An Overview of β-Amyloid Cleaving Enzyme 1 (BACE1) in Alzheimer's Disease Therapy: Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor

Page: [114 - 135] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Over decades of its identification, numerous past and ongoing research has focused on β- amyloid cleaving enzyme 1 (BACE1) therapeutic roles as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β -amyloidassociated plaques in patients with AD, the researchers eventually discontinued the tests for lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions on BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein site splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.

Keywords: BACE1 biological properties, Alzheimer's disease, BACE1 exosites antibody, BACE1 substrates, Gene expression, Allosteric inhibitors.

[1]
Ugbaja, S.C.; Sanusi, Z.K.; Appiah-Kubi, P.; Lawal, M.M.; Kumalo, H.M. Computational modelling of potent β-secretase (BACE1) inhibitors towards Alzheimer’s disease treatment. Biophys. Chem., 2021, 270106536
[http://dx.doi.org/10.1016/j.bpc.2020.106536] [PMID: 33387910]
[2]
Ugbaja, S.C.; Appiah-Kubi, P.; Lawal, M.M.; Gumede, N.S.; Kumalo, H.M. Unravelling the molecular basis of AM-6494 high potency at BACE1 in Alzheimer’s disease: An integrated dynamic interaction investigation. J. Biomol. Struct. Dyn., 2021, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1869099] [PMID: 33410374]
[3]
Neitzel, J.J. Enzyme catalysis: The serine proteases. Nature Education, 2010, 3(9), 21.
[4]
Tang, J.; Wong, R.N. Evolution in the structure and function of aspartic proteases. J. Cell. Biochem., 1987, 33(1), 53-63.
[http://dx.doi.org/10.1002/jcb.240330106] [PMID: 3546346]
[5]
Patel, S.; Homaei, A.; El-Seedi, H.R.; Akhtar, N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother., 2018, 105, 526-532.
[http://dx.doi.org/10.1016/j.biopha.2018.05.148] [PMID: 29885636]
[6]
Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-. Protein Structure and Molecular Enzymology, 2000, 1477(1-2), 146-156.
[http://dx.doi.org/10.1016/S0167-4838(99)00268-X]
[7]
Cole, S.L.; Vassar, R. The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 509-530.
[http://dx.doi.org/10.2174/138920207783769512] [PMID: 19415126]
[8]
Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463.
[http://dx.doi.org/10.1093/cvr/cvx013] [PMID: 28158647]
[9]
Kumalo, H.; Soliman, M.E. Per-residue energy footprints-based pharmacophore modeling as an enhanced in silico approach in drug discovery: A case study on the identification of novel β-secretase1 (BACE1) inhibitors as anti-Alzheimer agents. Cell. Mol. Bioeng., 2016, 9(1), 175-189.
[http://dx.doi.org/10.1007/s12195-015-0421-8]
[10]
Hemming, M.L.; Elias, J.E.; Gygi, S.P.; Selkoe, D.J. Identification of β-secretase (BACE1) substrates using quantitative proteomics. PLoS One, 2009, 4(12)e8477
[http://dx.doi.org/10.1371/journal.pone.0008477] [PMID: 20041192]
[11]
Kumalo, H.M.; Bhakat, S.; Soliman, M.E. Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J. Biomol. Struct. Dyn., 2016, 34(5), 1008-1019.
[http://dx.doi.org/10.1080/07391102.2015.1064831] [PMID: 26208540]
[12]
Dewachter, I.; Reversé, D.; Caluwaerts, N.; Ris, L.; Kuipéri, C.; Van den Haute, C.; Spittaels, K.; Umans, L.; Serneels, L.; Thiry, E.; Moechars, D.; Mercken, M.; Godaux, E.; Van Leuven, F. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci., 2002, 22(9), 3445-3453.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03445.2002] [PMID: 11978821]
[13]
Hardy, J. A hundred years of Alzheimer’s disease research. Neuron, 2006, 52(1), 3-13.
[http://dx.doi.org/10.1016/j.neuron.2006.09.016] [PMID: 17015223]
[14]
Sanders, C.R. How γ-secretase hits a moving target. eLife, 2016, 5e20043
[http://dx.doi.org/10.7554/eLife.20043] [PMID: 27580373]
[15]
Sauder, J.M.; Arthur, J.W.; Dunbrack, R.L., Jr Modeling of substrate specificity of the Alzheimer’s disease amyloid precursor protein β-secretase. J. Mol. Biol., 2000, 300(2), 241-248.
[http://dx.doi.org/10.1006/jmbi.2000.3860] [PMID: 10873463]
[16]
Yan, R.; Bienkowski, M.J.; Shuck, M.E.; Miao, H.; Tory, M.C.; Pauley, A.M.; Brashier, J.R.; Stratman, N.C.; Mathews, W.R.; Buhl, A.E.; Carter, D.B.; Tomasselli, A.G.; Parodi, L.A.; Heinrikson, R.L.; Gurney, M.E. Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature, 1999, 402(6761), 533-537.
[http://dx.doi.org/10.1038/990107] [PMID: 10591213]
[17]
Lin, X.; Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1456-1460.
