Single-molecule Force Microscopy: A Powerful Tool for Studying the Mechanical Properties of Cell Membranes

Page: [664 - 676] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Cell membrane is a physical barrier for cells, as well as an important structure with complex functions in cell activities. The cell membrane can not only receive external mechanical signal stimulation and make response (e.g. cell migration, differentiation, tumorigenesis, growth), but it can also spontaneously exert force on the environment to regulate cell activities (such as tissue repair, tumor metastasis, extracellular matrix regulation, etc.).

Methods: This review provides the introduction of single-molecule force methods, as atomic force microscopy, optical tweezers, magnetic tweezers, micropipette adhesion assay, tension gauge tethers and traction force microscopy.

Results: This review summarizes the principles, advantages and disadvantages of single-molecule force methods developed in recent years as well as their application in terms of force received and generated by cells. The study of cell mechanics enables us to understand the nature of mechanical signal transduction and the manifestation of the cell's own movement.

Conclusion: The study of the mechanical properties of cell microenvironment leads to a gradual understanding of the important role of cell mechanics in development, physiology and pathology. Recently developed combined methods are beneficial to further study of cell mechanics. The optimization of these methods and the invention of new methods enable the continuing research on cell mechanics.

Keywords: Cell membrane mechanics, single-molecule force microscopy, atomic force microscopy, optics tweezer, magnetic tweezer, micropipette adhesion assay, tension gauge tethers, traction force microscopy.

Graphical Abstract

[1]
Jansen, K.A.; Atherton, P.; Ballestrem, C. Mechanotransduction at the cell-matrix interface. Semin. Cell Dev. Biol., 2017, 71, 75-83.
[http://dx.doi.org/10.1016/j.semcdb.2017.07.027] [PMID: 28754442]
[2]
Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4), 677-689.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[3]
Sunyer, R.; Conte, V.; Escribano, J.; Elosegui-Artola, A.; Labernadie, A.; Valon, L.; Navajas, D.; García-Aznar, J.M.; Muñoz, J.J.; Roca-Cusachs, P.; Trepat, X. Collective cell durotaxis emerges from long-range intercellular force transmission. Science, 2016, 353(6304), 1157-1161.
[http://dx.doi.org/10.1126/science.aaf7119] [PMID: 27609894]
[4]
Malandrino, A.; Mak, M.; Kamm, R.D.; Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech. Lett., 2018, 21, 25-34.
[http://dx.doi.org/10.1016/j.eml.2018.02.003] [PMID: 30135864]
[5]
Liu, B.; Chen, W.; Zhu, C. Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem., 2015, 66, 427-451.
[http://dx.doi.org/10.1146/annurev-physchem-040214-121742] [PMID: 25580628]
[6]
Ju, L.; Chen, Y.; Li, K.; Yuan, Z.; Liu, B.; Jackson, S.P.; Zhu, C. Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Sci. Rep., 2017, 7(1), 14185.
[http://dx.doi.org/10.1038/s41598-017-13793-3] [PMID: 29079742]
[7]
Lee, H.; Eskin, S.G.; Ono, S.; Zhu, C.; McIntire, L.V. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J. Cell Sci., 2019, 132(4), 216911.
[http://dx.doi.org/10.1242/jcs.216911] [PMID: 30659118]
[8]
Sarangapani, K.K.; Qian, J.; Chen, W.; Zarnitsyna, V.I.; Mehta, P.; Yago, T.; McEver, R.P.; Zhu, C. Regulation of catch bonds by rate of force application. J. Biol. Chem., 2011, 286(37), 32749-32761.
[http://dx.doi.org/10.1074/jbc.M111.240044] [PMID: 21775439]
[9]
Ju, L.; Dong, J.F.; Cruz, M.A.; Zhu, C. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J. Biol. Chem., 2013, 288(45), 32289-32301.
[http://dx.doi.org/10.1074/jbc.M113.504001] [PMID: 24062306]
[10]
Chen, W.; Lou, J.; Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem., 2010, 285(46), 35967-35978.
