Beneficial Effects of Choline Alphoscerate on Amyloid-β Neurotoxicity in an In vitro Model of Alzheimer’s Disease

Page: [298 - 309] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder characterized by cognitive impairment, which represents an urgent public health concern. Given the worldwide impact of AD, there is a compelling need for effective therapies to slow down or halt this disorder.

Objective: Choline alphoscerate (α-GPC) represents a potentially effective cholinergic neurotransmission enhancing agent with an interesting clinical profile in cognitive dysfunctions improvement, although only scanty data are available about the mechanisms underlying such beneficial effects.

Methods: The SH-SY5Y neuronal cell line, differentiated for 1 week with 10 μm of all-trans-retinoic acid (RA), to achieve a switch towards a cholinergic phenotype, was used as an in vitro model of AD. SH-SY5Y cells were pre-treated for 1h with α-GPC (100nM) and treated for 72 h with Aβ25-35 (10μM).

Results: α-GPC was able to antagonize Aβ25-35 mediated neurotoxicity and attenuate the Aβ-induced phosphorylation of the Tau protein. Moreover, α-GPC exerted its beneficial effects by employing the NGF/TrkA system, knocked down in AD and, consequently, by sustaining the expression level of synaptic vesicle proteins, such as synaptophysin.

Conclusion: Taken together, our data suggest that α-GPC can have a role in neuroprotection in the course of toxic challenges with Aβ. Thus, a deeper understanding of the mechanism underlying its beneficial effect, could provide new insights into potential future pharmacological applications of its functional cholinergic enhancement, with the aim to mitigate AD and could represent the basis for innovative therapy.

Keywords: Acetylcholine, apoptosis, cholinergic neurotransmission, neurons, synaptogenesis, Alzheimer's disease.

