Probiotics for the Chemoprotective Role against the Toxic Effect of Cancer Chemotherapy

Page: [654 - 667] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Chemo- and radiation therapy-based clinical management of different types of cancers is associated with toxicity and several side effects. Therefore, there is always an unmet need to explore agents that reduce such risk factors. Among these, natural products have attracted much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer.

Methods: Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics.

Results: Apart from excellent anti-cancer abilities, probiotics alleviate toxicity & side effects of chemotherapeutics, with a high degree of safety and efficiency.

Conclusion: Preclinical and clinical evidence suggests that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.

Keywords: Anticancer, probiotics, radiation, antioxidant, cancer, chemotherapy, pre-biotics, post-biotics, Bifidobacterium, Lactobacillus, gut microbiota.

Graphical Abstract

[1]
Ezema, C. Probiotics in animal production: A review. J. Vet. Med. Anim. Health, 2013, 5(11), 308-316.
[2]
Vergin, F. Anti and probiotics. Hippokrates, 1954, 25(4), 116-119.
[PMID: 13174124]
[3]
Fuller, R. Probiotics for farm animals. In: Probiotics. A critical Review; Tannock, G.W., Ed.; Microsoft Academics, 1999, pp. 15-22.
[4]
Gordon, S. Elie Metchnikoff: Father of natural immunity. Eur. J. Immunol., 2008, 38(12), 3257-3264.
[http://dx.doi.org/10.1002/eji.200838855] [PMID: 19039772]
[5]
Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One, 2012, 7(4), e349389
[http://dx.doi.org/10.1371/journal.pone.0034938]
[6]
Tsuda, H.; Miyamoto, T. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. Food Sci. Technol. Res., 2010, 16(1), 87-92.
[http://dx.doi.org/10.3136/fstr.16.87]
[7]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[8]
Raman, S.; Mahmood, S.; Hilles, A.R.; Javed, M.N.; Azmana, M. Polymeric nanoparticles for brain drug delivery-a review. Curr. Drug Metab., 2020, 21(9), 649-660.
[9]
Rastall, R.A.; Gibson, G.R. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol., 2015, 32, 42-46.
[http://dx.doi.org/10.1016/j.copbio.2014.11.002] [PMID: 25448231]
[10]
Thomas, L.V. Probiotics-the journey continues. Int. J. Dairy Technol., 2016, 69(4), 469-480.
[http://dx.doi.org/10.1111/1471-0307.12354]
[11]
Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; Vaughan, E. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol., 2016, 37, 1-7.
[12]
Tanaka, R.; Takayama, H.; Morotomi, M.; Kuroshima, T.; Ueyama, S.; Matsumoto, K.; Kuroda, A.; Mutai, M. Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobact. Microflora, 1983, 2(1), 17-24.
[13]
Pena, A.S. Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Rev. Esp. Enferm. Dig., 2007, 99(11), 653-658.
[PMID: 21484167]
[14]
Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate metabolism in bifidobacteria. Genes Nutr., 2011, 6(3), 285-306.
[PMID: 21484167]
[15]
Mohanta, B.C.; Javed, M.N.; Hasnain, M.S.; Nayak, A.K. Polyelectrolyte complexes of alginate for controlling drug release In: Alginates in Drug Delivery; ; Academic press, . , 2020, 12, pp. 297-321.
[16]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Sharma, S.; Barkat, M.A. Harshita; Alam, M.S.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur. J. Pharm. Sci., 2020, 146, 105261
[http://dx.doi.org/10.1016/j.ejps.2020.105261] [PMID: 32061655]
[17]
Ouwehand, A.C.; Tiihonen, K.; Mäkivuokko, H. Synbiotics: Combining the benefits of pre and probiotics; Funct. Dairy Products, 2007, pp. 195-213.
