Angiotensin I-Converting Enzyme (ACE-I) Inhibition and Antioxidant Peptide from a Squilla Species

Page: [1238 - 1245] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Oratosquilla woodmasoni is one of the marine squilla species, which is found in the entire Asia-Pacific region. This current study assesses the species as the main basis of both ACEi and antioxidant peptide.

Objective: To isolate the ACEi peptide derived from O. woodmasoni and examine its ACE inhibition along with antioxidant potential.

Materials and Methods: The squilla muscle protein was hydrolysed using alcalase and trypsin enzymes for 12 hours and tested for DH. The hydrolysates were examined for their ACEi activity and then the best hydrolysate was sequentially purified in various chromatographical methods. The purified peptide was studied for anti-oxidant and functional properties, followed by amino acid sequencing. The purified peptide was also evaluated for its toxicity by in vitro cell viability assay.

Results: The DH% was found to be 47.13 ± 0.72% and 89.43 ± 2.06% for alcalase and trypsin, respectively. The alcalase 5th-hour hydrolysate was detected with potent activity (65.97 ± 0.56%) using ACEi assay and was primarily fractionated using ultrafiltration; the maximum inhibitory activity was found with 77.04 ± 0.52% in 3-10 kDa fraction. Subsequently, the fraction was purified using IEC and GFC, in which the AC1-A2 fraction had higher antihypertensive activity (70.85 ± 0.78%). The non-toxic fraction showed hexapeptide HVGGCG with molecular weight 529 Da with great potential of antioxidant activity along with functional property.

Conclusion: This peptide could be developed as a potential ACE-inhibitory and antioxidant agent.

Keywords: Squilla muscle, antihypertensive activity, hexapeptide, purification, enzymatic hydrolysis, cell viability.

