Assessment of Exenatide loaded Biotinylated Trimethylated Chitosan/HP- 55 Nanoparticles

Page: [32 - 40] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Exenatide(EXE) is an anti-hyperglycemic agent approved for treating type 2 diabetes by the Food and Drug Administration(FDA). However, twice-daily injection of exenatide is inconvenient for most of the patients.

Objective: In this study, biotinylated trimethylated chitosan(Bio-TMC) based nanoparticles were proposed to promote oral absorption of exenatide. Realizing the oral administration of exenatide is very important to alleviate patient suffering and improve patient compliance.

Methods: Bio-TMC was synthesized, and the chemical structure was characterized by Fourier transform infrared (FT-IR) spectroscopy and 1H NMR spectroscopy. Nanoparticles were prepared through polyelectrolyte interaction in the presence of sodium Tripolyphosphate (TPP) and hydroxypropyl methylcellulose phthalate (HP-55). Formulations were physically and chemically characterized. In vitro release was investigated in different pH media. In vivo antidiabetic activities of biotin modified and non-biotin modified chitosan were evaluated in db/db mice.

Results: EXE-loaded Bio-TMC/HP-55 nanoparticles were spherical in shape with a mean diameter of 156.2 nm and zeta potential of +11.3 mV. The drug loading efficiency and loading content were 52.38% and 2.08%, respectively. In vitro release revealed that EXE-loaded Bio-TMC/HP-55 nanoparticles were released faster in pH 1.2 than pH 6.8 (63.71% VS 50.12%), indicating that nanoparticles have enteric characteristics. Antidiabetic activity study revealed that after oral administration to diabetic mice, the relative pharmacological bioavailability (FPharm%) of the biotin modified nanoparticles was found to be 1.27-fold higher compared to the unmodified ones, and the hypoglycemic effect was also found to be better.

Conclusion: Bio-TMC/HP-55 nanoparticles are feasible as oral drug carriers of exenatide and have the potential to be extended to other drugs that are not readily oral, such as monoclonal antibodies, vaccines, genes, etc. These would be beneficial to the pharmaceutical industry. Further research will focus on the biodistribution of Bio-TMC/HP-55 nanoparticles after oral administration.

Keywords: Exenatide, biotin, trimethylated chitosan, nanoparticles, oral delivery, type 2 diabetes mellitus.