[http://dx.doi.org/10.1074/jbc.M110.155770] [PMID: 20819952]
[11]
Chen, H.; Song, G.T.; Zhang, Y.; Ni, D.C.; Zhang, X.W.; Huang, Y.H.; Lou, J.Z. Mechanical unfolding of a beta-barrel membrane protein by single-molecule force spectroscopy. Sci. China Life Sci., 2021, 64(2), 334-336.
[PMID: 32737852]
[12]
Chen, W.; Lou, J.; Evans, E.A.; Zhu, C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol., 2012, 199(3), 497-512.
[http://dx.doi.org/10.1083/jcb.201201091] [PMID: 23109670]
[13]
Sabass, B.; Gardel, M.L.; Waterman, C.M.; Schwarz, U.S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J., 2008, 94(1), 207-220.
[http://dx.doi.org/10.1529/biophysj.107.113670] [PMID: 17827246]
[14]
Legant, W.R.; Choi, C.K.; Miller, J.S.; Shao, L.; Gao, L.; Betzig, E.; Chen, C.S. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA, 2013, 110(3), 881-886.
[http://dx.doi.org/10.1073/pnas.1207997110] [PMID: 23277584]
[15]
Yeh, Y.T.; Serrano, R.; François, J.; Chiu, J.J.; Li, Y.J.; Del Álamo, J.C.; Chien, S.; Lasheras, J.C. Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl. Acad. Sci. USA, 2018, 115(1), 133-138.
[http://dx.doi.org/10.1073/pnas.1717489115] [PMID: 29255056]
[16]
Bergert, M.; Lendenmann, T.; Zündel, M.; Ehret, A.E.; Panozzo, D.; Richner, P.; Kim, D.K.; Kress, S.J.P.; Norris, D.J.; Sorkine-Hornung, O.; Mazza, E.; Poulikakos, D.; Ferrari, A. Confocal reference free traction force microscopy. Nat. Commun., 2016, 7, 12814.
[http://dx.doi.org/10.1038/ncomms12814] [PMID: 27681958]
[17]
Colin-York, H.; Javanmardi, Y.; Barbieri, L.; Li, D.; Korobchevskaya, K.; Guo, Y.; Hall, C.; Taylor, A.; Khuon, S.; Sheridan, G.K.; Chew, T.L.; Li, D.; Moeendarbary, E.; Fritzsche, M. Spatiotemporally Super-Resolved Volumetric Traction Force Microscopy. Nano Lett., 2019, 19(7), 4427-4434.
[http://dx.doi.org/10.1021/acs.nanolett.9b01196] [PMID: 31199151]
[18]
Gutierrez, E.; Tkachenko, E.; Besser, A.; Sundd, P.; Ley, K.; Danuser, G.; Ginsberg, M.H.; Groisman, A. High refractive index silicone gels for simultaneous total internal reflection fluorescence and traction force microscopy of adherent cells. PLoS One, 2011, 6(9), e23807.
[http://dx.doi.org/10.1371/journal.pone.0023807] [PMID: 21961031]
[19]
Colin-York, H.; Eggeling, C.; Fritzsche, M. Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat. Protoc., 2017, 12(4), 783-796.
[http://dx.doi.org/10.1038/nprot.2017.009] [PMID: 28301462]
[20]
Colin-York, H.; Shrestha, D.; Felce, J.H.; Waithe, D.; Moeendarbary, E.; Davis, S.J.; Eggeling, C.; Fritzsche, M. Super-Resolved Traction Force Microscopy (STFM). Nano Lett., 2016, 16(4), 2633-2638.
[http://dx.doi.org/10.1021/acs.nanolett.6b00273] [PMID: 26923775]
[21]
Wang, X.; Ha, T. Defining single molecular forces required to activate integrin and notch signaling. Science, 2013, 340(6135), 991-994.
[http://dx.doi.org/10.1126/science.1231041] [PMID: 23704575]
[22]
Luca, V.C.; Kim, B.C.; Ge, C.; Kakuda, S.; Wu, D.; Roein-Peikar, M.; Haltiwanger, R.S.; Zhu, C.; Ha, T.; Garcia, K.C. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science, 2017, 355(6331), 1320-1324.