[http://dx.doi.org/10.1073/pnas.97.4.1456] [PMID: 10677483]
[18]
Roher, A.E.; Lowenson, J.D.; Clarke, S.; Wolkow, C.; Wang, R.; Cotter, R.J.; Reardon, I.M.; Zürcher-Neely, H.A.; Heinrikson, R.L.; Ball, M.J. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem., 1993, 268(5), 3072-3083.
[http://dx.doi.org/10.1016/S0021-9258(18)53661-9] [PMID: 8428986]
[19]
Haass, C.; Schlossmacher, M.G.; Hung, A.Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B.L.; Lieberburg, I.; Koo, E.H.; Schenk, D.; Teplow, D.B. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature, 1992, 359(6393), 322-325.
[http://dx.doi.org/10.1038/359322a0] [PMID: 1383826]
[20]
Citron, M.; Diehl, T.S.; Capell, A.; Haass, C.; Teplow, D.B.; Selkoe, D.J. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron, 1996, 17(1), 171-179.
[http://dx.doi.org/10.1016/S0896-6273(00)80290-1] [PMID: 8755488]
[21]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[22]
Gouras, G.K.; Xu, H.; Jovanovic, J.N.; Buxbaum, J.D.; Wang, R.; Greengard, P.; Relkin, N.R.; Gandy, S. Generation and regulation of β-amyloid peptide variants by neurons. J. Neurochem., 1998, 71(5), 1920-1925.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71051920.x] [PMID: 9798916]
[23]
Capell, A.; Steiner, H.; Willem, M.; Kaiser, H.; Meyer, C.; Walter, J.; Lammich, S.; Multhaup, G.; Haass, C. Maturation and pro-peptide cleavage of β-secretase. J. Biol. Chem., 2000, 275(40), 30849-30854.
[http://dx.doi.org/10.1074/jbc.M003202200] [PMID: 10801872]
[24]
Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J-C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[25]
Creemers, J.W.; Ines Dominguez, D.; Plets, E.; Serneels, L.; Taylor, N.A.; Multhaup, G.; Craessaerts, K.; Annaert, W.; De Strooper, B. Processing of β-secretase by furin and other members of the proprotein convertase family. J. Biol. Chem., 2001, 276(6), 4211-4217.
[http://dx.doi.org/10.1074/jbc.M006947200] [PMID: 11071887]
[26]
Costantini, C.; Ko, M.H.; Jonas, M.C.; Puglielli, L. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem. J., 2007, 407(3), 383-395.
[http://dx.doi.org/10.1042/BJ20070040] [PMID: 17425515]
[27]
Benjannet, S.; Elagoz, A.; Wickham, L.; Mamarbachi, M.; Munzer, J.S.; Basak, A.; Lazure, C.; Cromlish, J.A.; Sisodia, S.; Checler, F.; Chrétien, M.; Seidah, N.G. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem., 2001, 276(14), 10879-10887.
[http://dx.doi.org/10.1074/jbc.M009899200] [PMID: 11152688]
[28]
Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol., 2003, 160(1), 113-123.
[http://dx.doi.org/10.1083/jcb.200207113] [PMID: 12515826]
[29]
Sheng, J.G.; Price, D.L.; Koliatsos, V.E. The β-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp. Neurol., 2003, 184(2), 1053-1057.
[http://dx.doi.org/10.1016/j.expneurol.2003.08.018] [PMID: 14769400]
[30]
Koo, E.H.; Squazzo, S.L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem., 1994, 269(26), 17386-17389.
[http://dx.doi.org/10.1016/S0021-9258(17)32449-3] [PMID: 8021238]
[31]
Haass, C.; Lemere, C.A.; Capell, A.; Citron, M.; Seubert, P.; Schenk, D.; Lannfelt, L.; Selkoe, D.J. The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nat. Med., 1995, 1(12), 1291-1296.
[http://dx.doi.org/10.1038/nm1295-1291] [PMID: 7489411]
[32]
Hussain, I.; Hawkins, J.; Shikotra, A.; Riddell, D.R.; Faller, A.; Dingwall, C. Characterization of the ectodomain shedding of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). J. Biol. Chem., 2003, 278(38), 36264-36268.
[http://dx.doi.org/10.1074/jbc.M304186200] [PMID: 12857759]
[33]
Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B.D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J.C.; Yan, Q.; Richards, W.G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci., 2001, 4(3), 231-232.
[http://dx.doi.org/10.1038/85059] [PMID: 11224535]
[34]
Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoët, M.; Monbaliu, J.M.; Melnyk, O. Native chemical ligation and extended methods: Mechanisms, catalysis, scope, and limitations. Chem. Rev., 2019, 119(12), 7328-7443.
[http://dx.doi.org/10.1021/acs.chemrev.8b00712] [PMID: 31050890]
[35]
Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol., 2019, 174, 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[36]
Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-Aided Drug Design of β-Secretase, γ-Secretase and Anti-Tau Inhibitors for the Discovery of Novel Alzheimer’s Therapeutics. Int. J. Mol. Sci., 2020, 21(3), 703.
[http://dx.doi.org/10.3390/ijms21030703] [PMID: 31973122]
[37]
Yu, H.; Saura, C.A.; Choi, S-Y.; Sun, L.D.; Yang, X.; Handler, M.; Kawarabayashi, T.; Younkin, L.; Fedeles, B.; Wilson, M.A.; Younkin, S.; Kandel, E.R.; Kirkwood, A.; Shen, J. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron, 2001, 31(5), 713-726.