[1]
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: A dysregulated symphony. Trends Neurosci 2017; 40(6): 347-57.
[http://dx.doi.org/10.1016/j.tins.2017.04.002] [PMID: 28494972]
[2]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[3]
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz H-J. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol Commun 2015; 3(1): 10.
[http://dx.doi.org/10.1186/s40478-015-0187-1] [PMID: 25853173]
[4]
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91(6): 1199-218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006] [PMID: 27657448]
[5]
Cavedo E, Grothe MJ, Colliot O, et al. Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer’s disease. Sci Rep 2017; 7(1): 11706.
[http://dx.doi.org/10.1038/s41598-017-09780-3] [PMID: 28916821]
[6]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217(4558): 408-14.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[7]
Guarnieri G, Sarchielli E, Vannelli GB, Morelli A. Cell-based therapy in Alzheimer’s disease: Can human fetal cholinergic neurons “untangle the skein”? Neural Regen Res 2018; 13(12): 2105-7.
[http://dx.doi.org/10.4103/1673-5374.241459] [PMID: 30323137]
[8]
Parnetti L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation? J Neurol Sci 2007; 257(1-2): 264-9.
[http://dx.doi.org/10.1016/j.jns.2007.01.043] [PMID: 17331541]
[9]
Scapicchio PL. Revisiting choline alphoscerate profile: A new, perspective, role in dementia? Int J Neurosci 2013; 123(7): 444-9.
[http://dx.doi.org/10.3109/00207454.2013.765870] [PMID: 23387341]
[10]
Tuboly E, Gáspár R, Ibor MO, et al. L-Alpha-glycerylphosphorylcholine can be cytoprotective or cytotoxic in neonatal rat cardiac myocytes: A double-edged sword phenomenon. Mol Cell Biochem 2019; 460(1-2): 195-203.
[http://dx.doi.org/10.1007/s11010-019-03580-1] [PMID: 31280435]
[11]
Traini E, Bramanti V, Amenta F. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline- containing phospholipid with a still interesting profile as cognition enhancing agent. Curr Alzheimer Res 2013; 10(10): 1070-9.
[http://dx.doi.org/10.2174/15672050113106660173] [PMID: 24156263]
[12]
Chen X-Q, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114: 52-61.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.341] [PMID: 29031834]
[13]
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA signaling causes early AD-linked presynaptic dysfunction in cholinergic primary neurons. Front Cell Neurosci 2017; 11: 68.
[http://dx.doi.org/10.3389/fncel.2017.00068] [PMID: 28360840]
[14]
Canu N, Amadoro G, Triaca V, et al. The intersection of NGF/TrkA signaling and amyloid precursor protein processing in Alzheimer’s disease neuropathology. Int J Mol Sci 2017; 18(6): E1319.
[http://dx.doi.org/10.3390/ijms18061319] [PMID: 28632177]
[15]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[16]
Cantarella G, Uberti D, Carsana T, Lombardo G, Bernardini R, Memo M. Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell Death Differ 2003; 10(1): 134-41.
[http://dx.doi.org/10.1038/sj.cdd.4401143] [PMID: 12655302]
[17]
Cantarella G, Lempereur L, D’Alcamo MA, et al. Trail interacts redundantly with nitric oxide in rat astrocytes: Potential contribution to neurodegenerative processes. J Neuroimmunol 2007; 182(1-2): 41-7.
[http://dx.doi.org/10.1016/j.jneuroim.2006.09.007] [PMID: 17067687]
[18]
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev 2012; 92(2): 689-737.
[http://dx.doi.org/10.1152/physrev.00028.2011] [PMID: 22535895]
[19]
Palavicini JP, Wang C, Chen L, et al. Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A2 in a spatial-specific manner. Acta Neuropathol Commun 2017; 5(1): 56.
[http://dx.doi.org/10.1186/s40478-017-0460-6] [PMID: 28750656]
[20]
Sigala S, Imperato A, Rizzonelli P, Casolini P, Missale C, Spano P. L-alpha-glycerylphosphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur J Pharmacol 1992; 211(3): 351-8.
[http://dx.doi.org/10.1016/0014-2999(92)90392-H] [PMID: 1319912]
[21]
Lopez CM, Govoni S, Battaini F, et al. Effect of a new cognition enhancer, alpha-glycerylphosphorylcholine, on scopolamine-induced amnesia and brain acetylcholine. Pharmacol Biochem Behav 1991; 39(4): 835-40.
[http://dx.doi.org/10.1016/0091-3057(91)90040-9] [PMID: 1662399]
[22]
Parnetti L, Amenta F, Gallai V. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: An analysis of published clinical data. Mech Ageing Dev 2001; 122(16): 2041-55.
[http://dx.doi.org/10.1016/S0047-6374(01)00312-8] [PMID: 11589921]
[23]
Amenta F, Tayebati SK, Vitali D, Di Tullio MA. Association with the cholinergic precursor choline alphoscerate and the cholinesterase inhibitor rivastigmine: An approach for enhancing cholinergic neurotransmission. Mech Ageing Dev 2006; 127(2): 173-9.
[http://dx.doi.org/10.1016/j.mad.2005.09.017] [PMID: 16297435]
[24]
Aleppo G, Nicoletti F, Sortino MA, Casabona G, Scapagnini U, Canonico PL. Chronic L-alpha-glyceryl-phosphoryl-choline increases inositol phosphate formation in brain slices and neuronal cultures. Pharmacol Toxicol 1994; 74(2): 95-100.
[http://dx.doi.org/10.1111/j.1600-0773.1994.tb01082.x] [PMID: 8190709]
[25]
Amenta F, Tayebati SK. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem 2008; 15(5): 488-98.
[http://dx.doi.org/10.2174/092986708783503203] [PMID: 18289004]