[http://dx.doi.org/10.1126/science.aaf9739] [PMID: 28254785]
[23]
Blakely, B.L.; Dumelin, C.E.; Trappmann, B.; McGregor, L.M.; Choi, C.K.; Anthony, P.C.; Duesterberg, V.K.; Baker, B.M.; Block, S.M.; Liu, D.R.; Chen, C.S. A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods, 2014, 11(12), 1229-1232.
[http://dx.doi.org/10.1038/nmeth.3145] [PMID: 25306545]
[24]
Zhang, Y.; Ge, C.; Zhu, C.; Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun., 2014, 5, 5167.
[http://dx.doi.org/10.1038/ncomms6167] [PMID: 25342432]
[25]
Liu, Y.; Blanchfield, L.; Ma, V.P.Y.; Andargachew, R.; Galior, K.; Liu, Z.; Evavold, B.; Salaita, K. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl. Acad. Sci. USA, 2016, 113(20), 5610-5615.
[http://dx.doi.org/10.1073/pnas.1600163113] [PMID: 27140637]
[26]
Nordenfelt, P.; Elliott, H.L.; Springer, T.A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun., 2016, 7, 13119.
[http://dx.doi.org/10.1038/ncomms13119] [PMID: 27721490]
[27]
Drabik, D.; Gavutis, M.; Valiokas, R.N.; Ulčinas, A.R. Determination of the Mechanical Properties of Model Lipid Bilayers Using Atomic Force Microscopy Indentation. Langmuir, 2020, 36(44), 13251-13262.
[http://dx.doi.org/10.1021/acs.langmuir.0c02181] [PMID: 33125251]
[28]
Hartmann, B.; Marchi, G.; Alberton, P.; Farkas, Z.; Aszodi, A.; Roths, J.; Clausen-Schaumann, H. Early Detection of Cartilage Degeneration: A Comparison of Histology, Fiber Bragg Grating-Based Micro-Indentation, and Atomic Force Microscopy-Based Nano-Indentation. Int. J. Mol. Sci., 2020, 21(19), E7384.
[http://dx.doi.org/10.3390/ijms21197384] [PMID: 33036285]
[29]
Laskowski, P.R.; Pfreundschuh, M.; Stauffer, M.; Ucurum, Z.; Fotiadis, D.; Müller, D.J. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS Nano, 2017, 11(8), 8292-8301.
[http://dx.doi.org/10.1021/acsnano.7b03456] [PMID: 28745869]
[30]
Shi, Y.; Cai, M.; Zhou, L.; Wang, H. The structure and function of cell membranes studied by atomic force microscopy. Semin. Cell Dev. Biol., 2018, 73, 31-44.
[http://dx.doi.org/10.1016/j.semcdb.2017.07.012] [PMID: 28723581]
[31]
Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.; Aebi, U.; Bentires-Alj, M.; Lim, R.Y.H.; Schoenenberger, C.A. The nanomechanical signature of breast cancer. Nat. Nanotechnol., 2012, 7(11), 757-765.
[http://dx.doi.org/10.1038/nnano.2012.167] [PMID: 23085644]
[32]
Laklai, H.; Miroshnikova, Y.A.; Pickup, M.W.; Collisson, E.A.; Kim, G.E.; Barrett, A.S.; Hill, R.C.; Lakins, J.N.; Schlaepfer, D.D.; Mouw, J.K.; LeBleu, V.S.; Roy, N.; Novitskiy, S.V.; Johansen, J.S.; Poli, V.; Kalluri, R.; Iacobuzio-Donahue, C.A.; Wood, L.D.; Hebrok, M.; Hansen, K.; Moses, H.L.; Weaver, V.M. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med., 2016, 22(5), 497-505.
[http://dx.doi.org/10.1038/nm.4082] [PMID: 27089513]
[33]
Calvo, F.; Ege, N.; Grande-Garcia, A.; Hooper, S.; Jenkins, R.P.; Chaudhry, S.I.; Harrington, K.; Williamson, P.; Moeendarbary, E.; Charras, G.; Sahai, E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol., 2013, 15(6), 637-646.