[http://dx.doi.org/10.1016/S0896-6273(01)00417-2] [PMID: 11567612]
[38]
Kamenetz, F.; Tomita, T.; Hsieh, H.; Seabrook, G.; Borchelt, D.; Iwatsubo, T.; Sisodia, S.; Malinow, R. APP processing and synaptic function. Neuron, 2003, 37(6), 925-937.
[http://dx.doi.org/10.1016/S0896-6273(03)00124-7] [PMID: 12670422]
[39]
Plant, L.D.; Webster, N.J.; Boyle, J.P.; Ramsden, M.; Freir, D.B.; Peers, C.; Pearson, H.A. Amyloid β peptide as a physiological modulator of neuronal ‘A’-type K+ current. Neurobiol. Aging, 2006, 27(11), 1673-1683.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.038] [PMID: 16271805]
[40]
Li, Q.; Südhof, T.C. Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J. Biol. Chem., 2004, 279(11), 10542-10550.
[http://dx.doi.org/10.1074/jbc.M310001200] [PMID: 14699153]
[41]
Pastorino, L.; Ikin, A.F.; Lamprianou, S.; Vacaresse, N.; Revelli, J.P.; Platt, K.; Paganetti, P.; Mathews, P.M.; Harroch, S.; Buxbaum, J.D. BACE (β-secretase) modulates the processing of APLP2 in vivo. Mol. Cell. Neurosci., 2004, 25(4), 642-649.
[http://dx.doi.org/10.1016/j.mcn.2003.12.013] [PMID: 15080893]
[42]
Scheinfeld, M.H.; Ghersi, E.; Laky, K.; Fowlkes, B.J.; D’Adamio, L. Processing of β-amyloid precursor-like protein-1 and -2 by γ-secretase regulates transcription. J. Biol. Chem., 2002, 277(46), 44195-44201.
[http://dx.doi.org/10.1074/jbc.M208110200] [PMID: 12228233]
[43]
Pardossi-Piquard, R.; Petit, A.; Kawarai, T.; Sunyach, C.; Alves da Costa, C.; Vincent, B.; Ring, S.; D’Adamio, L.; Shen, J.; Müller, U.; St George Hyslop, P.; Checler, F. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron, 2005, 46(4), 541-554.
[http://dx.doi.org/10.1016/j.neuron.2005.04.008] [PMID: 15944124]
[44]
Lazarov, O.; Lee, M.; Peterson, D.A.; Sisodia, S.S. Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci., 2002, 22(22), 9785-9793.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09785.2002] [PMID: 12427834]
[45]
Wong, H-K.; Sakurai, T.; Oyama, F.; Kaneko, K.; Wada, K.; Miyazaki, H.; Kurosawa, M.; De Strooper, B.; Saftig, P.; Nukina, N. β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem., 2005, 280(24), 23009-23017.
[http://dx.doi.org/10.1074/jbc.M414648200] [PMID: 15824102]
[46]
Kim, D.Y.; Carey, B.W.; Wang, H.; Ingano, L.A.; Binshtok, A.M.; Wertz, M.H.; Pettingell, W.H.; He, P.; Lee, V.M-Y.; Woolf, C.J.; Kovacs, D.M. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol., 2007, 9(7), 755-764.
[http://dx.doi.org/10.1038/ncb1602] [PMID: 17576410]
[47]
Bacskai, B.J.; Xia, M.Q.; Strickland, D.K.; Rebeck, G.W.; Hyman, B.T. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11551-11556.
[http://dx.doi.org/10.1073/pnas.200238297] [PMID: 11016955]
[48]
Rosenberg, P.B. Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psychiatry, 2005, 17(6), 503-514.
[http://dx.doi.org/10.1080/02646830500382037] [PMID: 16401549]
[49]
Kuhn, P-H.; Marjaux, E.; Imhof, A.; De Strooper, B.; Haass, C.; Lichtenthaler, S.F. Regulated intramembrane proteolysis of the interleukin-1 receptor II by α-, β-, and γ-secretase. J. Biol. Chem., 2007, 282(16), 11982-11995.
[http://dx.doi.org/10.1074/jbc.M700356200] [PMID: 17307738]
[50]
Zhang, S.; Wang, Z.; Cai, F.; Zhang, M.; Wu, Y.; Zhang, J.; Song, W. BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J. Neurosci., 2017, 37(29), 6915-6925.
[http://dx.doi.org/10.1523/JNEUROSCI.0340-17.2017] [PMID: 28626014]
[51]
Koelsch, G. BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules, 2017, 22(10), 1723.
[http://dx.doi.org/10.3390/molecules22101723] [PMID: 29027981]
[52]
Yan, R. Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2. Front. Mol. Neurosci., 2017, 10, 97.
[http://dx.doi.org/10.3389/fnmol.2017.00097] [PMID: 28469554]
[53]
Wong, P.; Cai, H.; Price, D. Google Patents, 2002.
[54]
Lange-Dohna, C.; Zeitschel, U.; Gaunitz, F.; Perez-Polo, J.R.; Bigl, V.; Rossner, S. Cloning and expression of the rat BACE1 promoter. J. Neurosci. Res., 2003, 73(1), 73-80.
