Current Pharmaceutical Biotechnology

Author(s): Kun-tai Li, Yong Yang and Xin Cheng*

DOI: 10.2174/1389201022666210531120935

Revealing the Promoting Effect of Betaine on Vitamin B12 Biosynthetic Pathway of Pseudomonas denitrificans by Using a Proteomics Analysis

Page: [466 - 475] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Our previous comparative metabolomics research revealed that betaine (N,N,Ntrimethylglycine, a typically essential methyl-group donor for vitamin B12 biosynthesis) had powerful promoting effect on the generation of vitamin B12 precursors and intermediates in vitamin B12-producing Pseudomonas denitrificans. However, the integral effect of betaine on the vitamin B12 biosynthetic pathway is still unclear.

Objectives: Considering the vitamin B12 biosynthetic pathway of P. denitrificans as a whole, this work aimed to reveal the biological function of betaine on the vitamin B12 biosynthetic pathway in P. denitrificans, which would sharpen and expand understanding of betaine as the methyl-group donor for vitamin B12 biosynthesis.

Materials and Methods: By using a proteomics method based on the iTRAQ technique, the present study compared and analyzed the differential expression of proteins involved in vitamin B12 biosynthetic pathway under 10 g/L betaine in addition to P. denitrificans fermentation medium.

Results: The results showed that betaine could significantly up-regulate the expression of proteins related to the vitamin B12 biosynthetic pathway, which was mainly reflected in the following three aspects: 1) the δ-aminolevulinic acid (ALA) synthase and porphobilinogen synthase that were responsible for the formation of the committed precursors for tetrapyrrole-derived macrocycle in vitamin B12 molecule; 2) the C-methylation-related enzymes (such as precorrin-4 C(11)-methyltransferase, precorrin-2 C(20)- methyltransferase, precorrin-8X methylmutase, and precorrin-6Y C5,15-methyltransferase) and methionine synthase that were crucial to the C-methylation reactions for vitamin B12 biosynthesis; 3) the latestage key enzymes (Cobaltochelatase, and Cob(I)yrinic acid a,c-diamide adenosyltransferase) that were related to cobalt chelation of vitamin B12 molecule.

Conclusion: The present study demonstrated clearly that betaine could significantly promote the expression of the integral enzymes involved in the vitamin B12 biosynthetic pathway of P. denitrificans, thus promoting vitamin B12 biosynthesis.

Keywords: Pseudomonas denitrificans, betaine, promoting effect, vitamin B12 biosynthetic pathway, differential expression of proteins, proteomics analysis.