[http://dx.doi.org/10.1038/ncb2756] [PMID: 23708000]
[34]
Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun., 2008, 374(4), 609-613.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.078] [PMID: 18656442]
[35]
van Helvert, S.; Friedl, P. Strain Stiffening of Fibrillar Collagen during Individual and Collective Cell Migration Identified by AFM Nanoindentation. ACS Appl. Mater. Interfaces, 2016, 8(34), 21946-21955.
[http://dx.doi.org/10.1021/acsami.6b01755] [PMID: 27128771]
[36]
Buckley, S.T.; Medina, C.; Davies, A.M.; Ehrhardt, C. Cytoskeletal re-arrangement in TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis. Nanomedicine (Lond.), 2012, 8(3), 355-364.
[http://dx.doi.org/10.1016/j.nano.2011.06.021] [PMID: 21756862]
[37]
Beicker, K.; O’Brien, E.T., III; Falvo, M.R.; Superfine, R. Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies. Sci. Rep., 2018, 8(1), 1504.
[http://dx.doi.org/10.1038/s41598-018-19791-3] [PMID: 29367675]
[38]
Smolyakov, G.; Thiebot, B.; Campillo, C.; Labdi, S.; Severac, C.; Pelta, J.; Dague, É. Elasticity, Adhesion, and Tether Extrusion on Breast Cancer Cells Provide a Signature of Their Invasive Potential. ACS Appl. Mater. Interfaces, 2016, 8(41), 27426-27431.
[http://dx.doi.org/10.1021/acsami.6b07698] [PMID: 27701866]
[39]
Omidvar, R.; Tafazzoli-Shadpour, M.; Shokrgozar, M.A.; Rostami, M. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: An approach for evaluating cellular invasion. J. Biomech., 2014, 47(13), 3373-3379.
[http://dx.doi.org/10.1016/j.jbiomech.2014.08.002] [PMID: 25169659]
[40]
Azadi, S.; Tafazzoli-Shadpour, M.; Omidvar, R.; Moradi, L.; Habibi-Anbouhi, M. Epidermal growth factor receptor targeting alters gene expression and restores the adhesion function of cancerous cells as measured by single cell force spectroscopy. Mol. Cell. Biochem., 2016, 423(1-2), 129-139.
[http://dx.doi.org/10.1007/s11010-016-2831-x] [PMID: 27696309]
[41]
Malek-Zietek, K.E.; Targosz-Korecka, M.; Szymonski, M. The impact of hyperglycemia on adhesion between endothelial and cancer cells revealed by single-cell force spectroscopy. J. Mol. Recognit., 2017, 30(9), e2628.
[http://dx.doi.org/10.1002/jmr.2628] [PMID: 28374551]
[42]
Hsu, Y.T.; Osmulski, P.; Wang, Y.; Huang, Y.W.; Liu, L.; Ruan, J.; Jin, V.X.; Kirma, N.B.; Gaczynska, M.E.; Huang, T.H.M. EpCAM-Regulated Transcription Exerts Influences on Nanomechanical Properties of Endometrial Cancer Cells That Promote Epithelial-to-Mesenchymal Transition. Cancer Res., 2016, 76(21), 6171-6182.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0752] [PMID: 27569206]
[43]
Arbore, C.; Perego, L.; Sergides, M.; Capitanio, M. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev., 2019, 11(5), 765-782.
[http://dx.doi.org/10.1007/s12551-019-00599-y] [PMID: 31612379]
[44]
Shergill, B.; Meloty-Kapella, L.; Musse, A.A.; Weinmaster, G.; Botvinick, E. Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev. Cell, 2012, 22(6), 1313-1320.
[http://dx.doi.org/10.1016/j.devcel.2012.04.007] [PMID: 22658935]
[45]
Lee, W.M.; Reece, P.J.; Marchington, R.F.; Metzger, N.K.; Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc., 2007, 2(12), 3226-3238.