Graphical Abstract

[1]
Yoo, B.K.; Triller, D.M.; Yoo, D.J. Exenatide: A new option for the treatment of type 2 diabetes. Ann. Pharmacother., 2006, 40(10), 1777-1784.
[http://dx.doi.org/10.1345/aph.1H060] [PMID: 16985091]
[2]
Ismail, R.; Csóka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm., 2017, 115, 257-267.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.015] [PMID: 28336368]
[3]
van Meijel, L.A.; Rooijackers, H.M.; Tack, C.J.; de Galan, B.E. Effect of the GLP-1 receptor agonist exenatide on impaired awareness of hypoglycemia in type 1 diabetes; a randomized controlled trial. J. Clin. Endocrinol. Metab., 2019, 104(9), 4143-4150.
[http://dx.doi.org/10.1210/jc.2019-00087] [PMID: 30958544]
[4]
Knop, F.K.; Brønden, A.; Vilsbøll, T. Exenatide: pharmacokinetics, clinical use, and future directions. Expert Opin. Pharmacother., 2017, 18(6), 555-571.
[http://dx.doi.org/10.1080/14656566.2017.1282463] [PMID: 28085521]
[5]
Li, Y.; He, J.; Lyu, X.; Yuan, Y.; Wang, G.; Zhao, B. Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: Effect of magnesium chloride. Int. J. Pharm., 2018, 553(1-2), 375-385.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.071] [PMID: 30389472]
[6]
Jang, H.J.; Thambi, T.; Sivasubramanian, M.; Byun, J.H.; Ahn, J.Y.; Chae, S.Y.; Jo, D-G.; Jeong, J.H.; Lee, K.C.; Park, J.H. β-cyclodextrin-bearing glycol chitosan for long-acting formulation of an exenatide derivative. Macromol. Res., 2014, 22(8), 816-819.
[http://dx.doi.org/10.1007/s13233-014-2147-1]
[7]
Zhu, Z.; Luo, H.; Lu, W.; Luan, H.; Wu, Y.; Luo, J.; Wang, Y.; Pi, J.; Lim, C.Y.; Wang, H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm. Res., 2014, 31(12), 3348-3360.
[http://dx.doi.org/10.1007/s11095-014-1424-1] [PMID: 24867426]
[8]
Nashaat, D.; Elsabahy, M.; El-Sherif, T.; Hamad, M.A.; El-Gindy, G.A.; Ibrahim, E.H. Development and in vivo evaluation of chitosan nanoparticles for the oral delivery of albumin. Pharm. Dev. Technol., 2019, 24(3), 329-337.
[http://dx.doi.org/10.1080/10837450.2018.1479867] [PMID: 29781756]
[9]
Ling Tan, J.S.; Roberts, C.J.; Billa, N. Mucoadhesive chitosan- coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm. Dev. Technol., 2019, 24(4), 504-512.
[http://dx.doi.org/10.1080/10837450.2018.1515225] [PMID: 30132723]
[10]
Wang, X.; Cheng, D.; Liu, L.; Li, X. Development of poly(hydroxyethyl methacrylate) nanogel for effective oral insulin delivery. Pharm. Dev. Technol., 2018, 23(4), 351-357.
[http://dx.doi.org/10.1080/10837450.2017.1295064] [PMID: 28655281]
[11]
Qureshi, M.; Aqil, M.; Imam, S.S.; Ahad, A.; Sultana, Y. Formulation and evaluation of neuroactive drug loaded chitosan nanoparticle for nose to brain delivery: in-vitro characterization and in-vivo behavior study. Curr. Drug Deliv., 2019, 16(2), 123-135.
[http://dx.doi.org/10.2174/1567201815666181011121750] [PMID: 30317997]
[12]
Kurakula, M.; Sobahi, T.R.; Abdelaal, M.Y.; El-Helw, A.-r.M. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int. J. Nanomedicine, 2015, 321(10), 321-334.
[http://dx.doi.org/10.2147/IJN.S77731]
[13]
Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A.; Caruso, G.; Caraci, F.; Asfour, H.Z.; Bakhrebah, M.A.N.; N Alomary, M.; Abdulaal, W.H.; Okbazghi, S.Z.; Abdel-Naim, A.B.; Eid, B.G.; Aldawsari, H.M.; Kurakula, M.; Mohamed, A.I. Chitosan Coated Microparticles Enhance Simvastatin Colon Targeting and Pro-Apoptotic Activity. Mar. Drugs, 2020, 18(4), 226.
[http://dx.doi.org/10.3390/md18040226] [PMID: 32344610]
[14]
Alhakamy, N.A.; Ahmed, O.A.A.; Kurakula, M.; Caruso, G.; Caraci, F.; Asfour, H.Z.; Alfarsi, A.; Eid, B.G.; Mohamed, A.I.K.; Alruwaili, N.K.; Abdulaal, W.H.; Fahmy, U.A.; Alhadrami, H.A.; Eldakhakhny, B.M.; Abdel-Naim, A.B. Chitosan-based microparticles enhance ellagic acid’s colon targeting and proapoptotic activity. Pharmaceutics, 2020, 12(7), 652.
[http://dx.doi.org/10.3390/pharmaceutics12070652] [PMID: 32660035]
[15]
Zhang, ; Feng, J.; Wang, M.; Gu, T.; Dong, Q.; Yang, X.; Sun, Y.; Wu, Y.; Chen, Y.; Kong, W. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l- lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. International Journal of Nanomedicine, 2020, 8, 1141-1154.
