[3]
Tripathi, S.; Sanjeevi, R.; Anuradha, J.; Chauhan, D.S.; Rathoure, A.K. Nano-bioremediation: nanotechnology and bioremediation; Biostimulation Remediation Technologies for Groundwater Contaminants, 2018, pp. 202-219.
[9]
Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, H. A review on green silver nanoparticles based on plants: synthesis, potential applications and eco-friendly approach. Int. Food Res. J., 2016, 23, 446-463.
[12]
Reverberi, A.P.; Vocciante, M.; Lunghi, E.; Pietrelli, L.; Fabiano, B. New trends in the synthesis of nanoparticles by green methods. Chem. Eng. Trans., 2017, 61, 667-672.
[19]
Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. Interface Science and Technology, 2019, 28, 199-322.
[20]
Li, Y.; Chen, S.M. The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int. J. Electrochem. Sci., 2012, 7, 2175-2187.
[22]
Rao, L.M.; Savithramma, N. Biological synthesis of silver nanoparticles using svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J. Pharm. Sci. Res., 2011, 3, 1117-1121.
[31]
Popov, K.I.; Oshchepkov, M.S.; Shabanova, N.A.; Dikareva, Y.M.; Larchenko, V.E.; Koltinova, E.Y. DLS study of a phosphonate induced gypsum scale inhibition mechanism using indifferent nanodispersions as the standards for light scattering intensity comparison. Int. J. Corros. Scale Inhib., 2018, 7, 9-24.
[33]
Roy, S.; Das, T. Plant mediated green synthesis of silver nanoparticles-a review. Int. J. Plant Biol. Res., 2015, 3, 1044-1055.
[47]
Stokes, D.J. Principles and practice of variable pressure/environmental scanning electron microscopy; VP-ESEM, 2008.
[51]
Joshi, M.; Bhattacharyya, A.; Ali, S.W. Characterization techniques for nanotechnology applications in textiles. Indian J. Fibre Text. Res., 2008, 33, 304-317.
[54]
Tomonaga, K.; Takada, M.; Ichihara, T.; Kuroda, Y. Apoptosis in helicobacter pylori gastritis and residual gastritis after distal gastrectomy; , 2003, Vol. 50, .
[55]
Tanaka, N. Present Status and Future Prospects of Spherical Aberration
Corrected TEM/STEM for Study of Nanomaterials. Science
and Technology of Advanced Materials, 2008, Vol. 9,
[65]
Beckhoff, B. Kanngießer, habil. B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Kanngießer, habil. B.; Langhoff, N.; Wedell, R.; Wolff, H. Eds.; Springer Berlin Heidelberg:; Berlin, Heidelberg, 2006.
[74]
Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.S.; Ferraz, C.P. Role and fate of capping ligands in colloidally prepared metal nanoparticle. Catalysts, 2018, 47, 5889-5915.
[80]
Gautam, S.P.; Gupta, A.K.; Agrawal, S.; Sureka, S. Spectroscopic characterization of dendrimers. Int. J. Pharm. Pharm. Sci., 2012, 4, 77-80.
[106]
Louro, H.; Borges, T.; Silva, M.J. Manufactured nanomaterials: new challenges for public health. Rev. Port. Saude Publica, 2013, 31, 145-157.
[108]
Linkov, I.; Satterstrom, F.K.; Corey, L.M. Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine Nanotechnology. Biol. Med., 2008, 4, 167-171.
[119]
Gulati, S.; Sachdeva, M.; Bhasin, K.K. Capping Agents in Nanoparticle
Synthesis: Surfactant and Solvent System. AIP Conference
Proceedings, 2018, Vol. 1953, 030214,
[144]
Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green Synthesis of Silver Nanoparticles Using Lippia Nodiflora Aerial Extract and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Effects. Resour. Technol., 2017, 3, 506-515.
[150]
Taube, P.S.; Sousa Dourado, G.; Valentim Gomes, V.; Vieira Maia, M.T.; Abinader Vasconcelos, A.; Santana da Costa, K.; do Carmo Faial, K.; Santana Carneiro, B.; Trindade Vasconcelos, N. Junior
determination of macro and trace element levels in honey from the
lower amazonian region, Brazil. Brazilian J. Anal. Chem., 2019., 6,
[164]
Sharma, R.; Bisen, D.P.; Shukla, U.; Sharma, B.G. X-Ray Diffraction: A Powerful Method of Characterizing Nanomaterials. Recent Res. Sci. Technol., 2012, 4, 77-79.
[200]
Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation; Sustainable Chemistry and Pharmacy, 2020, p. 15.
[207]
Madadi, Z.; Soltanieh, M.; Bagheri Lotfabad, T.; Nazari, S.N. Green Synthesis of Titanium Dioxide Nanoparticles with Glycyrrhiza Glabra and Their Photocatalytic Activity. Asian J. Green Chem., 2019, 4, 256-268.
[234]
Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S.; Imran, M. A Green Method for the Synthesis of Copper Nanoparticles Using L-Ascorbic Acid. Rev. Mat., 2014, 19, 197-203.
[243]
Lu, L.; Li, Y.; Liang, Y.; Chen, Q.; Lu, Q. One-Pot Green Synthesis of Carboxylated Cellulose Nanocrystals through Oxidative Degradation of Bamboo Pulp. BioResources, 2020, 15, 49-61.
[248]
Latha, D.; Prabu, P.; Munusamy, S.; Sampurnam, S.; Arulvasu, C.; Narayanan, V. Evaluation of Catalytic Activity of Green Synthesized Bimetallic Nanoparticle FromJusticiaadhatoda. In Materials Today. Proceedings, 2019, 14, 569-573.
[268]
Durán, N.; Rolim, W.R.; Durán, M.; Fávaro, W.J.; Seabra, A.B. Nanotoxicology of Silver Nanoparticles: Toxicity in Aninals and Humans. Quim. Nova, 2019, 42, 206-213.
[289]
Ma, X.; Quah, B. Effects of Surface Charge on the Fate and Phytotoxicity
of Gold Nanoparticles to Phaseolus Vulgaris. J. Food
Chem. Nanotechnol., 2016, 2,