[http://dx.doi.org/10.1038/nprot.2007.446] [PMID: 18079723]
[46]
Jiang, G.; Giannone, G.; Critchley, D.R.; Fukumoto, E.; Sheetz, M.P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature, 2003, 424(6946), 334-337.
[http://dx.doi.org/10.1038/nature01805] [PMID: 12867986]
[47]
Meloty-Kapella, L.; Shergill, B.; Kuon, J.; Botvinick, E.; Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell, 2012, 22(6), 1299-1312.
[http://dx.doi.org/10.1016/j.devcel.2012.04.005] [PMID: 22658936]
[48]
Arya, M.; Anvari, B.; Romo, G.M.; Cruz, M.A.; Dong, J.F.; McIntire, L.V.; Moake, J.L.; López, J.A. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood, 2002, 99(11), 3971-3977.
[http://dx.doi.org/10.1182/blood-2001-11-0060] [PMID: 12010796]
[49]
Capitanio, M. Optical tweezers.An introduction to Single Molecule Biophysics; Lyubchenko, Y. L., Ed.; CRC Press, Taylor & Francis group, 2017, pp. 141-196.
[http://dx.doi.org/10.1201/b22505-5]
[50]
Fischer, M.; Richardson, A.C.; Reihani, S.N.S.; Oddershede, L.B.; Berg-Sørensen, K. Active-passive calibration of optical tweezers in viscoelastic media. Rev. Sci. Instrum., 2010, 81(1), 015103.
[http://dx.doi.org/10.1063/1.3280222] [PMID: 20113125]
[51]
Blehm, B.H.; Schroer, T.A.; Trybus, K.M.; Chemla, Y.R.; Selvin, P.R. In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3381-3386.
[http://dx.doi.org/10.1073/pnas.1219961110] [PMID: 23404705]
[52]
Hendricks, A.G.; Holzbaur, E.L.F.; Goldman, Y.E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl. Acad. Sci. USA, 2012, 109(45), 18447-18452.
[http://dx.doi.org/10.1073/pnas.1215462109] [PMID: 23091040]
[53]
Coceano, G.; Yousafzai, M.S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation. Nanotechnology, 2016, 27(6), 065102.
[http://dx.doi.org/10.1088/0957-4484/27/6/065102] [PMID: 26683826]
[54]
Yousafzai, M.S.; Ndoye, F.; Coceano, G.; Niemela, J.; Bonin, S.; Scoles, G.; Cojoc, D. Substrate-dependent cell elasticity measured by optical tweezers indentation. Opt. Lasers Eng., 2016, 76, 27-33.
[http://dx.doi.org/10.1016/j.optlaseng.2015.02.008]
[55]
Zhou, Z.L.; Hui, T.H.; Tang, B.; Ngan, A.H.W. Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method. RSC Advances, 2014, 4(17), 8453-8460.
[http://dx.doi.org/10.1039/c3ra45835k]
[56]
Falleroni, F.; Torre, V.; Cojoc, D. Cell Mechanotransduction With Piconewton Forces Applied by Optical Tweezers. Front. Cell. Neurosci., 2018, 12, 130.
[http://dx.doi.org/10.3389/fncel.2018.00130] [PMID: 29867363]
[57]
Agrawal, R.; Smart, T.; Nobre-Cardoso, J.; Richards, C.; Bhatnagar, R.; Tufail, A.; Shima, D.H.; Jones, P.; Pavesio, C. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci. Rep., 2016, 6, 15873.
[http://dx.doi.org/10.1038/srep15873] [PMID: 26976672]
[58]
Choquet, D.; Felsenfeld, D.P.; Sheetz, M.P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 1997, 88(1), 39-48.
[http://dx.doi.org/10.1016/S0092-8674(00)81856-5] [PMID: 9019403]
[59]
Schlosser, F.; Rehfeldt, F.; Schmidt, C.F. Force fluctuations in three-dimensional suspended fibroblasts. Philos. T. R. SOC. B, 2015, 370(1661), 20140028.
[60]
Schwingel, M.; Bastmeyer, M. Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers. PLoS One, 2013, 8(1), e54850.
