14(10): 612-28.
[http://dx.doi.org/10.1038/nrgastro.2017.93] [PMID: 28811674]
[8]
van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: Fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38(7): 845-55.
[http://dx.doi.org/10.1038/s41587-020-0565-5] [PMID: 32601435]
[9]
Lomas-Soria C, Reyes-Castro LA, Rodríguez-González GL, et al. Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J Physiol 2018; 596(19): 4611-28.
[http://dx.doi.org/10.1113/JP276372] [PMID: 29972240]
[10]
Poggesi C, Hecker M. European Young Physiologists Symposium (EYPS). Available from: https://www.feps.org/haber_detay.php?id=100
[11]
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods 2019; 15(1): 105.
[http://dx.doi.org/10.1186/s13007-019-0487-8] [PMID: 31516543]
[12]
Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 2016; 20(9): 1109-25.
[http://dx.doi.org/10.1517/14728222.2016.1168808] [PMID: 26998950]
[13]
Olson AL, Humphries K. Recent advances in understanding glucose transport and glucose disposal. F1000 Res 2020; 9: 9.
[http://dx.doi.org/10.12688/f1000research.22237.1] [PMID: 32595948]
[14]
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-activated protein kinase and host defense against infection. Int J Mol Sci 2018; 19(11): 3495.
[http://dx.doi.org/10.3390/ijms19113495] [PMID: 30404221]
[15]
Sticka KD. Glucose transporter-4 on peripheral blood mononuclear cells in conditioned vs. sedentary college students. 2016. Available from: https://scholarworks.alaska.edu/handle/11122/6649
[16]
Gould GW, Brodsky FM, Bryant NJ. Building GLUT4 vesicles: CHC22 clathrin’s human touch. Trends Cell Biol 2020; 30(9): 705-19.
[http://dx.doi.org/10.1016/j.tcb.2020.05.007] [PMID: 32620516]
[17]
Schreiber I, et al. BMPs as new insulin sensitizers: Enhanced glucose uptake in mature 3T3-L1 adipocytes via PPARγ and GLUT4 upregulation. Sci Rep 2017; 7(1): 1-13.
[http://dx.doi.org/10.1038/s41598-017-17595-5] [PMID: 28127051]
[18]
Sebastián D, Zorzano A. Self-eating for muscle fitness: autophagy in the Control of energy metabolism. Dev Cell 2020; 54(2): 268-81.
[http://dx.doi.org/10.1016/j.devcel.2020.06.030] [PMID: 32693059]
[19]
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β- cell signalling and insulin release. Nat Rev Endocrinol 2018; 14(12): 721-37.
[http://dx.doi.org/10.1038/s41574-018-0105-2] [PMID: 30356209]
[20]
Kato-Schwartz CG, Corrêa RCG, de Souza Lima D, et al. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res Int 2020; 137: 109462.
[http://dx.doi.org/10.1016/j.foodres.2020.109462] [PMID: 33233136]
[21]
Mela DJ, Cao XZ, Dobriyal R, et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: A randomized controlled trial. Nutr Metab (Lond) 2020; 17(1): 51.
[http://dx.doi.org/10.1186/s12986-020-00471-x] [PMID: 32647531]
[22]
Fava F, Rizzetto L, Tuohy KM. Gut microbiota and health: connecting actors across the metabolic system. Proc Nutr Soc 2018; 78(2): 1-12.
[PMID: 30561288]
[23]
Romash R. Matcha Tea and its acute effects on postprandial blood glucose. Arizona state university 2018.
[24]
Efferth T. Inhibition of ATP-binding cassette transporters by Chinese herbs and phytochemicals.Evidence and rational based research on Chinese drugs. Springer 2013; pp. 283-331.
[http://dx.doi.org/10.1007/978-3-7091-0442-2_7]
[25]
Jiang X, Cao Y, Jørgensen LVG, Strobel BW, Hansen HCB, Cedergreen N. Where does the toxicity come from in saponin extract? Chemosphere 2018; 204: 243-50.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.044] [PMID: 29660537]
[26]
Rtibi K, Selmi S, Grami D, et al. Ceratonia siliqua L. (immature carob bean) inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. J Sci Food Agric 2017; 97(8): 2664-70.
