[3]
Mendel, N.P.; Boris, D.M. Neuroprotection: The way of anti-inflammatory agents. Neuroprotection - new approaches and prospects; Intech Open, 2020.
[7]
Farouk, A.; Salman, S. Dapsone and doxycycline could be potential treatment modalities for covid-19. Med. Hypotheses, 2020, 140109768
[8]
Altschuler, E.L.; Kast, R.E. Covid-19 associated adult respiratory distress syndrome (ards). Med. Hypotheses, 2020, 141109774
[10]
Schön, M.P.; Berking, C.; Biedermann, T.; Buhl, T.; Erpenbeck, L.; Eyerich, K.; Eyerich, S.; Ghoreschi, K.; Goebeler, M.; Ludwig, R.J.; Schäkel, K.; Schilling, B.; Schlapbach, C.; Stary, G.; von Stebut, E.; Steinbrink, K. Covid-19 and immunological regulations – from basic and translational aspects to clinical implications. German Soc. Dermatol., 2020, 18(8), 795-807.
[13]
Faget, Q.; Rogge, R.; Johansen, F.; Dinan, J. P. B. y E. C. The promin treatment of leprosy. Public Health Rep., 1943, 34(3), 298-310.
[15]
Chaves, L.L.; Patriota, Y.; Soares-Sobrinho, J.L.; Vieira, A.C.C.; Costa Lima, S.A.; Reis, S. Drug delivery systems on leprosy therapy: Moving towards eradication? Pharmaceutics, 2020, 12(12), 1202.
[16]
Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the use of dapsone in dermatology. Int. J. Dermatol., 2020, 59(7), 7787-7795.
[20]
Glazko, A.J.; Chang, T.; Baukema, J.; Chang, S.F. S. A. y D. W. A. Central role of madds in the metabolism of DDS. Int. J. Lepr., 1969, 462-463.
[29]
Harvath, L.; Yancey, K.B.; Katz, S.I. Selective inhibition of human neutrophil chemotaxis to n-formyl-methionyl-leucyl-phenyl-alanine by sulfones. J. Immunol., 1986, 137(4), 1305-1311.
[41]
Cardenas-Rodriguez, N.; Huerta-Gertrudis, B.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Bandala, C.; Carmona-Aparicio, L.; Coballase-Urrutia, E. Role of oxidative stress in refractory epilepsy: Evidence in patients and experimental models. Int. J. Mol. Sci., 2013, 14(1), 1455-76.
[43]
Méndez-Armenta, M.; Nava-Ruíz, C.; Juárez-Rebollar, D.; Rodríguez-Martínez, E.; Yescas Gómez, P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid. Med. Cell. Long., 2014, 2014293689
[48]
Hamada, K.; Hiyoshi, T.; Kobayashi, S.; Ishida, S.; Yagi, K.; Seino, M. Anticonvulsive effect of dapsone (4,4′-diaminodiphenyl sulfone) on amygdala-kindled seizures in rats and cats. Epilepsy Res., 1991, 10(2–3), 93-102.
[58]
Kast, R.E.; Lefranc, F.; Karpel-Massler, G.; Halatsch, M.E. Why dapsone stops seizures and may stop neutrophils’ delivery of vegf to glioblastoma. Br. J. Neurosurg., 2012, 26(6), 813-817.
[59]
Luk, K. C.; Kehm, V.; Carroll, J.; Zhang, B.; O’Brien, P.; Trojanowski, J. Q.; Lee, V. M. Y. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science (80-.)., 2012, 338(6109), 949-953.,
[63]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Trans., 2017, 124(8), 901-905.
[64]
Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D.L. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1583-1590.
[67]
Hattori, N.; Mizuno, P.Y. Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet, 2004, 364(9435), 722-724.
[73]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2020, 10(1), 59.
[74]
Zhang, H.; Zheng, Y. β amyloid hypothesis in Alzheimer’s disease: Pathogenesis, prevention,and management. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Med. Sinicae, 2019, 41(5), 702-708.
[85]
Faissner, S.; Plemel, J.R.; Gold, R.; Yong, V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov., 2019, 18(12), 905-922.
[86]
Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple sclerosis. New Engl. J. Med., 2018, 378(2), 169-180.
[89]
Danikowski, K.M.; Jayaraman, S.; Prabhakar, B.S. Regulatory t cells in multiple sclerosis and myasthenia gravis. J. Neuroinflammation, 2017, 14(1), 117.
[90]
Govindarajan, V.; De Rivero, V.J.P.; Keane, R.W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflammation, 2020, 17(1), 260.
[92]
Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res., 2014, 45(8), 687-697.
[93]
Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol., 2018, 163-164, 144-171.
[94]
Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev., 2019, 99(1), 21-78.
[95]
Obermeier, B.; Verma, A.; Ransohoff, R.M. The blood-brain barrier.Handbook of clinical neurology; Elsevier, 2016, 133, pp. 39-59;
[101]
Moutsopoulos, M.; Zampeli, E.; Vlachoyiannopoulos, G. Medications, therapeutic modalities, and regimens used in the management of rheumatic diseases; Rheumatol. Questions, 2018, pp. 153-157.
[105]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin, A.A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010.
Lancet, 2012,
380(9859), 2095-2128.