[18]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[19]
Aslam, M.; Javed, M.N.; Deeb, H.H.; Nicola, M.K.; Sabir, A.M.; Hasnain, M.S.; Alam, M.S.; Waziri, A. Lipid carriers mediated targeted delivery of nutraceuticals: Challenges, role of blood brain barrier and promises of nanotechnology based ap-proaches in neuronal disorders. Curr. Drug Metab., 2020. [A head of print
[20]
Javed, M.N.; Dahiya, E.S.; Ibrahim, A.M.; Alam, M.S.; Khan, F.A.; Pottoo, F.H. Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs. In: Nanophytomedicine; Springer: Singapore, 2020, pp. 151-172.
[http://dx.doi.org/10.1007/978-981-15-4909-0_9]
[21]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[22]
Martinsson, M.L.; Wiese, M.; Nielsen, D.S.; van Zanten, G.C. In vitro screening and evaluation of synbiotics In: Prebiotics and Synbiotics ; Academic Press . , 2016, 33, pp. 477-486.
[23]
Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2010, 2(6), 611-625.
[http://dx.doi.org/10.3390/nu2060611] [PMID: 22254045]
[24]
Capela, P.; Hay, T.K.; Shah, N.P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int., 2006, 39(2), 203-211.
[http://dx.doi.org/10.1016/j.foodres.2005.07.007]
[25]
Patel, R.M.; Denning, P.W. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin. Perinatol., 2013, 40(1), 11-25.
[http://dx.doi.org/10.1016/j.clp.2012.12.002] [PMID: 23415261]
[26]
Ooi, M.F.; Mazlan, N.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Rahim, R.A.; Arrif, A. Effects of carbon and nitrogen sources on bacteriocininhibitory activity of postbiotic metabolites produced by Lactobacillus plantarum I-UL4. Malays. J. Microbiol., 2015, 11(2), 176-184.
[27]
Giorgetti, G.M.; Brandimarte, G.; Fabiocchi, F.; Ricci, S.; Flamini, P.; Sandri, G.; Trotta, M.C.; Elisei, W.; Penna, A.; Lecca, P.G.; Picchio, M. Interactions between innate immunity, microbiota, and probiotics. J. Immunol. Res., 2015, 2015, 501361
[28]
Islam, S.U. Clinical uses of probiotics. Medicine, 2016, 95(5), e2658
[http://dx.doi.org/10.1097/MD.0000000000002658]
[29]
Lee, Y.K. Selection and maintenance of probiotic microorganisms. Handbook of probiotics and prebiotics; Wiley-VCH: Weinheim, Germany, 2009, pp. 177-187.
[30]
Mountzouris, K.C.; Tsirtsikos, P.; Kalamara, E.; Nitsch, S.; Schatzmayr, G.; Fegeros, K. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci., 2007, 86(2), 309-317.
[http://dx.doi.org/10.1093/ps/86.2.309] [PMID: 17234844]
[31]
Kareem, K.Y.; Hooi Ling, F.; Chwen, T.L.; Foong, M.O.; Asmara, A.S. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog., 2014, 6(1), 23.
[http://dx.doi.org/10.1186/1757-4749-6-23] [PMID: 24991236]
[32]
Venugopalan, V.; Shriner, K.A.; Wong-Beringer, A. Regulatory oversight and safety of probiotic use. Emerg. Infect. Dis., 2010, 16(11), 1661-1665.
[http://dx.doi.org/10.3201/eid1611.100574] [PMID: 21029521]
[33]
Dixit, Y.; Wagle, A.; Vakil, B. Patents in the field of probiotics, prebiotics, synbiotics: A review. J. Food: Microbiol. Saf. Hygiene, 2016, 1(2), 1-13.
[http://dx.doi.org/10.4172/2476-2059.1000111]
[34]
Grill, J.P.; Cayuela, C.; Antoine, J.M.; Schneider, F. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett. Appl. Microbiol., 2000, 31(2), 154-156.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00792.x] [PMID: 10972719]
[35]
Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei group: History and health related applications. Front. Microbiol., 2018, 9.