Graphical Abstract

[1]
Randaccio, L.; Geremia, S.; Demitri, N.; Wuerges, J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules, 2010, 15(5), 3228-3259.
[http://dx.doi.org/10.3390/molecules15053228] [PMID: 20657474]
[2]
Fang, H.; Kang, J.; Zhang, D. Microbial production of vitamin B12: a review and future perspectives. Microb. Cell Fact., 2017, 16(1), 15.
[http://dx.doi.org/10.1186/s12934-017-0631-y] [PMID: 28137297]
[3]
Martens, J.H.; Barg, H.; Warren, M.J.; Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol., 2002, 58(3), 275-285.
[http://dx.doi.org/10.1007/s00253-001-0902-7] [PMID: 11935176]
[4]
Acevedo-Rocha, C.G.; Gronenberg, L.S.; Mack, M.; Commichau, F.M.; Genee, H.J. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr. Opin. Biotechnol., 2019, 56, 18-29.
[http://dx.doi.org/10.1016/j.copbio.2018.07.006] [PMID: 30138794]
[5]
Ainala, S.K.; Somasundar, A.; Park, S. Complete genome sequence of Pseudomonas denitrificans ATCC 13867. Genome Announc., 2013, 1(3), 63-96.
[http://dx.doi.org/10.1128/genomeA.00257-13] [PMID: 23723394]
[6]
Kang, Z.; Zhang, J.; Zhou, J.; Qi, Q.; Du, G.; Chen, J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol. Adv., 2012, 30(6), 1533-1542.
[http://dx.doi.org/10.1016/j.biotechadv.2012.04.003] [PMID: 22537876]
[7]
Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M.; Ścibisz, I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol., 2018, 102(2), 515-538.
[http://dx.doi.org/10.1007/s00253-017-8616-7] [PMID: 29167919]
[8]
Li, K.T.; Peng, W.F.; Zhou, J.; Wei, S.J.; Cheng, X. Establishment of beet molasses as the fermentation substrate for industrial vitamin B12 production by Pseudomonas denitrificans. J. Chem. Technol. Biotechnol., 2013, 88, 1730-1735.
[http://dx.doi.org/10.1002/jctb.4025]
[9]
Wang, Z.J.; Wang, H.Y.; Li, Y.L.; Chu, J.; Huang, M.Z.; Zhuang, Y.P.; Zhang, S.L. Improved vitamin B(12) production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour. Technol., 2010, 101(8), 2845-2852.
[http://dx.doi.org/10.1016/j.biortech.2009.10.048] [PMID: 20022743]
[10]
Li, K.T.; Liu, D.H.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B(12) by Pseudomonas denitrificans. Bioprocess Biosyst. Eng., 2008, 31(6), 605-610.
[http://dx.doi.org/10.1007/s00449-008-0209-5] [PMID: 18320234]
[11]
Li, K.T.; Liu, D.H.; Li, Y.L.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresour. Technol., 2008, 99(17), 8516-8520.
[http://dx.doi.org/10.1016/j.biortech.2008.03.023] [PMID: 18440227]
[12]
de Zwart, F.J.; Slow, S.; Payne, R.J.; Lever, M.; George, P.M.; Gerrard, J.A.; Chambers, S.T. Glycine betaine and glycine betaine analogues in common foods. Food Chem., 2003, 83, 197-204.
[http://dx.doi.org/10.1016/S0308-8146(03)00063-3]
[13]
Felitsky, D.J.; Cannon, J.G.; Capp, M.W.; Hong, J.; Van Wynsberghe, A.W.; Anderson, C.F.; Record, M.T., Jr The exclusion of glycine betaine from anionic biopolymer surface: why glycine betaine is an effective osmoprotectant but also a compatible solute. Biochemistry, 2004, 43(46), 14732-14743.
[http://dx.doi.org/10.1021/bi049115w] [PMID: 15544344]
[14]
Kim, S.K.; Choi, K.H.; Kim, Y.C. Effect of acute betaine administration on hepatic metabolism of S-amino acids in rats and mice. Biochem. Pharmacol., 2003, 65(9), 1565-1574.
[http://dx.doi.org/10.1016/S0006-2952(03)00115-1] [PMID: 12732369]
[15]
Demain, A.L.; Daniels, H.J.; Schnable, L.; White, R.F. Specificity of the stimulatory effect of betaine on the vitamin B12 fermentation. Nature, 1968, 220(5174), 1324-1325.
[http://dx.doi.org/10.1038/2201324a0] [PMID: 5701348]
[16]
Demain, A.L.; White, R.F. Porphyrin overproduction by Pseudomonas denitrificans: essentiality of betaine and stimulation by ethionine. J. Bacteriol., 1971, 107(2), 456-460.
[http://dx.doi.org/10.1128/JB.107.2.456-460.1971] [PMID: 5113597]
[17]
Xia, W.; Peng, W.F.; Chen, W.; Li, K.T. Interactive performances of betaine on the metabolic processes of Pseudomonas denitrificans. J. Ind. Microbiol. Biotechnol., 2015, 42(2), 273-278.
[http://dx.doi.org/10.1007/s10295-014-1562-9] [PMID: 25502424]