[http://dx.doi.org/10.1002/jnr.10639] [PMID: 12815710]
[55]
Christensen, M.A.; Zhou, W.; Qing, H.; Lehman, A.; Philipsen, S.; Song, W. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1. Mol. Cell. Biol., 2004, 24(2), 865-874.
[http://dx.doi.org/10.1128/MCB.24.2.865-874.2004] [PMID: 14701757]
[56]
Murphy, T.; Yip, A.; Brayne, C.; Easton, D.; Evans, J.G.; Xuereb, J.; Cairns, N.; Esiri, M.M.; Rubinsztein, D.C. The BACE gene: Genomic structure and candidate gene study in late-onset Alzheimer’s disease. Neuroreport, 2001, 12(3), 631-634.
[http://dx.doi.org/10.1097/00001756-200103050-00040] [PMID: 11234778]
[57]
Kirschling, C.M.; Kölsch, H.; Frahnert, C.; Rao, M.L.; Maier, W.; Heun, R. Polymorphism in the BACE gene influences the risk for Alzheimer’s disease. Neuroreport, 2003, 14(9), 1243-1246.
[http://dx.doi.org/10.1097/00001756-200307010-00011] [PMID: 12824768]
[58]
Gold, G.; Blouin, J.L.; Herrmann, F.R.; Michon, A.; Mulligan, R.; Duriaux Saïl, G.; Bouras, C.; Giannakopoulos, P.; Antonarakis, S.E. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE ε 4 carriers. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2003, 119B(1), 44-47.
[http://dx.doi.org/10.1002/ajmg.b.10010] [PMID: 12707937]
[59]
J.Holler, C.; P Murphy, M. BACE1: Expression, regulation, and therapeutic potential of the major Alzheimer’s disease beta-secretase. Curr. Enzym. Inhib., 2013, 9(1), 3-14.
[http://dx.doi.org/10.2174/1573408011309010003]
[60]
Coon, K.D.; Myers, A.J.; Craig, D.W.; Webster, J.A.; Pearson, J.V.; Lince, D.H.; Zismann, V.L.; Beach, T.G.; Leung, D.; Bryden, L.; Halperin, R.F.; Marlowe, L.; Kaleem, M.; Walker, D.G.; Ravid, R.; Heward, C.B.; Rogers, J.; Papassotiropoulos, A.; Reiman, E.M.; Hardy, J.; Stephan, D.A. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J. Clin. Psychiatry, 2007, 68(4), 613-618.
[http://dx.doi.org/10.4088/JCP.v68n0419] [PMID: 17474819]
[61]
Sun, X.; He, G.; Qing, H.; Zhou, W.; Dobie, F.; Cai, F.; Staufenbiel, M.; Huang, L.E.; Song, W. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18727-18732.
[http://dx.doi.org/10.1073/pnas.0606298103] [PMID: 17121991]
[62]
Tamagno, E.; Bardini, P.; Guglielmotto, M.; Danni, O.; Tabaton, M. The various aggregation states of β-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic. Biol. Med., 2006, 41(2), 202-212.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.01.021] [PMID: 16814100]
[63]
Harkany, T.; Abrahám, I.; Timmerman, W.; Laskay, G.; Tóth, B.; Sasvári, M.; Kónya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; Zarándi, M.; Soós, K.; Penke, B.; Luiten, P.G. Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci., 2000, 12(8), 2735-45.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00164.x] [PMID: 10971616]
[64]
Blasko, I.; Beer, R.; Bigl, M.; Apelt, J.; Franz, G.; Rudzki, D.; Ransmayr, G.; Kampfl, A.; Schliebs, R. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer’s disease β-secretase (BACE-1). J. Neural Transm. (Vienna), 2004, 111(4), 523-536.
[http://dx.doi.org/10.1007/s00702-003-0095-6] [PMID: 15057522]
[65]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[66]
Dominguez, D.; Tournoy, J.; Hartmann, D.; Huth, T.; Cryns, K.; Deforce, S.; Serneels, L.; Camacho, I.E.; Marjaux, E.; Craessaerts, K.; Roebroek, A.J.; Schwake, M.; D’Hooge, R.; Bach, P.; Kalinke, U.; Moechars, D.; Alzheimer, C.; Reiss, K.; Saftig, P.; De Strooper, B. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem., 2005, 280(35), 30797-30806.
[http://dx.doi.org/10.1074/jbc.M505249200] [PMID: 15987683]
[67]
Ma, H.; Lesné, S.; Kotilinek, L.; Steidl-Nichols, J.V.; Sherman, M.; Younkin, L.; Younkin, S.; Forster, C.; Sergeant, N.; Delacourte, A.; Vassar, R.; Citron, M.; Kofuji, P.; Boland, L.M.; Ashe, K.H. Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 8167-8172.
[http://dx.doi.org/10.1073/pnas.0609521104] [PMID: 17470798]
[68]
Cheng, X.; He, P.; Lee, T.; Yao, H.; Li, R.; Shen, Y. High activities of BACE1 in brains with mild cognitive impairment. Am. J. Pathol., 2014, 184(1), 141-147.
