Age-related Differences in Mu Rhythm During Emotional Destination Memory Task

Page: [26 - 36] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Destination memory defined as the ability to remember to whom we addressed a piece of information is found to be impaired in normal aging. Theories of affect development and research findings have shown that emotional charging improves performance on memory tasks, and also that Mu rhythm is desynchronized as an index of mirror neuron activation during such tasks.

Objective: In this paper, we sought to investigate the differences in Mu rhythm during an emotional destination memory task, between younger and older adults.

Methods: 16 cognitively normal older adults, recruited from Alzheimer’s disease day center and 16 young adults, recruited via advertisements, participated in this experimental study. We investigated destination memory of emotionally charged faces (Emotional Destination Memory, EDM) while applying electroencephalograph (EEG) in real time in young versus older adults. We measured Mu rhythm in frontal, fronto-temporal and central areas. EEG data has been pre-processed, segmented in non-overlapping epochs, and independent component analysis (ICA) has been conducted to reject artifacts.

Results: Results showed that young adults performed better than older adults in remembering facts associated with angry faces. Also, different neurophysiological activation was found, with older adults showing Mu suppression in frontal and fronto-temporal regions, specifically in F3, F7 and F8 electrodes, in contrast with young adults who showed Mu enhancement. Regarding within group differences, it was found that in the older adults group, electrodes F8 and central C3 were the most activated, while in the young adults group, C3 was the most activated electrode.

Conclusion: The findings suggest better behavioral performance of young adults as a result of better cognitive state and adaptive bias. On a neurophysiological level, it is suggested that older adults employ Mu suppression, thus possible activation of mirror neurons, as a compensatory mechanism while mirroring properties are not spontaneously activated in young adults.

Keywords: Mirror neurons, Mu suppression, destination memory, emotional charging, young adults, older adults.

