Recent Development in the Management of Osteoarthritis – Overview of Nanoformulation Approaches

Page: [251 - 261] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aim/Objectives: Osteoarthritis (OA) is a degenerative disease of joints affecting over 7% of the world population, especially females, contributing to 2% of years lived with disability (YLD’s) globally due to pain and impaired movement of limbs viz. hip, shoulder, and knee joint. The present review explores the nano-formulation approaches to improve the therapeutic efficacy of drugs for the treatment of osteoarthritis.

Results and Discussion: The high treatment cost of osteoarthritis not only includes medication but also physiotherapy, adaptive aids, and devices or even surgery that further amounts to the loss of work hours. These medications are only treated symptomatically. Various nanocarriers have created interest of reasearchers in improving the bioavailability of active drugs, thereby, therapeutically improving the action and possible reduction of dose and side effects. Various nanocarriers are available viz. liposome, noisome, transferosome, hydrogel, microemulsion, and nanoparticle formulations for intraarticular, topical, and oral delivery for osteoarthritis treatment.

Methods and Conclusion: This article focuses on novel approaches, such as lipid-based formulations and nano- or microparticles as treatment strategies to minimize side effects by using carriers viz. liposome, noisome, transferosome, hydrogel, microemulsion, and nanoparticle formulations for intraarticular, topical, and even oral delivery.

Keywords: Osteoarthritis, liposome, microemulsion, transferosome, nanoparticle, medications.