[http://dx.doi.org/10.1016/j.ajpath.2013.10.002] [PMID: 24332014]
[69]
Hitt, B.; Riordan, S.M.; Kukreja, L.; Eimer, W.A.; Rajapaksha, T.W.; Vassar, R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J. Biol. Chem., 2012, 287(46), 38408-38425.
[http://dx.doi.org/10.1074/jbc.M112.415505] [PMID: 22988240]
[70]
Zeng, Y.; Zhang, J.; Zhu, Y.; Zhang, J.; Shen, H.; Lu, J.; Pan, X.; Lin, N.; Dai, X.; Zhou, M.; Chen, X. Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer’s Disease. J. Neurochem., 2015, 133(1), 38-52.
[http://dx.doi.org/10.1111/jnc.13056] [PMID: 25661995]
[71]
Das, B.; Yan, R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs, 2019, 33(3), 251-263.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[72]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[73]
Iraji, A.; Khoshneviszadeh, M.; Firuzi, O.; Khoshneviszadeh, M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem., 2020, 97103649
[http://dx.doi.org/10.1016/j.bioorg.2020.103649] [PMID: 32101780]
[74]
Meli, A.C. The impact of cardiovascular diseases and new gene variants in swaying Alzheimer’s disease. Cardiovasc. Res., 2019, 115(11), e102-e104.
[http://dx.doi.org/10.1093/cvr/cvz196] [PMID: 31436832]
[75]
Hays, C.C.; Zlatar, Z.Z.; Wierenga, C.E. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell. Mol. Neurobiol., 2016, 36(2), 167-179.
[http://dx.doi.org/10.1007/s10571-015-0261-z] [PMID: 26898552]
[76]
Shi, J.; Zheng, X.; Li, Y.; Zhang, Q.; Ying, S. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform., 2018, 22(1), 173-183.
[http://dx.doi.org/10.1109/JBHI.2017.2655720] [PMID: 28113353]
[77]
Chen, X.; Jiang, X-M.; Zhao, L-J.; Sun, L-L.; Yan, M-L.; Tian, Y.; Zhang, S.; Duan, M-J.; Zhao, H-M.; Li, W-R.; Hao, Y.Y.; Wang, L.B.; Xiong, Q.J.; Ai, J. MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis., 2017, 8(6), e2850-e2850.
[http://dx.doi.org/10.1038/cddis.2017.243] [PMID: 28569780]
[78]
Johnson, K.A.; Jones, K.; Holman, B.L.; Becker, J.A.; Spiers, P.A.; Satlin, A.; Albert, M.S. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology, 1998, 50(6), 1563-1571.
[http://dx.doi.org/10.1212/WNL.50.6.1563] [PMID: 9633695]
[79]
Ferrucci, M.; Biagioni, F.; Ryskalin, L.; Limanaqi, F.; Gambardella, S.; Frati, A.; Fornai, F. Ambiguous effects of autophagy activation following hypoperfusion/ischemia. Int. J. Mol. Sci., 2018, 19(9), 2756.
[http://dx.doi.org/10.3390/ijms19092756] [PMID: 30217100]
[80]
Ito, M.; Tanaka, T.; Ishii, T.; Wakashima, T.; Fukui, K.; Nangaku, M. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int., 2020, 97(4), 687-701.
[http://dx.doi.org/10.1016/j.kint.2019.10.020] [PMID: 32033782]
[81]
Nagpure, B.V.; Bian, J-S. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One, 2014, 9(2)e88508
[http://dx.doi.org/10.1371/journal.pone.0088508] [PMID: 24523906]
[82]
Faivre, E.; Coelho, J.E.; Zornbach, K.; Malik, E.; Baqi, Y.; Schneider, M.; Cellai, L.; Carvalho, K.; Sebda, S.; Figeac, M.; Eddarkaoui, S.; Caillierez, R.; Chern, Y.; Heneka, M.; Sergeant, N.; Müller, C.E.; Halle, A.; Buée, L.; Lopes, L.V.; Blum, D. Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front. Mol. Neurosci., 2018, 11, 235.
[http://dx.doi.org/10.3389/fnmol.2018.00235] [PMID: 30050407]
[83]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[84]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[85]
Andrew, R.J.; Fernandez, C.G.; Stanley, M.; Jiang, H.; Nguyen, P.; Rice, R.C.; Buggia-Prévot, V.; De Rossi, P.; Vetrivel, K.S.; Lamb, R.; Argemi, A.; Allaert, E.S.; Rathbun, E.M.; Krause, S.V.; Wagner, S.L.; Parent, A.T.; Holtzman, D.M.; Thinakaran, G. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(45), E9665-E9674.
[http://dx.doi.org/10.1073/pnas.1708568114] [PMID: 29078331]
[86]
Gowrishankar, S.; Wu, Y.; Ferguson, S.M. Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology. J. Cell Biol., 2017, 216(10), 3291-3305.
[http://dx.doi.org/10.1083/jcb.201612148] [PMID: 28784610]
[87]
Walker, K.R.; Kang, E.L.; Whalen, M.J.; Shen, Y.; Tesco, G. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1. J. Neurosci., 2012, 32(30), 10423-10437.
[http://dx.doi.org/10.1523/JNEUROSCI.5491-11.2012] [PMID: 22836275]
[88]
Bonifacino, J.S. The GGA proteins: Adaptors on the move. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 23-32.