Graphical Abstract

[1]
Guang, C.; Phillips, R.D. Plant food-derived Angiotensin I converting enzyme inhibitory peptides. J. Agric. Food Chem., 2009, 57(12), 5113-5120.
[http://dx.doi.org/10.1021/jf900494d] [PMID: 19449887]
[2]
Arihara, K.; Nakashima, Y.; Mukai, T.; Ishikawa, S.; Itoh, M. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci., 2001, 57(3), 319-324.
[http://dx.doi.org/10.1016/S0309-1740(00)00108-X] [PMID: 22061507]
[3]
Israili, Z.H.; Hall, W.D. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann. Intern. Med., 1992, 117(3), 234-242.
[http://dx.doi.org/10.7326/0003-4819-117-3-234] [PMID: 1616218]
[4]
FitzGerald, R.J.; Meisel, H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr., 2000, 84(S1)(Suppl. 1), S33-S37.
[http://dx.doi.org/10.1017/S0007114500002221] [PMID: 11242444]
[5]
Kristinsson, H.G.; Rasco, B.A. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem., 2000, 48(3), 657-666.
[http://dx.doi.org/10.1021/jf990447v] [PMID: 10725130]
[6]
He, H.; Chen, X.; Sun, C.; Zhang, Y.; Gao, P. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresour. Technol., 2006, 97(3), 385-390.
[http://dx.doi.org/10.1016/j.biortech.2005.03.016] [PMID: 15935656]
[7]
Balti, R.; Nedjar-Arroume, N.; Adjé, E.Y.; Guillochon, D.; Nasri, M. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. J. Agric. Food Chem., 2010, 58(6), 3840-3846.
[http://dx.doi.org/10.1021/jf904300q] [PMID: 20180574]
[8]
Joshi, I.; Janagaraj, K.; Noorani, P.M.K.; Nazeer, R.A. Isolation and characterization of angiotensin I-converting enzyme (ACE-I) inhibition and antioxidant peptide from by-catch shrimp (Oratosquilla woodmasoni) waste. Biocatal. Agric. Biotechnol., 2020, 29, 101770.
[http://dx.doi.org/10.1016/j.bcab.2020.101770]
[9]
Lee, S.H.; Chang, D.W.; Lee, B.J.; Jeon, Y.J. Antioxidant activity of solubilized Tetrasel missuecica and Chlorella ellipsoidea by enzymatic digests. J. Food Sci. Nutr., 2009, 14, 21-28.
[http://dx.doi.org/10.3746/jfn.2009.14.1.021]
[10]
Wanasundara, P.K.; Ross, A.R.; Amarowicz, R.; Ambrose, S.J.; Pegg, R.B.; Shand, P.J. Peptides with angiotensin I-converting enzyme (ACE) inhibitory activity from defibrinated, hydrolyzed bovine plasma. J. Agric. Food Chem., 2002, 50(24), 6981-6988.
[http://dx.doi.org/10.1021/jf025592e] [PMID: 12428947]
[11]
Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol., 1971, 20(7), 1637-1648.
[http://dx.doi.org/10.1016/0006-2952(71)90292-9] [PMID: 4355305]
[12]
Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric., 1999, 79, 1625-1634.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199909)79:12<1625::AID-JSFA411>3.0.CO;2-8]
[13]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[14]
Jing, T.Y.; Zhao, X.Y. The improved pyrogallol method by using termination agent for superoxide dismutase measurement. Prog. Biochem. Biophys., 1995, 22, 84-86.
[http://dx.doi.org/10.1021/jf204970r]
[15]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[16]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[17]
Weichselbaum, T.E. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol., 1946, 10, 40-49..
[http://dx.doi.org/10.1093/ajcp/16.3_ts.40] [PMID: 21027099]
[18]
Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 2007, 102, 1317-1327..
[http://dx.doi.org/10.1016/j.foodchem.2006.07.016]
[19]
Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem., 1978, 26, 716-723.
[http://dx.doi.org/10.1021/jf60217a041]
[20]
Sathe, S.K.; Salunkhe, D.K. Functional properties of the great northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity, and gelation properties. J. Food Sci., 1981, 46, 71-81.
[http://dx.doi.org/10.1111/j.1365-2621.1981.tb14533.x]
[21]
Wang, J.; Yuan, X.; Jin, Z.; Tian, Y.; Song, H. Free radical and reactive oxygen species scavenging activities of peanut skins extract. Food Chem., 2007, 104(1), 242-250.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.035]
[22]
Jemil, I.; Jridi, M.; Nasri, R.; Ktari, N.; Salem, R.B.S.B.; Mehiri, M.; Nasri, M. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem., 2014, 49(6), 963-972.
[http://dx.doi.org/10.1016/j.procbio.2014.03.004]
[23]
Sudhakar, S.; Nazeer, R.A. Structural characterization of an Indian squid antioxidant peptide and its protective effect against cellular reactive oxygen species. J. Funct. Foods, 2015, 14, 502-512.
[http://dx.doi.org/10.1016/j.jff.2015.02.028]
[24]
Roberts, P.R.; Burney, J.D.; Black, K.W.; Zaloga, G.P. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Diges., 1999, 60(4), 332-337.
[http://dx.doi.org/10.1159/000007679] [PMID: 10394027]
[25]
Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci., 2004, 69(8), C615-C622.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb09909.x]
[26]
Liu, R.L.; Ge, X.L.; Gao, X.Y.; Zhan, H.Y.; Shi, T.; Su, N.; Zhang, Z.Q. Two angiotensin-converting enzyme-inhibitory peptides from almond protein and the protective action on vascular endothelial function. Food Funct., 2016, 7(9), 3733-3739.
[http://dx.doi.org/10.1039/C6FO00654J] [PMID: 27502043]
[27]
Neklyudov, A.D.; Ivankin, A.N.; Berdutina, A.V. Properties and uses of protein hydrolysates. Appl. Biochem. Microbiol., 2000, 36(5), 452-459.
[http://dx.doi.org/10.1007/BF02731888]
[28]
Tavano, O.L. Protein hydrolysis using proteases: an important tool for food biotechnology. J. Mol. Catal., B Enzym., 2013, 90, 1-11.
[http://dx.doi.org/10.1016/j.molcatb.2013.01.011]
[29]
Gauthier, S.F.; Paquin, P.; Pouliot, Y.; Turgeon, S. Surface activity and related functional properties of peptides obtained from whey proteins. J. Dairy Sci., 1993, 76(1), 321-328.
[http://dx.doi.org/10.3168/jds.S0022-0302(93)77353-1]
[30]
Sorgentini, D.A.; Wagner, J.R. Comparative study of foaming properties of whey and isolate soybean proteins. Food Res. Int., 2002, 35(8), 721-729.
[http://dx.doi.org/10.1016/S0963-9969(02)00067-4]
[31]
Mutilangi, W.A.M.; Panyam, D.; Kilara, A. Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci., 1996, 61(2), 270-275.
[http://dx.doi.org/10.1111/j.1365-2621.1996.tb14174.x]