Graphical Abstract

[1]
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 2020; 396(10264): 1711-2.
[2]
United Nations. World Population to 2300. Available from: http://www.un.org/esa/population/publications/.../WorldPop2300final.pdf
[3]
Zhang Y, Chen X, Tong Y, Luo J, Bi Q. Development and prospect of intra-articular injection in the treatment of osteoarthritis: a review. J Pain Res 2020; 13: 1941-55.
[http://dx.doi.org/10.2147/JPR.S260878] [PMID: 32801850]
[4]
Maniar KH, Jones IA, Gopalakrishna R. Lowering side effects of NSAID usage in osteoarthritis: Recent attempts at minimizing dosage. Expert Opinion on Pharmacotherapy 2018; 19(2): 93-102.
[5]
Maetzel A, Li LC, Pencharz J, Tomlinson G, Bombardier C. The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: a comparative study. Ann Rheum Dis 2004; 63(4): 395-401.
[http://dx.doi.org/10.1136/ard.2003.006031] [PMID: 15020333]
[6]
Whitney KE, Liebowitz A, Bolia IK, et al. Current perspectives on biological approaches for osteoarthritis. Ann N Y Acad Sci 2017; 1410(1): 26-43.
[http://dx.doi.org/10.1111/nyas.13554] [PMID: 29265418]
[7]
Trif M, Guillen C, Vaughan DM, et al. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp Biol Med (Maywood) 2001; 226(6): 559-64.
[http://dx.doi.org/10.1177/153537020122600608] [PMID: 11395926]
[8]
Jin GZ. Current nanoparticle-based technologies for osteoarthritis therapy. Nanomaterials (Basel) 2020; 10(12): 2368.
[http://dx.doi.org/10.3390/nano10122368] [PMID: 33260493]
[9]
Yeh CC, Su YH, Lin YJ, et al. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin)-loaded liposomes against bone turnover in a cell-based model of osteoarthritis. Drug Des Devel Ther 2015; 9: 2285-300.
[PMID: 25945040]
[10]
Dong J, Jiang D, Wang Z, Wu G, Miao L, Huang L. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm 2013; 441(1-2): 285-90.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.031]
[11]
Moghimipour E, Salami A, Monjezi M. Formulation and evaluation of liposomes for transdermal delivery of celecoxib. Jundishapur J Nat Pharm Prod 2015; 10(1): e17653.
[http://dx.doi.org/10.17795/jjnpp-17653] [PMID: 27747190]
[12]
Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone–diclofenac combinations for local osteoarthritis treatment. Int J Pharm 2009; 376(1-2): 84-91.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.025]
[13]
Duangjit S, Obata Y, Sano H, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull 2014; 37(2): 239-47.
[http://dx.doi.org/10.1248/bpb.b13-00576] [PMID: 24225259]
[14]
Corciulo C, Castro CM, Coughlin T, et al. Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Scientific Rep 2020; 10(1): 1-6.
[15]
Sarkar A, Carvalho E, D’souza AA, Banerjee R. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine (Lond) 2019; 14(7): 871-87.
[http://dx.doi.org/10.2217/nnm-2018-0221] [PMID: 30895865]
[16]
Yang J, Zhu Y, Wang F, Deng L, Xu X, Cui W. Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chem Eng J 2020; 400: 126004.
[http://dx.doi.org/10.1016/j.cej.2020.126004]
[17]
Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 2006; 58(2): 226-42.
[http://dx.doi.org/10.1016/j.addr.2006.01.018]
[18]
Kang ML, Jeong SY, Im GI. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic pegylated kartogenin for the treatment of osteoarthritis. Tissue Eng Part A 2017; 23(13-14): 630-9.
[http://dx.doi.org/10.1089/ten.tea.2016.0524] [PMID: 28338415]
[19]
Kamel R, Abbas H, Shaffie NM. Development and evaluation of PLA-coated co-micellar nanosystem of Resveratrol for the intra-articular treatment of arthritis. Int J Pharm 2019; 569: 118560.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118560]
[20]
Bachar M, Mandelbaum A, Portnaya I, et al. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J Control Release 2012; 160(2): 164-71.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.004] [PMID: 22266050]
[21]
Matsuzaki T, Matsushita T, Tabata Y, et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 2014; 35(37): 9904-11.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.041] [PMID: 25236536]
[22]
Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[23]
Imae T, Hamaguchi SI. Network of sodium hyaluronate with nano-knots junction of poly (amido amine) dendrimer. Carbohydr Polym 2012; 88(1): 352-60.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.015]
[24]
Schneider T, Welker P, Licha K, Haag R, Schulze-Tanzil G. Influence of dendritic polyglycerol sulfates on knee osteoarthritis: an experimental study in the rat osteoarthritis model. BMC Musculoskelet Disord 2015; 16(1): 387.
[http://dx.doi.org/10.1186/s12891-015-0844-3] [PMID: 26671580]
[25]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[26]
Owen AJ, Yiv SH, Sarkahian AB. Convertible microemulsion formulations. US 5,444,041, 1995.
[27]
Hu XB, Kang RR, Tang TT, et al. Topical delivery of 3,5,4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv Transl Res 2019; 9(1): 357-65.
[http://dx.doi.org/10.1007/s13346-018-00604-z] [PMID: 30430453]
[28]
Goindi S, Narula M, Kalra A. Microemulsion-based topical hydrogels of tenoxicam for treatment of arthritis. AAPS PharmSciTech 2016; 17(3): 597-606.
[http://dx.doi.org/10.1208/s12249-015-0383-0] [PMID: 26285672]
[29]
Jagdale SC, Deore GK, Chabukswar AR. Development of microemulsion based nabumetone transdermal delivery for treatment of arthritis. Recent Pat Drug Deliv Formul 2018; 12(2): 130-49.
[http://dx.doi.org/10.2174/1872211312666180227091059] [PMID: 29485013]
[30]
Lawson TB, Mäkelä JT, Klein T, Snyder BD, Grinstaff MW. Nanotechnology and osteoarthritis. Part 2: opportunities for advanced devices and therapeutics. J Orthop Res 2021; 39(3): 473-84.
[http://dx.doi.org/10.1002/jor.24842] [PMID: 32860444]
[31]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization. Toxicol Ecotoxicol Mol 2020; 25(16): 3731.
[32]
Alarçin E, Demirbağ Ç, Karsli-Ceppioglu S, Kerimoğlu O, Bal-Ozturk A. Development and characterization of oxaceprol-loaded poly-lactide-co-glycolide nanoparticles for the treatment of osteoarthritis. Drug Dev Res 2020; 81(4): 501-10.
[http://dx.doi.org/10.1002/ddr.21642] [PMID: 31958153]
[33]
Mancipe Castro LM, Sequeira A, García AJ, Guldberg RE. Articular cartilage- and synoviocyte-binding poly(ethylene glycol) nanocomposite microgels as intra-articular drug delivery vehicles for the treatment of osteoarthritis. ACS Biomater Sci Eng 2020; 6(9): 5084-95.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00960] [PMID: 33455260]
[34]
Niazvand F, Khorsandi L, Abbaspour M, et al. Curcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on mono-iodoacetate-induced osteoarthritis in rats. Vet Res Forum 2017; 8(2): 155-61.
[35]
Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm 2020; 578: 119081.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119081] [PMID: 32006623]
[36]
Fan W, Li J, Yuan L, et al. Intra-articular injection of kartogenin- conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Deliv 2018; 25(1): 1004-12.
[http://dx.doi.org/10.1080/10717544.2018.1461279] [PMID: 29667446]
[37]
Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 2019; 137: 37-45.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.008] [PMID: 30772432]
[38]
Mohammadinejad R, Ashrafizadeh M, Pardakhty A, et al. Nanotechnological strategies for osteoarthritis diagnosis, monitoring, clinical management, and regenerative medicine: Recent advances and future opportunities. Curr Rheumatol Rep 2020; 22(4): 12.
[http://dx.doi.org/10.1007/s11926-020-0884-z] [PMID: 32248371]
[39]
Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res Int 2013; 2013: 616810.
[http://dx.doi.org/10.1155/2013/616810] [PMID: 23936825]
[40]
Sarwa KK, Mazumder B, Rudrapal M, Verma VK. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv 2015; 22(5): 638-46.
[http://dx.doi.org/10.3109/10717544.2013.871601] [PMID: 24471764]
[41]
(a)Rajan R, Jose S, Mukund VB, Vasudevan DT. Transferosomes-a vesicular transdermal delivery system for enhanced drug permeation. Adv Pharm Technol Res 2011; 2(3): 138.; (b)Pandey P, Pancholi SS. Nanocarriers: a novel treatment approach for Arthritis. Int J Pharm Sci Res 2013; 4(11): 4165-74.
[42]
(a) Sardana V, Burzynski J, Zalzal P. Safety and efficacy of topical ketoprofen in transfersome gel in knee osteoarthritis: A systematic review. Musculoskeletal Care 2017; 15(2): 114-21.2018; 23(10): 1761-21.
[PMID: 29792929] ; (b) Maudens P, Jordan O , Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug discovery today 2018; 23(10): 1761-75.
[PMID: 29792929]
[43]
Pendleton A, Arden N, Dougados M, et al. EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2000; 59(12): 936-44.
[http://dx.doi.org/10.1136/ard.59.12.936] [PMID: 11087696]