[http://dx.doi.org/10.3389/fmicb.2018.02107]
[36]
Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei group: History and health related applications. Front. Microbiol., 2018, 9, 2107.
[http://dx.doi.org/10.3389/fmicb.2018.02107] [PMID: 30298055]
[37]
Koga, Y.; Ohtsu, T.; Kimura, K.; Asami, Y. Probiotic L. gasseri strain (LG21) for the upper gastrointestinal tract acting through improvement of indigenous microbiota. BMJ Open Gastroenterol., 2019, 6(1), e000314
[http://dx.doi.org/10.1136/bmjgast-2019-000314] [PMID: 31523442]
[38]
Taverniti, V.; Guglielmetti, S. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol., 2012, 3, 392.
[http://dx.doi.org/10.3389/fmicb.2012.00392] [PMID: 23181058]
[39]
Yamano, T.; Tanida, M.; Niijima, A.; Maeda, K.; Okumura, N.; Fukushima, Y.; Nagai, K. Effects of the probiotic strain Lactobacillus johnsonii strain La1 on autonomic nerves and blood glucose in rats. Life Sci., 2006, 79(20), 1963-1967.
[http://dx.doi.org/10.1016/j.lfs.2006.06.038] [PMID: 16893554]
[40]
Weese, J.S.; Rousseau, J. Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J. Am. Vet. Med. Assoc., 2005, 226(12), 2031-2041.
[PMID: 26858567]
[41]
Arasu, M.V.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C.; Srigopalram, S. In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi J. Biol. Sci., 2005, 23(1), 6-10.
[PMID: 26858567]
[42]
Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Res. Int., 2018, 2018, 9361614
[http://dx.doi.org/10.1155/2018/9361614] [PMID: 29998137]
[43]
Livingston, M.; Loach, D.; Wilson, M.; Tannock, G.W.; Baird, M. Gut commensal Lactobacillus reuteri 100-23 stimulates an immunoregulatory response. Immunol. Cell Biol., 2010, 88(1), 99-102.
[http://dx.doi.org/10.1038/icb.2009.71] [PMID: 19786979]
[44]
Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol., 2018, 9, 757.
[http://dx.doi.org/10.3389/fmicb.2018.00757] [PMID: 29725324]
[45]
Westerik, N.; Kort, R.; Sybesma, W.; Reid, G. Lactobacillus rhamnosus probiotic food as a tool for empowerment across the value chain in Africa. Front. Microbiol., 1501, 2018(9), 1-6.
[PMID: 30042747]
[46]
Segers, M.E.; Lebeer, S. Towards a better understanding of Lactobacillus rhamnosus GG-host interactionsIn: Microbial cell factories; In: BioMed Central; , 2014; Vol. 13, pp. (1)1-16.
[47]
Jang, H.M.; Lee, K.E.; Kim, D.H. The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients, 2019, 11(4), 819.
[http://dx.doi.org/10.3390/nu11040819] [PMID: 30979031]
[48]
Guo, Y.; Xie, J.P.; Deng, K.; Li, X.; Yuan, Y.; Xuan, Q.; Xie, J.; He, X.M.; Wang, Q.; Li, J.J.; Luo, H.R. Prophylactic effects of Bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: A role of the gut microbiota-inflammation axis. Front. Behav. Neurosci., 2019, 13, 126.
[http://dx.doi.org/10.3389/fnbeh.2019.00126] [PMID: 31275120]
[49]
Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12.(®) Microorganisms, 2014, 2(2), 92-110.
[http://dx.doi.org/10.3390/microorganisms2020092] [PMID: 27682233]
[50]
Yakoob, R.; Pradeep, B.V. Bifidobacterium sp. as probiotic agent-roles and applications. J. Pure Appl. Microbiol., 2019, 13(3), 1407-1417.