[http://dx.doi.org/10.1002/jsfa.8091] [PMID: 27739095]
[27]
Bhoi PB, Singh J, Sachdeva J. Farm specific technical efficiency in paddy production and its determinants in punjab. Indian J Econ Dev 2017; 13(3): 493-9.
[http://dx.doi.org/10.5958/2322-0430.2017.00206.2]
[28]
Karigidi KO, Akintimehin ES, Omoboyowa DA, Adetuyi FO, Olaiya CO. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2020; 19(2): 1173-84.
[http://dx.doi.org/10.1007/s40200-020-00618-w] [PMID: 33520833]
[29]
Blanco AM, Bertucci JI, Unniappan S. Goldfish adipocytes are pancreatic beta cell-like, glucose-responsive insulin-producing cells. J Cell Physiol 2020; 235(10): 6875-86.
[http://dx.doi.org/10.1002/jcp.29581] [PMID: 31989646]
[30]
Aghelan Z, Kiani S, Nasiri A, Sadeghi M, Farrokhi A, Khodarahmi R. Factors influencing mitochondrial function as a key mediator of glucose-induced insulin release: Highlighting nicotinamide nucleotide transhydrogenase. Int J Mol Cell Med 2020; 9(2): 107-22.
[PMID: 32934948]
[31]
Li J, Lian H. Recent development of single preparations and fixed-dose combination tablets for the treatment of non-insulin-dependent diabetes mellitus : A comprehensive summary for antidiabetic drugs. Arch Pharm Res 2016; 39(6): 731-46.
[http://dx.doi.org/10.1007/s12272-016-0762-4] [PMID: 27230777]
[32]
Lebovitz HE, Bonhomme Y. Recent development of single preparations and fixed-dose combination tablets for the treatment of non-insulin-dependent diabetes mellitus. Archives of pharmacal research. 2020; 39: pp. 731-46.
[http://dx.doi.org/10.1159/000506558]
[33]
Sonkamble VV, Wagh NS, Pai SR. Role of plant secondary metabolites as antidiabetic agents. Natural Bio-active Compounds. Springer 2019; pp. 529-50.
[http://dx.doi.org/10.1007/978-981-13-7154-7_18]
[34]
Raoof GFA, Mohamed KY. Natural products for the management of diabetes, in studies in natural products chemistry. Elsevier 2018; pp. 323-74.
[35]
Bruce-Keller AJ, Richard AJ, Fernandez-Kim SO, et al. Fenugreek counters the effects of high fat diet on gut microbiota in mice: Links to metabolic benefit. Sci Rep 2020; 10(1): 1245.
[http://dx.doi.org/10.1038/s41598-020-58005-7] [PMID: 31988303]
[36]
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019; 129(10): 4001-8.
[http://dx.doi.org/10.1172/JCI129188] [PMID: 31424428]
[37]
Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1984-90.
[http://dx.doi.org/10.1016/j.bbadis.2016.09.019] [PMID: 27702625]
[38]
Jackson HT, Anekwe C, Chang J, Haskins IN, Stanford FC. The role of bariatric surgery on diabetes and diabetic care compliance. Curr Diab Rep 2019; 19(11): 125.
[http://dx.doi.org/10.1007/s11892-019-1236-0] [PMID: 31728654]
[39]
Davids D, Gibson D, Johnson Q. Ethnobotanical survey of medicinal plants used to manage high blood pressure and type 2 diabetes mellitus in Bitterfontein, Western Cape Province, South Africa. J Ethnopharmacol 2016; 194: 755-66.
[http://dx.doi.org/10.1016/j.jep.2016.10.063] [PMID: 27780752]
[40]
Pereira ASP, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Evaluation of the anti-diabetic activity of some common herbs and spices: providing new insights with inverse virtual screening. Molecules 2019; 24(22): 4030.
[http://dx.doi.org/10.3390/molecules24224030] [PMID: 31703341]
[41]
Park J, Jang H-J. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol Cell Toxicol 2017; 13(1): 1-20.
[http://dx.doi.org/10.1007/s13273-017-0001-1]
[42]
Akbar S. Momordica charantia L(Cucurbitaceae), in Handbook of 200 Medicinal Plants. Springer. 2020; pp. 1195-219.