[http://dx.doi.org/10.1038/nrm1279] [PMID: 14708007]
[89]
Boddapati, S.; Levites, Y.; Sierks, M.R. Inhibiting β-secretase activity in Alzheimer’s disease cell models with single-chain antibodies specifically targeting APP. J. Mol. Biol., 2011, 405(2), 436-447.
[http://dx.doi.org/10.1016/j.jmb.2010.10.054] [PMID: 21073877]
[90]
Atwal, J.K.; Chen, Y.; Chiu, C.; Mortensen, D.L.; Meilandt, W.J.; Liu, Y.; Heise, C.E.; Hoyte, K.; Luk, W.; Lu, Y. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Science Translational Medicine, 2011, 3(84), 84ra43-84ra43..
[http://dx.doi.org/10.1126/scitranslmed.3002254]
[91]
Zhou, L.; Chávez-Gutiérrez, L.; Bockstael, K.; Sannerud, R.; Annaert, W.; May, P.C.; Karran, E.; De Strooper, B. Inhibition of β-secretase in vivo via antibody binding to unique loops (D and F) of BACE1. J. Biol. Chem., 2011, 286(10), 8677-8687.
[http://dx.doi.org/10.1074/jbc.M110.194860] [PMID: 21209097]
[92]
Wang, W.; Liu, Y.; Lazarus, R.A. Allosteric inhibition of BACE1 by an exosite-binding antibody. Curr. Opin. Struct. Biol., 2013, 23(6), 797-805.
[http://dx.doi.org/10.1016/j.sbi.2013.08.001] [PMID: 23998983]
[93]
Vassar, R. Developing Therapeutics for Alzheimer's Disease: Progress and Challenges, 2016.39-62.
[94]
Yu, Y.J.; Zhang, Y.; Kenrick, M.; Hoyte, K.; Luk, W.; Lu, Y.; Atwal, J.; Elliott, J.M.; Prabhu, S.; Watts, R.J. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Science Translational Medicine, 2011, 3(84), 84ra44-84ra44.,
[http://dx.doi.org/10.1126/scitranslmed.3002230]
[95]
Kornacker, M.G.; Lai, Z.; Witmer, M.; Ma, J.; Hendrick, J.; Lee, V.G.; Riexinger, D.J.; Mapelli, C.; Metzler, W.; Copeland, R.A. An inhibitor binding pocket distinct from the catalytic active site on human β-APP cleaving enzyme. Biochemistry, 2005, 44(34), 11567-11573.
[http://dx.doi.org/10.1021/bi050932l] [PMID: 16114893]
[96]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[97]
Kornacker, M.G.; Copeland, R.A.; Hendrick, J.; Lai, Z.; Mapelli, C.; Witmer, M.R.; Marcinkeviciene, J.; Metzler, W.; Lee, V.; Riexinger, D.J. Google Patents, 2008.
[98]
Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev., 2020, 40(1), 339-384.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]
[99]
Xie, J.; Liang, R.; Wang, Y.; Huang, J.; Cao, X.; Niu, B. Progress in target drug molecules for Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(1), 4-36.
[http://dx.doi.org/10.2174/1568026619666191203113745] [PMID: 31797761]
[100]
Das, S.; Sengupta, S.; Chakraborty, S. Scope of β-Secretase (BACE1)-Targeted Therapy in Alzheimer’s Disease: Emphasizing the Flavonoid Based Natural Scaffold for BACE1 Inhibition. ACS Chem. Neurosci., 2020, 11(21), 3510-3522.
[http://dx.doi.org/10.1021/acschemneuro.0c00579] [PMID: 33073981]
[101]
Lopez-Font, I.; Boix, C.P.; Zetterberg, H.; Blennow, K.; Sáez-Valero, J. Characterization of Cerebrospinal Fluid BACE1 Species. Mol. Neurobiol., 2019, 56(12), 8603-8616.
[http://dx.doi.org/10.1007/s12035-019-01677-8] [PMID: 31290061]
[102]
Pettus, L.H.; Bourbeau, M.P.; Bradley, J.; Bartberger, M.D.; Chen, K.; Hickman, D.; Johnson, M.; Liu, Q.; Manning, J.R.; Nanez, A.; Siegmund, A.C.; Wen, P.H.; Whittington, D.A.; Allen, J.R.; Wood, S. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J. Med. Chem., 2020, 63(5), 2263-2281.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01034] [PMID: 31589043]
[103]
Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2018, 378(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[104]
Vandenberghe, R.; Riviere, M.E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; Graf, A. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement. (N. Y.), 2016, 3(1), 10-22.
[http://dx.doi.org/10.1016/j.trci.2016.12.003] [PMID: 29067316]
[105]
Hsiao, C.C.; Rombouts, F.; Gijsen, H.J.M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett., 2019, 29(6), 761-777.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.049] [PMID: 30709653]
[106]
Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders. Curr. Neuropharmacol., 2018, 16(6), 740-748.
[http://dx.doi.org/10.2174/1570159X15666171016163510] [PMID: 29046156]
[107]
Gutierrez, L.J.; Angelina, E.; Gyebrovszki, A.; Fülöp, L.; Peruchena, N.; Baldoni, H.A.; Penke, B.; Enriz, R.D. New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design. J. Biomol. Struct. Dyn., 2017, 35(2), 413-426.