[http://dx.doi.org/10.22207/JPAM.13.3.11]
[51]
Ku, S.; Park, M.S.; Ji, G.E.; You, H.J. Review on Bifidobacterium bifidum BGN4: Functionality and nutraceutical applications as a probiotic microorganism. Int. J. Mol. Sci., 2016, 17(9), 1544.
[http://dx.doi.org/10.3390/ijms17091544] [PMID: 27649150]
[52]
Cionci, N.B.; Baffoni, L.; Gaggìa, F.; Di Gioia, D. Therapeutic microbiology: The role of Bifidobacterium breve as food supplement for the prevention/treatment of paediatric diseases. Nutrients, 2018, 10(11), 1723.
[http://dx.doi.org/10.3390/nu10111723]
[53]
Javed, N.H.; Alsahly, M.B.; Khubchandani, J. Oral feeding of probiotic Bifidobacterium infantis: Colonic morphological changes in rat model of TNBS-induced colitis. Scientifica (Cairo), 2016, 2016, 9572596
[http://dx.doi.org/10.1155/2016/9572596] [PMID: 27127686]
[54]
You, J.; Yaqoob, P. Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum, B. infantis CCUG 52486. FEMS Immunol. Med. Microbiol., 2012, 66(3), 353-362.
[http://dx.doi.org/10.1111/j.1574-695X.2012.01014.x] [PMID: 22882710]
[55]
Carbuhn, A.F.; Reynolds, S.M.; Campbell, C.W.; Bradford, L.A.; Deckert, J.A.; Kreutzer, A.; Fry, A.C. Effects of probiotic (Bifidobacterium longum 35624) supplementation on exercise performance, immune modulation, and cognitive outlook in Division I female swimmers. Sports (Basel), 2018, 6(4), 116.
[http://dx.doi.org/10.3390/sports6040116] [PMID: 30308984]
[56]
Diop, L.; Guillou, S.; Durand, H. Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: A double-blind, placebo-controlled, randomized trial. Nutr. Res., 2008, 28(1), 1-5.
[http://dx.doi.org/10.1016/j.nutres.2007.10.001] [PMID: 19083380]
[57]
Suda, Y.; Villena, J.; Takahashi, Y.; Hosoya, S.; Tomosada, Y.; Tsukida, K.; Shimazu, T.; Aso, H.; Tohno, M.; Ishida, M.; Makino, S.; Ikegami, S.; Kitazawa, H. Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs. BMC Immunol., 2014, 15(1), 24.
[http://dx.doi.org/10.1186/1471-2172-15-24] [PMID: 24943108]
[58]
Gaucher, F.; Kponouglo, K.; Rabah, H.; Bonnassie, S.; Ossemond, J.; Pottier, S.; Jardin, J.; Briard-Bion, V.; Marchand, P.; Blanc, P.; Jeantet, R.; Jan, G. Propionibacterium freudenreichii 1 CIRM-BIA 129 osmoadaptation coupled to acid-adaptation increases its viability during freeze-drying. Front. Microbiol., 2019, 10, 2324.
[http://dx.doi.org/10.3389/fmicb.2019.02324] [PMID: 31681198]
[59]
Wensinck, F.; Van de Merwe, J.P. Serum agglutinins to Eubacterium and Peptostreptococcus species in Crohn’s and other diseases. J. Hyg. (Lond.), 1981, 87(1), 13-24.
[http://dx.doi.org/10.1017/S0022172400069199] [PMID: 7019318]
[60]
Cao, J.; Yu, Z.; Liu, W.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J. Funct. Foods, 2020, 64.
[http://dx.doi.org/10.1016/j.jff.2019.103643]
[61]
Rhayat, L.; Maresca, M.; Nicoletti, C.; Perrier, J.; Brinch, K.S.; Christian, S.; Devillard, E.; Eckhardt, E. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front. Immunol., 2019, 10.