Graphical Abstract

[1]
Gopie N, Macleod CM. Destination memory: Stop me if I’ve told you this before. Psychol Sci 2009; 20(12): 1492-9.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02472.x] [PMID: 19891750]
[2]
Gopie N, Craik FI, Hasher L. Destination memory impairment in older people. Psychol Aging 2010; 25(4): 922-8.
[http://dx.doi.org/10.1037/a0019703] [PMID: 20718537]
[3]
Johnson TL, Jefferson SC. Destination memory accuracy and confidence in younger and older adults. Exp Aging Res 2018; 44(1): 62-81.
[http://dx.doi.org/10.1080/0361073X.2017.1398515] [PMID: 29236576]
[4]
Borg C, Leroy N, Favre E, Laurent B, Thomas-Antérion C. How emotional pictures influence visuospatial binding in short-term memory in ageing and Alzheimer’s disease? Brain Cogn 2011; 76(1): 20-5.
[http://dx.doi.org/10.1016/j.bandc.2011.03.008] [PMID: 21481999]
[5]
Broster LS, Blonder LX, Jiang Y. Does emotional memory enhancement assist the memory-impaired? Front Aging Neurosci 2012; 4(2): 2.
[http://dx.doi.org/10.3389/fnagi.2012.00002] [PMID: 22479245]
[6]
Evans-Roberts CE, Turnbull OH. Remembering relationships: Preserved emotion-based learning in Alzheimer’s disease. Exp Aging Res 2011; 37(1): 1-16.
[http://dx.doi.org/10.1080/0361073X.2011.536750] [PMID: 21240816]
[7]
El Haj M, Raffard S, Antoine P, Gely-Nargeot MC. Emotion and destination memory in alzheimer’s disease. Curr Alzheimer Res 2015; 12(8): 796-801.
[http://dx.doi.org/10.2174/1567205012666150710112802] [PMID: 26159194]
[8]
El Haj M, Fasotti L, Allain P. Destination memory for emotional information in older adults. Exp Aging Res 2015; 41(2): 204-19.
[http://dx.doi.org/10.1080/0361073X.2015.1001658] [PMID: 25724017]
[9]
Hobson HM, Bishop DV. The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. Royal society open sci 2017; 4(3): 160662.
[http://dx.doi.org/10.1098/rsos.160662]
[10]
Pineda JA. The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev 2005; 50(1): 57-68.
[http://dx.doi.org/10.1016/j.brainresrev.2005.04.005] [PMID: 15925412]
[11]
Da Silva FL, Pfurtscheller G. Basic concepts on EEG synchronization and desynchronization.Event-related desynchronizataion handbook of electroencephalography and clinical neurophysiology. Clin physiol 1999; 110(11): 3-11.
[12]
Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J. Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol 1998; 107(4): 287-95.
[http://dx.doi.org/10.1016/S0013-4694(98)00071-6] [PMID: 9872446]
[13]
Kim Y, Ryu J, Kim KK, Took CC, Mandic DP, Park C. Motor imagery classification using mu and beta rhythms of eeg with strong uncorrelating transform based complex common spatial patterns. Comput Intell Neurosci 2016; 2016: 1489692.
[http://dx.doi.org/10.1155/2016/1489692] [PMID: 27795702]
[14]
Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol 1997; 26(1-3): 121-35.
[http://dx.doi.org/10.1016/S0167-8760(97)00760-5] [PMID: 9202999]
[15]
Oberman LM, Pineda JA, Ramachandran VS. The human mirror neuron system: A link between action observation and social skills. Soc Cogn Affect Neurosci 2007; 2(1): 62-6.
[http://dx.doi.org/10.1093/scan/nsl022] [PMID: 18985120]
[16]
Fox NA, Bakermans-Kranenburg MJ, Yoo KH, et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol Bull 2016; 142(3): 291-313.
[http://dx.doi.org/10.1037/bul0000031] [PMID: 26689088]
[17]
Alegre M, Guridi J, Artieda J. The mirror system, theory of mind and Parkinson’s disease. J Neurol Sci 2011; 310(1-2): 194-6.
[http://dx.doi.org/10.1016/j.jns.2011.07.030] [PMID: 21839480]
[18]
Moore A, Gorodnitsky I, Pineda J. EEG mu component responses to viewing emotional faces. Behav Brain Res 2012; 226(1): 309-16.
[http://dx.doi.org/10.1016/j.bbr.2011.07.048] [PMID: 21835208]
[19]
Nyström P, Ljunghammar T, Rosander K, von Hofsten C. Using mu rhythm desynchronization to measure mirror neuron activity in infants. Dev Sci 2011; 14(2): 327-35.
[http://dx.doi.org/10.1111/j.1467-7687.2010.00979.x] [PMID: 22213903]
[20]
Pineda JA, Hecht E. Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind? Biol Psychol 2009; 80(3): 306-14.
[http://dx.doi.org/10.1016/j.biopsycho.2008.11.003] [PMID: 19063933]
[21]
Rosander K, von Hofsten C. Predictive gaze shifts elicited during observed and performed actions in 10-month-old infants and adults. Neuropsychologia 2011; 49(10): 2911-7.
[http://dx.doi.org/10.1016/j.neuropsychologia.2011.06.018] [PMID: 21722655]
[22]
Berchicci M, Zhang T, Romero L, et al. Development of mu rhythm in infants and preschool children. Dev Neurosci 2011; 33(2): 130-43.
[http://dx.doi.org/10.1159/000329095] [PMID: 21778699]
[23]
Iliadou P, Kladi A, Frantzidis CA, et al. The pattern of mu rhythm modulation during emotional destination memory: Comparison between mild cognitive impairment patients and healthy controls. J Alzheimers Dis 2019; 71(4): 1201-15.
[http://dx.doi.org/10.3233/JAD-190311] [PMID: 31524160]
[24]
Kim J, Kim S. The effects of visual stimuli on EEG mu rhythms in healthy adults. J Phys Ther Sci 2016; 28(6): 1748-52.
[http://dx.doi.org/10.1589/jpts.28.1748] [PMID: 27390408]
[25]
Liao Y, Acar ZA, Makeig S, Deak G. EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions. Neuroimage 2015; 112: 52-60.