[26]
Catanesi M, d’Angelo M, Antonosante A, et al. Neuroprotective potential of choline alfoscerate against β-amyloid injury: Involvement of neurotrophic signals. Cell Biol Int 2020; 44(8): 1734-44.
[http://dx.doi.org/10.1002/cbin.11369] [PMID: 32343461]
[27]
Wang Y, Guan X, Chen X, et al. Choline supplementation ameliorates behavioral deficits and Alzheimer’s disease-like pathology in transgenic APP/PS1 mice. Mol Nutr Food Res 2019; 63(18): e1801407.
[http://dx.doi.org/10.1002/mnfr.201801407] [PMID: 31298459]
[28]
Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 2013; 36(4): 375-99.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[29]
Adlimoghaddam A, Neuendorff M, Roy B, Albensi BC. A review of clinical treatment considerations of donepezil in severe Alzheimer’s disease. CNS Neurosci Ther 2018; 24(10): 876-88.
[http://dx.doi.org/10.1111/cns.13035] [PMID: 30058285]
[30]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[31]
Di Santo SG, Prinelli F, Adorni F, Caltagirone C, Musicco M. A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease. J Alzheimers Dis 2013; 35(2): 349-61.
[http://dx.doi.org/10.3233/JAD-122140] [PMID: 23411693]
[32]
Chen X-Q, Mobley WC. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front Neurosci 2019; 13: 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[33]
Knott V, de la Salle S, Choueiry J, et al. Neurocognitive effects of acute choline supplementation in low, medium and high performer healthy volunteers. Pharmacol Biochem Behav 2015; 131: 119-29.
[http://dx.doi.org/10.1016/j.pbb.2015.02.004] [PMID: 25681529]
[34]
Li K, Wei Q, Liu F-F, et al. Synaptic dysfunction in Alzheimer’s disease: Aβ, Tau, and epigenetic alterations. Mol Neurobiol 2018; 55(4): 3021-32.
[http://dx.doi.org/10.1007/s12035-017-0533-3] [PMID: 28456942]
[35]
Gao Y, Tan L, Yu J-T, Tan L. Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res 2018; 15(3): 283-300.
[http://dx.doi.org/10.2174/1567205014666170417111859] [PMID: 28413986]
[36]
Molinuevo JL, Berthier ML, Rami L. Donepezil provides greater benefits in mild compared to moderate Alzheimer’s disease: Implications for early diagnosis and treatment. Arch Gerontol Geriatr 2011; 52(1): 18-22.
[http://dx.doi.org/10.1016/j.archger.2009.11.004] [PMID: 19948364]
[37]
Emery VOB. Alzheimer disease: Are we intervening too late? Pro. J Neural Transm (Vienna) 2011; 118(9): 1361-78.
[http://dx.doi.org/10.1007/s00702-011-0663-0] [PMID: 21647682]
[38]
Isaev NK, Stelmashook EV, Genrikhs EE. Role of nerve growth factor in plasticity of forebrain cholinergic neurons. Biochemistry (Mosc) 2017; 82(3): 291-300.
[http://dx.doi.org/10.1134/S0006297917030075] [PMID: 28320270]
[39]
Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord 2015; 184: 245-8.
[http://dx.doi.org/10.1016/j.jad.2015.05.067] [PMID: 26118751]
[40]
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: A review of basic and clinical evidence. Curr Neuropharmacol 2011; 9(4): 530-52.
[http://dx.doi.org/10.2174/157015911798376262] [PMID: 22654714]
[41]
Cuello AC, Pentz R, Hall H. The brain NGF metabolic pathway in health and in Alzheimer’s pathology. Front Neurosci 2019; 13: 62.
[http://dx.doi.org/10.3389/fnins.2019.00062] [PMID: 30809111]
[42]
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen Res 2017; 12(4): 549-57.
[http://dx.doi.org/10.4103/1673-5374.205084] [PMID: 28553325]
[43]
Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 2013; 14(1): 7-23.
[http://dx.doi.org/10.1038/nrn3379] [PMID: 23254191]
[44]
Xie Y, Tisi MA, Yeo TT, Longo FM. Nerve growth factor (NGF) loop 4 dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects. J Biol Chem 2000; 275(38): 29868-74.
[http://dx.doi.org/10.1074/jbc.M005071200] [PMID: 10896671]
[45]
Rai SN, Dilnashin H, Birla H, et al. The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 2019; 35(3): 775-95.
[http://dx.doi.org/10.1007/s12640-019-0003-y] [PMID: 30707354]
[46]
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci 2020; 21(16): E5624.
[http://dx.doi.org/10.3390/ijms21165624] [PMID: 32781522]
[47]
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 2020; 13: 570586.
[http://dx.doi.org/10.3389/fnmol.2020.570586] [PMID: 33013322]
[48]
Bell KFS, Claudio Cuello A. Altered synaptic function in Alzheimer’s disease. Eur J Pharmacol 2006; 545(1): 11-21.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.045] [PMID: 16887118]
[49]
Gudi V, Gai L, Herder V, et al. Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol 2017; 76(2): 109-25.
[http://dx.doi.org/10.1093/jnen/nlw114] [PMID: 28177496]
[50]
Triaca V, Calissano P. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: The incipit of the Alzheimer’s disease story? Neural Regen Res 2016; 11(10): 1553-6.
[http://dx.doi.org/10.4103/1673-5374.193224] [PMID: 27904476]
[51]
De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther 2003; 25(1): 178-93.
[http://dx.doi.org/10.1016/S0149-2918(03)90023-3] [PMID: 12637119]
[52]
Parnetti L, Abate G, Bartorelli L, et al. Multicentre study of l-alpha-glyceryl-phosphorylcholine vs ST200 among patients with probable senile dementia of Alzheimer’s type. Drugs Aging 1993; 3(2): 159-64.
[http://dx.doi.org/10.2165/00002512-199303020-00006] [PMID: 8477148]