[43]
Soty M, Chilloux J, Delalande F, et al. Post-translational regulation of the glucose-6-phosphatase complex by cyclic adenosine monophosphate is a crucial determinant of endogenous glucose production and is controlled by the glucose-6-phosphate transporter. J Proteome Res 2016; 15(4): 1342-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00110] [PMID: 26958868]
[44]
Belete TM. A recent achievement in the discovery and development of novel targets for the treatment of type-2 diabetes mellitus. J Exp Pharmacol 2020; 12: 1-15.
[http://dx.doi.org/10.2147/JEP.S226113] [PMID: 32021494]
[45]
Zhao C, Yang C, Wai STC, et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2019; 59(6): 830-47.
[http://dx.doi.org/10.1080/10408398.2018.1501658] [PMID: 30501400]
[46]
Kurup SB, S M. Protective potential of Averrhoa bilimbi fruits in ameliorating the hepatic key enzymes in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 85: 725-32.
[http://dx.doi.org/10.1016/j.biopha.2016.11.088] [PMID: 27916421]
[47]
Bi X, Lim J, Henry CJ. Spices in the management of diabetes mellitus. Food Chem 2017; 217: 281-93.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.111] [PMID: 27664636]
[48]
Santos-Sánchez NF, et al. Antioxidant compounds and their antioxidant mechanism. Antioxidants. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.85270]
[49]
Wake H, et al. Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radical Research 2020; 1-46.
[50]
Ahmadinejad F, Geir Møller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 2017; 6(3): 51.
[http://dx.doi.org/10.3390/antiox6030051] [PMID: 28698499]
[51]
Talaei B, Amouzegar A, Sahranavard S, Hedayati M, Mirmiran P, Azizi F. Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients 2017; 9(9): 991.
[http://dx.doi.org/10.3390/nu9090991] [PMID: 28885566]
[52]
Shukla R, Banerjee S, Tripathi YB. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC Complement Altern Med 2018; 18(1): 156.
[http://dx.doi.org/10.1186/s12906-018-2221-x] [PMID: 29751837]
[53]
Asbaghi O, Sadeghian M, Nazarian B, et al. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Sci Rep 2020; 10(1): 17234.
[http://dx.doi.org/10.1038/s41598-020-73741-6] [PMID: 33057114]
[54]
Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ. Plasma antioxidant status in patients with Alzheimer’s disease and cognitively intact elderly: A meta-analysis of case-control studies. J Alzheimers Dis 2018; 62(1): 305-17.
[http://dx.doi.org/10.3233/JAD-170758] [PMID: 29439339]
[55]
Kopjar N, Žunec S, Mendaš G, et al. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats. Chem Biol Interact 2018; 279: 51-63.
[http://dx.doi.org/10.1016/j.cbi.2017.10.029] [PMID: 29108776]
[56]
Abdel-Moneim A, Mahmoud B, Nabil A, Negeem Z. Correlation between oxidative stress and hematological profile abnormalities in diabetic nephropathy. Diabetes Metab Syndr 2019; 13(4): 2365-73.
[http://dx.doi.org/10.1016/j.dsx.2019.06.014] [PMID: 31405645]
[57]
Liu W, Yin D, Li N, et al. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci Rep 2016; 6: 28591.
[http://dx.doi.org/10.1038/srep28591] [PMID: 27373366]
[58]
Bacanli M, et al. Effects of phytochemicals against diabetes.Advances in food and nutrition research. Elsevier 2019; pp. 209-38.
[59]
Ngo YL, Lau CH, Chua LS. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 2018; 121: 687-700.
[http://dx.doi.org/10.1016/j.fct.2018.09.064] [PMID: 30273632]
[60]
Gong L, Zou Z, Huang L, Guo S, Xing D. Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes. Cell Signal 2020; 67: 109491.
[http://dx.doi.org/10.1016/j.cellsig.2019.109491] [PMID: 31809873]
[61]
Herrera E, Ortega-Senovilla H. Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non- diabetic controls. Curr Diab Rep 2018; 18(2): 7.
[http://dx.doi.org/10.1007/s11892-018-0978-4] [PMID: 29399727]
[62]
Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol 2018; 113: 40-8.