[http://dx.doi.org/10.1371/journal.pone.0054850] [PMID: 23372781]
[61]
Strick, T.R.; Allemand, J.F.; Bensimon, D.; Croquette, V. Behavior of supercoiled DNA. Biophys. J., 1998, 74(4), 2016-2028.
[http://dx.doi.org/10.1016/S0006-3495(98)77908-1] [PMID: 9545060]
[62]
Aermes, C.; Hayn, A.; Fischer, T.; Mierke, C.T. Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices. Sci. Rep., 2020, 10(1), 13453.
[http://dx.doi.org/10.1038/s41598-020-70428-w] [PMID: 32778758]
[63]
Dahal, N.; Nowitzke, J.; Eis, A.; Popa, I. Binding-Induced Stabilization Measured on the Same Molecular Protein Substrate Using Single-Molecule Magnetic Tweezers and Heterocovalent Attachments. J. Phys. Chem. B, 2020, 124(16), 3283-3290.
[http://dx.doi.org/10.1021/acs.jpcb.0c00167] [PMID: 32097002]
[64]
Yan, J.; Skoko, D.; Marko, J.F. Near-field-magnetic-tweezer manipulation of single DNA molecules. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2004, 70(1 Pt 1), 011905.
[http://dx.doi.org/10.1103/PhysRevE.70.011905] [PMID: 15324086]
[65]
Manosas, M.; Perumal, S.K.; Croquette, V.; Benkovic, S.J. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science, 2012, 338(6111), 1217-1220.
[http://dx.doi.org/10.1126/science.1225437] [PMID: 23197534]
[66]
Min, D.; Kim, K.; Hyeon, C.; Cho, Y.H.; Shin, Y.K.; Yoon, T.Y. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun., 2013, 4, 1705.
[http://dx.doi.org/10.1038/ncomms2692] [PMID: 23591872]
[67]
Saphirstein, R.J.; Gao, Y.Z.; Jensen, M.H.; Gallant, C.M.; Vetterkind, S.; Moore, J.R.; Morgan, K.G. The focal adhesion: a regulated component of aortic stiffness. PLoS One, 2013, 8(4), e62461.
[http://dx.doi.org/10.1371/journal.pone.0062461] [PMID: 23626821]
[68]
Trinick, J. Cytoskeleton - Titin as a scaffold and spring. Curr. Biol., 1996, 6(3), 258-260.
[http://dx.doi.org/10.1016/S0960-9822(02)00472-4] [PMID: 8805236]
[69]
Yonemura, S.; Wada, Y.; Watanabe, T.; Nagafuchi, A.; Shibata, M. Alpha-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol., 2010, 12(6), 533-542.
[http://dx.doi.org/10.1038/ncb2055] [PMID: 20453849]
[70]
Yan, J.; Yao, M.; Goult, B.T.; Sheetz, M.P. Talin Dependent Mechanosensitivity of Cell Focal Adhesions. Cell. Mol. Bioeng., 2015, 8(1), 151-159.
[http://dx.doi.org/10.1007/s12195-014-0364-5] [PMID: 26097520]
[71]
Yap, A.; Liang, X.; Gomez, G. Current perspectives on cadherin-cytoskeleton interactions and dynamics. Cell Health Cytoskelet., 2015, 7, 11-24.
[http://dx.doi.org/10.2147/CHC.S76107]
[72]
Adhikari, A.S.; Chai, J.; Dunn, A.R. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc., 2011, 133(6), 1686-1689.
[http://dx.doi.org/10.1021/ja109972p] [PMID: 21247159]
[73]
Lipfert, J.; Kerssemakers, J.W.; Jager, T.; Dekker, N.H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods, 2010, 7(12), 977-980.
[http://dx.doi.org/10.1038/nmeth.1520] [PMID: 20953173]
[74]
Lipfert, J.; Wiggin, M.; Kerssemakers, J.W.; Pedaci, F.; Dekker, N.H. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat. Commun., 2011, 2, 439.