[http://dx.doi.org/10.1080/07391102.2016.1145143] [PMID: 26813690]
[108]
Clarivate analytics. Available from:. https://clarivate.com/ products/web-of-science/
[109]
Peters-Libeu, C.; Campagna, J.; Mitsumori, M.; Poksay, K.S.; Spilman, P.; Sabogal, A.; Bredesen, D.E.; John, V. sAβPPα is a Potent Endogenous Inhibitor of BACE1. J. Alzheimers Dis., 2015, 47(3), 545-555.
[http://dx.doi.org/10.3233/JAD-150282] [PMID: 26401691]
[110]
Campagna, J.; Vadivel, K.; Jagodzinska, B.; Jun, M.; Bilousova, T.; Spilman, P.; John, V. Evaluation of an Allosteric BACE Inhibitor Peptide to Identify Mimetics that Can Interact with the Loop F Region of the Enzyme and Prevent APP Cleavage. J. Mol. Biol., 2018, 430(11), 1566-1576.
[http://dx.doi.org/10.1016/j.jmb.2018.04.002] [PMID: 29649434]
[111]
Young, L.W. PCT Search Report for App. PCT Search Report for App. No. PCT/US, 2010, 8(10435), 1-2..
[112]
Singer, O.; Marr, R.A.; Rockenstein, E.; Crews, L.; Coufal, N.G.; Gage, F.H.; Verma, I.M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci., 2005, 8(10), 1343-1349.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[113]
Dorresteijn, B.; Rotman, M.; Faber, D.; Schravesande, R.; Suidgeest, E.; van der Weerd, L.; van der Maarel, S.M.; Verrips, C.T.; El Khattabi, M. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activity in vitro and in vivo. FEBS J., 2015, 282(18), 3618-3631.
[http://dx.doi.org/10.1111/febs.13367] [PMID: 26147692]
[114]
Ryu, G.; Park, S.H.; Kim, E.S.; Choi, B.W.; Ryu, S.Y.; Lee, B.H. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch. Pharm. Res., 2003, 26(10), 796-799.
[http://dx.doi.org/10.1007/BF02980022] [PMID: 14609125]
[115]
Choi, B.W.; Ryu, G.; Park, S.H.; Kim, E.S.; Shin, J.; Roh, S.S.; Shin, H.C.; Lee, B.H. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: Lead compounds for Alzheimer’s disease therapy. Phytother. Res., 2007, 21(5), 423-426.
[http://dx.doi.org/10.1002/ptr.2090] [PMID: 17236179]
[116]
Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg. Med. Chem., 2017, 25(15), 3964-3970.
[http://dx.doi.org/10.1016/j.bmc.2017.05.033] [PMID: 28576634]
[117]
Youn, K.; Yun, E.Y.; Lee, J.; Kim, J.Y.; Hwang, J.S.; Jeong, W.S.; Jun, M. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: Molecular docking studies. J. Med. Food, 2014, 17(2), 284-289.
[http://dx.doi.org/10.1089/jmf.2013.2968] [PMID: 24548007]
[118]
Youn, K.; Lee, J.; Yun, E.Y.; Ho, C.T.; Karwe, M.V.; Jeong, W.S.; Jun, M. Biological evaluation and in silico docking study of gamma-linolenic acid as a potential BACE1 inhibitor. J. Funct. Foods, 2014, 10, 187-191.
[http://dx.doi.org/10.1016/j.jff.2014.06.005]
[119]
Youn, K.; Park, J.H.; Lee, J.; Jeong, W.S.; Ho, C.T.; Jun, M. The Identification of Biochanin A as a Potent and Selective β-Site App-Cleaving Enzyme 1 (BACE1) Inhibitor. Nutrients, 2016, 8(10)E637
[http://dx.doi.org/10.3390/nu8100637] [PMID: 27754406]
[120]
Youn, K.; Park, J.H.; Lee, S.; Lee, S.; Lee, J.; Yun, E.Y.; Jeong, W.S.; Jun, M. BACE1 Inhibition by Genistein: Biological Evaluation, Kinetic Analysis, and Molecular Docking Simulation. J. Med. Food, 2018, 21(4), 416-420.
[http://dx.doi.org/10.1089/jmf.2017.4068] [PMID: 29444415]
[121]
Ruderisch, N.; Schlatter, D.; Kuglstatter, A.; Guba, W.; Huber, S.; Cusulin, C.; Benz, J.; Rufer, A.C.; Hoernschemeyer, J.; Schweitzer, C.; Bülau, T.; Gärtner, A.; Hoffmann, E.; Niewoehner, J.; Patsch, C.; Baumann, K.; Loetscher, H.; Kitas, E.; Freskgård, P.O. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport. EBioMedicine, 2017, 24, 76-92.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.004] [PMID: 28923680]
[122]
Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.; Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schätzlein, M.; Pineda-Lucena, A.; Trabanco, A.A.; Van Glabbeek, D.; Vos, A.; Tresadern, G. Fragment Binding to β-Secretase 1 without Catalytic Aspartate Interactions Identified via Orthogonal Screening Approaches. ACS Omega, 2017, 2(2), 685-697.
