Tuberculosis remains a highly infectious disease across the world. In the identification of new antitubercular agents, coumarin clubbed thiadiazole amides have been synthesized and evaluated for in vitro antitubercular activity. Owing to the growing concern of chemicals and their impact on the environment, greener and faster reaction conditions needed to be incorporated. Therefore, we used TBTU as a coupling reagent for efficient and facile synthesis of substituted-N-(5-((7- methyl-2-oxo-2H-chromes-4-yl)-methyl)-1,3, 4 - thiadiazol-2-yl)-benzamide 4a-j with good yields up to 95% in mild reaction conditions. All the synthesized compounds were evaluated in vitro for anti-tubercular activity against the H37Rv strain of M.Tuberculosis. Compounds 4c, 4f, and 4j were found active at 25 μg/mL against M. tb H37Rv. Electron withdrawing substituents present on aromatic side chains showed promising anti-tubercular activity.
Keywords: Coumarin, TBTU, thiadiazole, amidation, anti-tubercular, drug discovery, coupling reagent.