[http://dx.doi.org/10.1038/ncomms1450] [PMID: 21863006]
[75]
Janssen, X.J.; Lipfert, J.; Jager, T.; Daudey, R.; Beekman, J.; Dekker, N.H. Electromagnetic torque tweezers: A versatile approach for measurement of single-molecule twist and torque. Nano Lett., 2012, 12(7), 3634-3639.
[http://dx.doi.org/10.1021/nl301330h] [PMID: 22642488]
[76]
Zarnitsyna, V.I.; Zhu, C. Adhesion frequency assay for in situ kinetics analysis of cross-junctional molecular interactions at the cell-cell interface. J. Vis. Exp., 2011, (57), e3519.
[http://dx.doi.org/10.3791/3519] [PMID: 22083316]
[77]
Chen, Y.; Liu, B.; Ju, L.; Hong, J.; Ji, Q.; Chen, W.; Zhu, C. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J. Vis. Exp., 2015, (102), e52975.
[http://dx.doi.org/10.3791/52975] [PMID: 26274371]
[78]
Evans, E.; Ritchie, K.; Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J., 1995, 68(6), 2580-2587.
[http://dx.doi.org/10.1016/S0006-3495(95)80441-8] [PMID: 7647261]
[79]
Waugh, R.E.; Lomakina, E.B. Active site formation, not bond kinetics, limits adhesion rate between human neutrophils and immobilized vascular cell adhesion molecule 1. Biophys. J., 2009, 96(1), 268-275.
[http://dx.doi.org/10.1016/j.bpj.2008.09.009] [PMID: 19134479]
[80]
Lomakina, E.B.; Waugh, R.E. Adhesion between human neutrophils and immobilized endothelial ligand vascular cell adhesion molecule 1: Divalent ion effects. Biophys. J., 2009, 96(1), 276-284.
[http://dx.doi.org/10.1016/j.bpj.2008.10.001] [PMID: 19134480]
[81]
Chien, Y.H.; Jiang, N.; Li, F.; Zhang, F.; Zhu, C.; Leckband, D. Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J. Biol. Chem., 2008, 283(4), 1848-1856.
[http://dx.doi.org/10.1074/jbc.M708044200] [PMID: 17999960]
[82]
Chen, W.; Evans, E.A.; McEver, R.P.; Zhu, C. Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys. J., 2008, 94(2), 694-701.
[http://dx.doi.org/10.1529/biophysj.107.117895] [PMID: 17890399]
[83]
Wu, L.; Xiao, B.; Jia, X.; Zhang, Y.; Lü, S.; Chen, J.; Long, M. Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J. Biol. Chem., 2007, 282(13), 9846-9854.
[http://dx.doi.org/10.1074/jbc.M609219200] [PMID: 17267403]
[84]
Zhang, C.; Liu, J.; Jiang, X.; Haydar, N.; Zhang, C.; Shan, H.; Zhu, J. Modulation of integrin activation and signaling by α1/α1¢-helix unbending at the junction. J. Cell Sci., 2013, 126(Pt 24), 5735-5747.
[http://dx.doi.org/10.1242/jcs.137828] [PMID: 24144695]
[85]
Chen, W.; Zarnitsyna, V.I.; Sarangapani, K.K.; Huang, J.; Zhu, C. Measuring Receptor-Ligand Binding Kinetics on Cell Surfaces: From Adhesion Frequency to Thermal Fluctuation Methods. Cell. Mol. Bioeng., 2008, 1(4), 276-288.
[http://dx.doi.org/10.1007/s12195-008-0024-8] [PMID: 19890486]
[86]
Harris, A.K.; Wild, P.; Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science, 1980, 208(4440), 177-179.
[http://dx.doi.org/10.1126/science.6987736] [PMID: 6987736]
[87]
Colin-York, H.; Fritzsche, M. The future of traction force microscopy. Curr. Opin. Biomed. Eng., 2018, 5, 1-5.
[http://dx.doi.org/10.1016/j.cobme.2017.10.002]
[88]
Butler, J.P.; Tolić-Nørrelykke, I.M.; Fabry, B.; Fredberg, J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol., 2002, 282(3), C595-C605.