[
http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID:
23245604]
[106]
Carlos, C-B.; José, R-S.L.; Erwin, C.; Antonio, A.; Carolina, L-J.; Luis, M-B.M.; Jorge, V-C.; Fernando, B.; José Antonio, F.; Bertha, T.; Idelfonso, R-L.; Ricardo, R-G. Factores de riesgo, causas y
pronóstico de los tipos de enferme-dad vascular cerebral en méxico:
Estudio renamevasc, 2011, 12.,
[107]
Boltze, J.; Aronowski, J.A.; Badaut, J.; Buckwalter, M.S.; Caleo, M.; Chopp, M.; Dave, K.R.; Didwischus, N.; Dijkhuizen, R.M.; Doeppner, T.R.; Dreier, J.P.; Fouad, K.; Gelderblom, M.; Gertz, K.; Golubczyk, D.; Gregson, B.A.; Hamel, E.; Hanley, D.F.; Härtig, W.; Hummel, F.C.; Ikhsan, M.; Janowski, M.; Jolkkonen, J.; Karuppagounder, S.S.; Keep, R.F.; Koerte, I.K.; Kokaia, Z.; Li, P.; Liu, F.; Lizasoain, I.; Ludewig, P.; Metz, G.A.S.; Montagne, A.; Obenaus, A.; Palumbo, A.; Pearl, M.; Perez-Pinzon, M.; Planas, A.M.; Plesnila, N.; Raval, A.P.; Rueger, M.A.; Sansing, L.H.; Sohrabji, F.; Stagg, C.J.; Stetler, R.A.; Stowe, A.M.; Sun, D.; Taguchi, A.; Tanter, M.; Vay, S.U.; Vemuganti, R.; Vivien, D.; Walczak, P.; Wang, J.; Xiong, Y.; Zille, M. New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases.
Front. Aging Neurosci., 2021,
13623751
[
http://dx.doi.org/10.3389/fnagi.2021.623751] [PMID:
33584250]
[108]
Cipolla, M.J.; Liebeskind, D.S.; Chan, S.L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J. Cereb. Blood Flow Metab., 2018, 38(12), 2129-2149.
[110]
Cheon, S.Y.; Kim, E.J.; Kim, J.M.; Koo, B.N. Cell type-specific mechanisms in the pathogenesis of ischemic stroke: The role of apoptosis signal-regulating kinase 1. Oxid. Med. Cell. Longev., 2018, 20182596043
[111]
Alonso de Leciñana, M.; Egido, J.A.; Casado, I.; Ribó, M.; Dávalos, A.; Masjuan, J.; Caniego, J.L.; Martínez, V.E.; Díez, T.E. Alonso de Leciñana, M.; Egido, J. A.; Casado, I.; Ribó, M.; Dávalos, A.; Masjuan, J.; Caniego, J. L.; Martínez Vila, E.; Díez, T.E.; Fuentes, S.B.; Álvarez-Sabin, J.; Arenillas, J.; Calleja, S.; Castellanos, M.; Castillo, J.; Díaz-Otero, F.; López-Fernández, J. C.; Freijo, M.; Gállego, J.; García-Pastor, A.; Gil-Núñez, A.; Gilo, F.; Irimia, P.; Lago, A.; Maestre, J.; Martí-Fábregas, J.; Martínez-Sánchez, P.; Molina, C.; Morales, A.; Nombela, F.; Purroy, F.; Rodríguez-Yañez, M.; Roquer, J.; Rubio, F.; Segura, T.; Serena, J.; Simal, P.; Tejada, J.; Vivancos, J. Guía Para El Tratamiento Del Infarto Cerebral Agudo. Neurologia.
Neurologia, 2014, (March), 102-122.
[
http://dx.doi.org/10.1016/j.nrl.2011.09.012] [PMID:
22152803]
[112]
Lansberg, M.G.; O’Donnell, M.J.; Khatri, P.; Lang, E.S.; Nguyen-Huynh, M.N.; Schwartz, N.E.; Sonnenberg, F.A.; Schulman, S.; Vandvik, P.O.; Spencer, F.A.; Alonso-Coello, P.; Guyatt, G.H.; Akl, E.A. Antithrombotic and thrombolytic therapy for ischemic
stroke: Antithrombotic therapy and prevention of thrombosis.
Chest, 9th; American College of Chest Physicians, 2012, 141, pp.
(2 SUPPL.)e601S-e636S. Evidence-Based Clinical Practice Guidelines.,
[122]
Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol., 2014, 114, 25-57.
[126]
Roy, P.S.; Saikia, B.J. Cancer and cure: A critical analysis. Indian J. Cancer, 2016, 53(3), 441-442.
[128]
Schruefer, R.; Lutze, N.; Schymeinsky, J.; Walzog, B. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(3), 57-3.
[133]
Kast, R.E.; Hill, Q.A.; Wion, D.; Mellstedt, H.; Focosi, D.; Karpel-Massler, G.; Heiland, T.; Halatsch, M.E. Glioblastoma-synthesized g-csf and gm-csf contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol., 2017, 39(5)1010428317699797
[135]
Meredith, A.M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol., 2016, 68(6), 729-741.
[138]
Karaguzel, E.; Kadihasanoglu, M.; Kutlu, O. Mechanisms of testicular torsion and potential protective agents. Nat. Rev. Urol., 2014, 11(7), 391-399.
[139]
Anthony, Ta.; Arcy, F.T.D.; Hoag, N.; Arcy, J.D.P.; Lawrentschuk, N. Testicular torsion and the acute scrotum: Current emergency management. Eur. J. Emerg. Med., 2016, 23(3), 160-165.
[152]
Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, 39(5), 529-539.
[153]
Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. Covid-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[154]
Merad, M.; Martin, J.C. Pathological inflammation in patients with covid-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[155]
Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The unique characteristics of covid-19 coagulopathy. Crit. Care, 2020, 24(1), 360.
[159]
Xu, Z.S.; Shu, T.; Kang, L.; Wu, D.; Zhou, X.; Liao, B.W.; Sun, X.L.; Zhou, X.; Wang, Y.Y. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal covid-19 patients. Signal Transduc. Target. Ther. Springer Nature, 2020, 19(5), 100.