[http://dx.doi.org/10.1016/j.fct.2018.01.017] [PMID: 29337230]
[63]
Rathnayake SS. A biophysical characterization of protein-lipid interactions of the lipid droplet binding protein, perilipin 3. Kent State University 2016.
[64]
Panov AV, Dikalov SI. Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. Oxidative Medicine and Cellular Longevity, 2020 2020.
[65]
Arai H, Yamashita S, Yokote K, Araki E, Suganami H, Ishibashi S. K-877 Study Group. Efficacy and safety of pemafibrate versus fenofibrate in patients with high triglyceride and low HDL cholesterol levels: A multicenter, placebo-controlled, double-blind, randomized trial. J Atheroscler Thromb 2018; 25(6): 521-38.
[http://dx.doi.org/10.5551/jat.44412] [PMID: 29628483]
[66]
Venkatesan N. In-vitro anti-diabetic activity of ethanolic extract of the medicinal plants desmodium triflorum, allmonia nodiflora and digeria muricata.
[67]
Wang Z, Hwang SH, Guillen Quispe YN, Gonzales Arce PH, Lim SS. Investigation of the antioxidant and aldose reductase inhibitory activities of extracts from Peruvian tea plant infusions. Food Chem 2017; 231: 222-30.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.107] [PMID: 28450000]
[68]
Kulkarni YA, et al. Diabetes, diabetic complications, and flavonoids.Fruits, vegetables, and herbs. Elsevier 2016; pp. 77-104.
[http://dx.doi.org/10.1016/B978-0-12-802972-5.00005-6]
[69]
Xiao X, Erukainure OL, Beseni B, Koorbanally NA, Islam MS. Sequential extracts of red honeybush (Cyclopia genistoides) tea: Chemical characterization, antioxidant potentials, and anti-hyperglycemic activities. J Food Biochem 2020; 44(11): e13478.
[http://dx.doi.org/10.1111/jfbc.13478] [PMID: 32984977]
[70]
Navarro JA, et al. D-Pinitol from Ceratonia siliqua is an orally active natural inositol that reduces pancreas insulin secretion and increases circulating ghrelin levels in Wistar rats. 2020.
[71]
Shaheen M, et al. Research Article Antidiabetic Efficacy of Methanolic Crude Extract of Quercus dilatata Fruit: A Randomized Control Trial. 2017.
[72]
Virginie A, et al. Phytochemical Screening of Sclerocarya birrea (Anacardiaceae) and Khaya senegalensis (Meliaceae), antidiabetic plants. Int J Pharm Chem 2016; 2(1): 1.
[73]
Bera I, Tyagi PK, Mir NA, et al. Effect of dietary saponin rich soapnut (Sapindus mukorossi) shell powder on growth performance, immunity, serum biochemistry and gut health of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 103(6): 1800-9.
[http://dx.doi.org/10.1111/jpn.13190] [PMID: 31483533]
[74]
Aswathy T, Jessykutty P. Antidiabetic phyto resources: A review. Journal of Medicinal Plants Studies 2017; 5(3): 165-9.
[75]
Chekka SV, Mantipelly NK. Momordica charantia: A natural medicinal plant. GSC Biol Pharmaceuti Sci 2020; 12(2): 129-35.
[http://dx.doi.org/10.30574/gscbps.2020.12.2.0251]
[76]
Chen L, et al. Recent advances in the development of sesquiterpenoids in the treatment of type 2 diabetes. Trends Food Sci Technol 2019; 88: 46-56.
[http://dx.doi.org/10.1016/j.tifs.2019.02.003]
[77]
Tiwari P, Ahmad K, Baig MH. Gymnema sylvestre for diabetes: From traditional herb to future’s therapeutic. Curr Pharm Des 2017; 23(11): 1667-76.
[http://dx.doi.org/10.2174/1381612823666161108162048] [PMID: 27834124]
[78]
Bingley C. The technological challenges of reformulating with different dietary fibres. Nutr Bull 2020; 45(3): 328-31.
[http://dx.doi.org/10.1111/nbu.12451]
[79]
Wang H-Y, Li QM, Yu NJ, et al. Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice. Carbohydr Polym 2019; 211: 39-48.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.101] [PMID: 30824102]