[16]
Asasutjarit, R.; Theerachayanan, T.; Kewsuwan, P.; Veeranodha, S.; Fuongfuchat, A.; Ritthidej, G.C. Development and Evaluation of Diclofenac Sodium Loaded-N-Trimethyl Chitosan Nanoparticles for Ophthalmic Use. AAPS PharmSciTech, 2015, 16(5), 1013-1024.
[http://dx.doi.org/10.1208/s12249-015-0290-4] [PMID: 25609376]
[17]
Gedawy, A.; Martinez, J.; Al-Salami, H.; Dass, C.R. Oral insulin delivery: Existing barriers and current counter-strategies. J. Pharm. Pharmacol., 2018, 70(2), 197-213.
[http://dx.doi.org/10.1111/jphp.12852] [PMID: 29193053]
[18]
Li, X.; Wang, C.; Liang, R.; Sun, F.; Shi, Y.; Wang, A.; Liu, W.; Sun, K.; Li, Y. The glucose-lowering potential of exenatide delivered orally via goblet cell-targeting nanoparticles. Pharm. Res., 2015, 32(3), 1017-1027.
[http://dx.doi.org/10.1007/s11095-014-1513-1] [PMID: 25270570]
[19]
Balan, V.; Redinciuc, V.; Tudorachi, N.; Verestiuc, L. Biotinylated N-palmitoyl chitosan for design of drug loaded self-assembled nanocarriers. Eur. Polym. J., 2016, 81, 284-294.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.06.014]
[20]
Zhang, X.; Qi, J.; Lu, Y.; He, W.; Li, X.; Wu, W. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine (Lond.), 2014, 10(1), 167-176.
[http://dx.doi.org/10.1016/j.nano.2013.07.011] [PMID: 23891617]
[21]
Zhou, X.; Zhang, X.; Ye, Y.; Zhang, T.; Wang, H.; Ma, Z.; Wu, B. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Int. J. Pharm., 2015, 479(2), 391-398.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.068] [PMID: 25556104]
[22]
Mandracchia, D.; Rosato, A.; Trapani, A.; Chlapanidas, T.; Montagner, I.M.; Perteghella, S.; Di Franco, C.; Torre, M.L.; Trapani, G.; Tripodo, G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomedicine (Lond.), 2017, 13(3), 1245-1254.
[http://dx.doi.org/10.1016/j.nano.2017.01.001] [PMID: 28115254]
[23]
Li, S-D.; Li, P-W.; Yang, Z-M.; Peng, Z.; Quan, W-Y.; Yang, X-H.; Yang, L.; Dong, J-J. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin. Drug Deliv., 2014, 21(7), 548-552.
[http://dx.doi.org/10.3109/10717544.2013.853708] [PMID: 24215307]
[24]
Tian, X.; Yin, H.; Zhang, S.; Luo, Y.; Xu, K.; Ma, P.; Sui, C.; Meng, F.; Liu, Y.; Jiang, Y.; Fang, J. Bufalin loaded biotinylated chitosan nanoparticles: An efficient drug delivery system for targeted chemotherapy against breast carcinoma. Eur. J. Pharm. Biopharm., 2014, 87(3), 445-453.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.010] [PMID: 24846793]
[25]
Wu, M.; Long, Z.; Xiao, H.; Dong, C. Preparation of N, N, N-trimethyl chitosan via a novel approach using dimethyl carbonate. Carbohydr. Polym., 2017, 169, 83-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.043] [PMID: 28504181]
[26]
Guo, H.; Zhang, D.; Li, C.; Jia, L.; Liu, G.; Hao, L.; Zheng, D.; Shen, J.; Li, T.; Guo, Y.; Zhang, Q. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int. J. Pharm., 2013, 458(1), 31-38.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.020] [PMID: 24140544]
[27]
de Britto, D.; de Moura, M.R.; Aouada, F.A.; Mattoso, L.H.C.; Assis, O.B.G.N. N,N-trimethyl chitosan nanoparticles as a vitamin carrier system. Food Hydrocoll., 2012, 27(2), 487-493.
[http://dx.doi.org/10.1016/j.foodhyd.2011.09.002]
[28]
Li, H.; Zhang, Z.; Bao, X.; Xu, G.; Yao, P. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf. B Biointerfaces, 2018, 170, 136-143.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.063] [PMID: 29894834]
[29]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int. J. Nanomed., 2018, 13, 705-718.
[30]
Nguyen, H-N.; Wey, S-P.; Juang, J-H.; Sonaje, K.; Ho, Y-C.; Chuang, E-Y.; Hsu, C-W.; Yen, T-C.; Lin, K-J.; Sung, H-W. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials, 2011, 32(10), 2673-2682.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.044] [PMID: 21256586]
[31]
Farhadian, A.; Dounighi, N.M.; Avadi, M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum. Vaccin. Immunother., 2015, 11(12), 2811-2818.
[http://dx.doi.org/10.1080/21645515.2015.1053663] [PMID: 26158754]