[http://dx.doi.org/10.1152/ajpcell.00270.2001] [PMID: 11832345]
[89]
Tan, J.L.; Tien, J.; Pirone, D.M.; Gray, D.S.; Bhadriraju, K.; Chen, C.S. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1484-1489.
[http://dx.doi.org/10.1073/pnas.0235407100] [PMID: 12552122]
[90]
Liu, Y.; Medda, R.; Liu, Z.; Galior, K.; Yehl, K.; Spatz, J.P.; Cavalcanti-Adam, E.A.; Salaita, K. Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission. Nano Lett., 2014, 14(10), 5539-5546.
[http://dx.doi.org/10.1021/nl501912g] [PMID: 25238229]
[91]
Grashoff, C.; Hoffman, B.D.; Brenner, M.D.; Zhou, R.; Parsons, M.; Yang, M.T.; McLean, M.A.; Sligar, S.G.; Chen, C.S.; Ha, T.; Schwartz, M.A. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 2010, 466(7303), 263-266.
[http://dx.doi.org/10.1038/nature09198] [PMID: 20613844]
[92]
Stabley, D.R.; Jurchenko, C.; Marshall, S.S.; Salaita, K.S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods, 2011, 9(1), 64-67.
[http://dx.doi.org/10.1038/nmeth.1747] [PMID: 22037704]
[93]
Legant, W.R.; Miller, J.S.; Blakely, B.L.; Cohen, D.M.; Genin, G.M.; Chen, C.S. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods, 2010, 7(12), 969-971.
[http://dx.doi.org/10.1038/nmeth.1531] [PMID: 21076420]
[94]
Lesman, A.; Notbohm, J.; Tirrell, D.A.; Ravichandran, G. Contractile forces regulate cell division in three-dimensional environments. J. Cell Biol., 2014, 205(2), 155-162.
[http://dx.doi.org/10.1083/jcb.201309029] [PMID: 24778310]
[95]
Jo, M.H.; Cottle, W.T.; Ha, T. Real-Time Measurement of Molecular Tension during Cell Adhesion and Migration Using Multiplexed Differential Analysis of Tension Gauge Tethers. ACS Biomater. Sci. Eng., 2019, 5(8), 3856-3863.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01216] [PMID: 33438425]
[96]
Chowdhury, F.; Li, I.T.S.; Ngo, T.T.M.; Leslie, B.J.; Kim, B.C.; Sokoloski, J.E.; Weiland, E.; Wang, X.; Chemla, Y.R.; Lohman, T.M.; Ha, T. Defining Single Molecular Forces Required for Notch Activation Using Nano Yoyo. Nano Lett., 2016, 16(6), 3892-3897.
[http://dx.doi.org/10.1021/acs.nanolett.6b01403] [PMID: 27167603]
[97]
Lee, M.K.; Park, J.; Wang, X.; Roein-Peikar, M.; Ko, E.; Qin, E.; Lee, J.; Ha, T.; Kong, H. Rupture force of cell adhesion ligand tethers modulates biological activities of a cell-laden hydrogel. Chem. Commun. (Camb.), 2016, 52(26), 4757-4760.
[http://dx.doi.org/10.1039/C6CC00036C] [PMID: 26912186]
[98]
Comstock, M.J.; Ha, T.; Chemla, Y.R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods, 2011, 8(4), 335-340.
[http://dx.doi.org/10.1038/nmeth.1574] [PMID: 21336286]
[99]
Hugel, T.; Michaelis, J.; Hetherington, C.L.; Jardine, P.J.; Grimes, S.; Walter, J.M.; Falk, W.; Anderson, D.L.; Bustamante, C. Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids. PLoS Biol., 2007, 5(3), e59.
[http://dx.doi.org/10.1371/journal.pbio.0050059] [PMID: 17311473]
[r100]
Erickson, H.P. Protein unfolding under isometric tension-what force can integrins generate, and can it unfold FNIII domains? Curr. Opin. Struct. Biol., 2017, 42, 98-105.
[http://dx.doi.org/10.1016/j.sbi.2016.12.002] [PMID: 28038331]