[http://dx.doi.org/10.1021/acsomega.6b00482] [PMID: 28626832]
[123]
Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; De Strooper, B.; Herdewijn, P. Modulation of BACE1 Activity by Chemically Modified Aptamers. ChemBioChem, 2018, 19(7), 754-763.
[http://dx.doi.org/10.1002/cbic.201700461] [PMID: 29327496]
[124]
Harris, R.C.; Tsai, C.C.; Ellis, C.R.; Shen, J. Proton-Coupled Conformational Allostery Modulates the Inhibitor Selectivity for β-Secretase. J. Phys. Chem. Lett., 2017, 8(19), 4832-4837.
[http://dx.doi.org/10.1021/acs.jpclett.7b02309] [PMID: 28927275]
[125]
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol. Cell. Biol., 2008, 28(11), 3663-3671.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[126]
Cardinali, D.P. Melatonin: Clinical Perspectives in Neurodegeneration. Front. Endocrinol. (Lausanne), 2019, 10(480), 480.
[http://dx.doi.org/10.3389/fendo.2019.00480] [PMID: 31379746]
[127]
Panyatip, P.; Tadtong, S.; Sousa, E.; Puthongking, P. BACE1 inhibitor, neuroprotective, and neuritogenic activities of melatonin derivatives. Sci. Pharm., 2020, 88(4), 1-13.
[http://dx.doi.org/10.3390/scipharm88040058]
[128]
Juliano, J.P.; Small, D.H.; Aguilar, M.I. Peptidomimetic modulators of BACE1. Aust. J. Chem., 2020, 73(4), 366-376.
[http://dx.doi.org/10.1071/CH19594]
[129]
Gutierrez, L.J.; Enriz, R.D.; Baldoni, H.A. Structural and thermodynamic characteristics of the exosite binding pocket on the human BACE1: A molecular modeling approach. J. Phys. Chem. A, 2010, 114(37), 10261-10269.
[http://dx.doi.org/10.1021/jp104983a] [PMID: 20806954]
[130]
Gutiérrez, L.J.; Andujar, S.A.; Enriz, R.D.; Baldoni, H.A. Structural and functional insights into the anti-BACE1 Fab fragment that recognizes the BACE1 exosite. J. Biomol. Struct. Dyn., 2014, 32(9), 1421-1433.
[http://dx.doi.org/10.1080/07391102.2013.821024] [PMID: 23879547]
[131]
Butler, C.R.; Brodney, M.A.; Beck, E.M.; Barreiro, G.; Nolan, C.E.; Pan, F.; Vajdos, F.; Parris, K.; Varghese, A.H.; Helal, C.J.; Lira, R.; Doran, S.D.; Riddell, D.R.; Buzon, L.M.; Dutra, J.K.; Martinez-Alsina, L.A.; Ogilvie, K.; Murray, J.C.; Young, J.M.; Atchison, K.; Robshaw, A.; Gonzales, C.; Wang, J.; Zhang, Y.; O’Neill, B.T. Discovery of a series of efficient, centrally efficacious BACE1 inhibitors through structure-based drug design. J. Med. Chem., 2015, 58(6), 2678-2702.
[http://dx.doi.org/10.1021/jm501833t] [PMID: 25695670]
[132]
Di Pietro, O.; Juárez-Jiménez, J.; Muñoz-Torrero, D.; Laughton, C.A.; Luque, F.J. Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors. PLoS One, 2017, 12(5)e0177683
[http://dx.doi.org/10.1371/journal.pone.0177683] [PMID: 28505196]
[133]
Viayna, E.; Sola, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[http://dx.doi.org/10.1021/jm401824w] [PMID: 24568372]
[134]
Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318.
[http://dx.doi.org/10.1021/acschemneuro.9b00348] [PMID: 31545898]
[135]
Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(1), 414-417.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.116] [PMID: 18023580]
[136]
Chen, J.; Yin, B.; Wang, W.; Sun, H. Effects of Disulfide Bonds on Binding of Inhibitors to β-Amyloid Cleaving Enzyme 1 Decoded by Multiple Replica Accelerated Molecular Dynamics Simulations. ACS Chem. Neurosci., 2020, 11(12), 1811-1826.
[http://dx.doi.org/10.1021/acschemneuro.0c00234] [PMID: 32459964]
[137]
Kumar, S.; Chowdhury, S.; Kumar, S. In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci., 2017, 18(1), 76.
[http://dx.doi.org/10.1186/s12868-017-0394-8] [PMID: 29078760]
[138]
May, P.C.; Willis, B.A.; Lowe, S.L.; Dean, R.A.; Monk, S.A.; Cocke, P.J.; Audia, J.E.; Boggs, L.N.; Borders, A.R.; Brier, R.A.; Calligaro, D.O.; Day, T.A.; Ereshefsky, L.; Erickson, J.A.; Gevorkyan, H.; Gonzales, C.R.; James, D.E.; Jhee, S.S.; Komjathy, S.F.; Li, L.; Lindstrom, T.D.; Mathes, B.M.; Martényi, F.; Sheehan, S.M.; Stout, S.L.; Timm, D.E.; Vaught, G.M.; Watson, B.M.; Winneroski, L.L.; Yang, Z.; Mergott, D.J. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J. Neurosci., 2015, 35(3), 1199-1210.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-14.2015] [PMID: 25609634]