[18]
Dutt, M.J.; Lee, K.H. Proteomic analysis. Curr. Opin. Biotechnol., 2000, 11(2), 176-179.
[http://dx.doi.org/10.1016/S0958-1669(00)00078-1] [PMID: 10753759]
[19]
Zhang, Y.; Liu, J.Z.; Huang, J.S.; Mao, Z.W. Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J. Biotechnol., 2010, 148(2-3), 139-143.
[http://dx.doi.org/10.1016/j.jbiotec.2010.05.008] [PMID: 20553774]
[20]
Zhou, X.; Xing, X.; Hou, J.; Liu, J. Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane. PLoS One, 2017, 12(6)e0179842
[http://dx.doi.org/10.1371/journal.pone.0179842] [PMID: 28662172]
[21]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[22]
Xie, H.; Yang, D.H.; Yao, H.; Bai, G.; Zhang, Y.H.; Xiao, B.G. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem. Biophys. Res. Commun., 2016, 469(3), 768-775.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.133] [PMID: 26692494]
[23]
Zhong, Y.; Cheng, C.Z.; Jiang, N.H.; Jiang, B.; Zhang, Y.Y.; Wu, B.; Hu, M.L.; Zeng, J.W.; Yan, H.X.; Yi, G.J.; Zhong, G.Y. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One, 2015, 10(6)e0126973
[http://dx.doi.org/10.1371/journal.pone.0126973] [PMID: 26046530]
[24]
Huang, Z.; Wang, H.; Huang, H.; Xia, L.; Chen, C.; Qiu, X.; Chen, J.; Chen, S.; Liang, W.; Huang, M.; Lang, L.; Zheng, Q.; Wu, B.; Lai, G. iTRAQ-based proteomic profiling of human serum reveals down-regulation of platelet basic protein and apolipoprotein B100 in patients with hematotoxicity induced by chronic occupational benzene exposure. Toxicology, 2012, 291(1-3), 56-64.
[http://dx.doi.org/10.1016/j.tox.2011.10.023] [PMID: 22085608]
[25]
Karp, N.A.; Huber, W.; Sadowski, P.G.; Charles, P.D.; Hester, S.V.; Lilley, K.S. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteomics, 2010, 9(9), 1885-1897.
[http://dx.doi.org/10.1074/mcp.M900628-MCP200] [PMID: 20382981]
[26]
Marzinke, M.A.; Choi, C.H.; Chen, L.; Shih, IeM.; Chan, D.W.; Zhang, H. Proteomic analysis of temporally stimulated ovarian cancer cells for biomarker discovery. Mol. Cell. Proteomics, 2013, 12(2), 356-368.
[http://dx.doi.org/10.1074/mcp.M112.019521] [PMID: 23172893]
[27]
Su, L.X.; Zhou, L.S.; Liu, J.W.; Cen, Z.; Wu, C.Y.; Wang, T.; Zhou, T.; Chang, D.; Guo, Y.H.; Fang, X.Q.; Wang, J.F.; Li, T.Z.; Yin, S.J.; Dai, W.K.; Zhou, Y.P.; Zhao, J.; Fang, C.X.; Yang, R.F.; Liu, C.T. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight. Adv. Space Res., 2014, 53, 18-29.
[http://dx.doi.org/10.1016/j.asr.2013.08.001]
[28]
Tian, X.; Chen, L.; Wang, J.; Qiao, J.; Zhang, W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J. Proteomics, 2013, 78, 326-345.
[http://dx.doi.org/10.1016/j.jprot.2012.10.002] [PMID: 23079071]
[29]
Wang, J.; Yu, L.; Huang, X.; Wang, Y.; Zhao, J. Comparative proteome analysis of saccular intracranial aneurysms with iTRAQ quantitative proteomics. J. Proteomics, 2016, 130, 120-128.
[http://dx.doi.org/10.1016/j.jprot.2015.09.014] [PMID: 26385002]
[30]
Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 2014, 42(Database issue), D199-D205.
[http://dx.doi.org/10.1093/nar/gkt1076] [PMID: 24214961]
[31]
Kusel, J.P.; Fa, Y.H.; Demain, A.L. Betaine stimulation of vitamin B12 biosynthesis in Pseudomonas denitrificans may be mediated by an increase in activity of δ-aminolaevulinic acid synthase. Microbiology, 1984, 130, 835-841.
[http://dx.doi.org/10.1099/00221287-130-4-835]
[32]
Warren, M.J.; Raux, E.; Schubert, H.L.; Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep., 2002, 19(4), 390-412.
[http://dx.doi.org/10.1039/b108967f] [PMID: 12195810]
[33]
Mulligan, J.D.; Laurie, T.J.; Garrow, T.A. An assay for betaine-homocysteine methyltransferase activity based on the microbiological detection of methionine. J. Nutr. Biochem., 1998, 9, 351-354.
[http://dx.doi.org/10.1016/S0955-2863(98)00025-4]
[34]
White, R.F.; Kaplan, L.; Birnbaum, J. Betaine-homocysteine transmethylase in Pseudomonas denitrificans, a vitamin B 12 overproducer. J. Bacteriol., 1973, 113(1), 218-223.
[http://dx.doi.org/10.1128/JB.113.1.218-223.1973] [PMID: 4688138]