[http://dx.doi.org/10.1016/j.neuroimage.2015.02.055] [PMID: 25731992]
[26]
Yang CY, Decety J, Lee S, Chen C, Cheng Y. Gender differences in the mu rhythm during empathy for pain: An electroencephalographic study. Brain Res 2009; 1251: 176-84.
[http://dx.doi.org/10.1016/j.brainres.2008.11.062] [PMID: 19083993]
[27]
Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci 2004; 27: 169-92.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144230] [PMID: 15217330]
[28]
van der Gaag C, Minderaa RB, Keysers C. Facial expressions: What the mirror neuron system can and cannot tell us. Soc Neurosci 2007; 2(3-4): 179-222.
[http://dx.doi.org/10.1080/17470910701376878] [PMID: 18633816]
[29]
Adolphs R. The social brain: Neural basis of social knowledge. Annu Rev Psychol 2009; 60: 693-716.
[http://dx.doi.org/10.1146/annurev.psych.60.110707.163514] [PMID: 18771388]
[30]
Mugikura S, Abe N, Ito A, et al. Medial temporal lobe activity associated with the successful retrieval of destination memory. Exp Brain Res 2016; 234(1): 95-104.
[http://dx.doi.org/10.1007/s00221-015-4415-5] [PMID: 26378005]
[31]
Ebner NC, Riediger M, Lindenberger U. FACES--a database of facial expressions in young, middle-aged, and older women and men: Development and validation. Behav Res Methods 2010; 42(1): 351-62.
[http://dx.doi.org/10.3758/BRM.42.1.351] [PMID: 20160315]
[32]
Verdichevski M, Steeves JK. Own-age and own-sex biases in recognition of aged faces. Acta Psychol (Amst) 2013; 144(2): 418-23.
[http://dx.doi.org/10.1016/j.actpsy.2013.06.005] [PMID: 24018098]
[33]
Rhodes MG, Anastasi JS. The own-age bias in face recognition: A meta-analytic and theoretical review. Psychol Bull 2012; 138(1): 146-74.
[http://dx.doi.org/10.1037/a0025750] [PMID: 22061689]
[34]
Bernier R, Aaronson B, McPartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn 2013; 82(1): 69-75.
[http://dx.doi.org/10.1016/j.bandc.2013.02.008] [PMID: 23511847]
[35]
Frantzidis CA, Ladas A-KI, Vivas AB, Tsolaki M, Bamidis PD. Cognitive and physical training for the elderly: Evaluating outcome efficacy by means of neurophysiological synchronization. Int J Psychophysiol 2014; 93(1): 1-11.
[http://dx.doi.org/10.1016/j.ijpsycho.2014.01.007] [PMID: 24472698]
[36]
El Haj M, Miller R. The communicative function of destination memory. Behav Brain Sci 2018; 41: e12.
[http://dx.doi.org/10.1017/S0140525X17001339] [PMID: 29353570]
[37]
Cheke LG. What-where-when memory and encoding strategies in healthy aging. Learn Mem 2016; 23(3): 121-6.
[http://dx.doi.org/10.1101/lm.040840.115] [PMID: 26884230]
[38]
Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci 2017; 18(9): 547-58.
[http://dx.doi.org/10.1038/nrn.2017.74] [PMID: 28655882]
[39]
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev 2015; 24(Pt B): 232-62.
[40]
Gkinopoulos T, Moraitou D, Papantoniou G, Nigritinou M, Ginos P, Kotselidou D. Decoding of basic emotions from dynamic visual displays in dementia: A sign of loss of positivity bias in emotional processing in cognitively unhealthy aging? Open J Med Psychol 2014; 3(5): 325-36.
[http://dx.doi.org/10.4236/ojmp.2014.35034]
[41]
Mather M, Knight MR. Angry faces get noticed quickly: Threat detection is not impaired among older adults. J Gerontol B Psychol Sci Soc Sci 2006; 61(1): 54-7.
[http://dx.doi.org/10.1093/geronb/61.1.P54] [PMID: 16399942]
[42]
Castelli I, Baglio F, Blasi V, et al. Effects of aging on mindreading ability through the eyes: An fMRI study. Neuropsychologia 2010; 48(9): 2586-94.
[http://dx.doi.org/10.1016/j.neuropsychologia.2010.05.005] [PMID: 20457166]
[43]
Spreng RN, Wojtowicz M, Grady CL. Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 2010; 34(8): 1178-94.
[http://dx.doi.org/10.1016/j.neubiorev.2010.01.009] [PMID: 20109489]
[44]
Hong X, Liu Y, Sun J, Tong S. Age-related differences in the modulation of small-world brain networks during a go/nogo task. Front Aging Neurosci 2016; 8(100): 100.
[http://dx.doi.org/10.3389/fnagi.2016.00100] [PMID: 27242512]
[45]
Yang T, Di Bernardi Luft C, Sun P, Bhattacharya J, Banissy MJ. Investigating age-related neural compensation during emotion perception using electroencephalography. Brain Sci 2020; 10(2): E61.
[http://dx.doi.org/10.3390/brainsci10020061] [PMID: 31979321]
[46]
Brunsdon VEA, Bradford EEF, Ferguson HJ. Sensorimotor mu rhythm during action observation changes across the lifespan independently from social cognitive processes. Dev Cogn Neurosci 2019; 38: 100659.
[http://dx.doi.org/10.1016/j.dcn.2019.100659] [PMID: 31132663]
[47]
Schmiedt-Fehr C, Mathes B, Kedilaya S, Krauss J, Basar-Eroglu C. Aging differentially affects alpha and beta sensorimotor rhythms in a go/nogo task. Clin Neurophysiol 2016; 127(10): 3234-42.
[http://dx.doi.org/10.1016/j.clinph.2016.07.008] [PMID: 27522489]
[48]
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annu Rev Psychol 2009; 60: 173-96.
[http://dx.doi.org/10.1146/annurev.psych.59.103006.093656] [PMID: 19035823]
[49]
Rayson H, Bonaiuto JJ, Ferrari PF, Murray L. Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Dev Cogn Neurosci 2016; 19: 279-87.
[http://dx.doi.org/10.1016/j.dcn.2016.05.003] [PMID: 27261926]