[http://dx.doi.org/10.3389/fimmu.2019.00564]
[62]
Ruiu, L. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects, 2013, 4(3), 476-492.
[http://dx.doi.org/10.3390/insects4030476] [PMID: 26462431]
[63]
Liu, M.; Zhang, X.; Hao, Y.; Ding, J.; Shen, J.; Xue, Z.; Qi, W.; Li, Z.; Song, Y.; Zhang, T.; Wang, N. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: In vivo and in vitro evidence. Food Funct., 2019, 10(2), 1132-1145.
[http://dx.doi.org/10.1039/C8FO02301H] [PMID: 30724927]
[64]
Vanderpool, C.; Yan, F.; Polk, D.B. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis., 2008, 14(11), 1585-1596.
[http://dx.doi.org/10.1002/ibd.20525] [PMID: 18623173]
[65]
Luerce, T.D.; Gomes-Santos, A.C.; Rocha, C.S.; Moreira, T.G.; Cruz, D.N.; Lemos, L.; Sousa, A.L.; Pereira, V.B.; de Azevedo, M.; Moraes, K.; Cara, D.C.; LeBlanc, J.G.; Azevedo, V.; Faria, A.M.C.; Miyoshi, A. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog., 2014, 6(1), 33.
[http://dx.doi.org/10.1186/1757-4749-6-33] [PMID: 25110521]
[66]
Yan, F.; Polk, D.B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem., 2002, 277(52), 50959-50965.
[http://dx.doi.org/10.1074/jbc.M207050200] [PMID: 12393915]
[67]
Rangel-Colmenero, B.R.; Gomez-Gutierrez, J.G.; Villatoro-Hernández, J.; Zavala-Flores, L.M.; Quistián-Martínez, D.; Rojas-Martínez, A.; Arce-Mendoza, A.Y.; Guzmán-López, S.; Montes-de-Oca-Luna, R.; Saucedo-Cárdenas, O. Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L. lactis expressing HPV-16 E7. Viral Immunol., 2014, 27(9), 463-467.
[http://dx.doi.org/10.1089/vim.2014.0055] [PMID: 25216057]
[68]
Cortes-Perez, N.G.; Bermúdez-Humarán, L.G.; Le Loir, Y.; Rodriguez-Padilla, C.; Gruss, A.; Saucedo-Cárdenas, O.; Langella, P.; Montes-de-Oca-Luna, R. Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol. Lett., 2003, 229(1), 37-42.
[http://dx.doi.org/10.1016/S0378-1097(03)00778-X] [PMID: 14659540]
[69]
Divyashri, G.; Krishna, G.; Prapulla, S.G. Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: In vitro and in vivo evidence. J. Med. Microbiol., 2015, 64(12), 1527-1540.
[http://dx.doi.org/10.1099/jmm.0.000184] [PMID: 26450608]
[70]
Abdurasulova, I.N.; Matsulevich, A.V.; Tarasova, E.A.; Kudryavtsev, I.V.; Serebrjakova, M.K.; Ermolenko, E.I.; Bisaga, G.N.; Klimenko, V.M.; Suvorov, A.N. Enterococcus faecium strain L-3 and glatiramer acetate ameliorate experimental allergic encephalomyelitis in rats by affecting different populations of immune cells. Benef. Microbes, 2016, 7(5), 719-729.
[http://dx.doi.org/10.3920/BM2016.0018] [PMID: 27633171]
[71]
Abbasiliasi, S.; Tan, J.S.; Bashokouh, F.; Ibrahim, T.A.; Mustafa, S.; Vakhshiteh, F.; Sivasamboo, S.; Ariff, A.B. In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiol., 2017, 17(1), 121.
[72]
Ladha, G.; Jeevaratnam, K. Probiotic potential of Pediococcus pentosaceus LJR1, a bacteriocinogenic strain isolated from rumen liquor of goat (Capra aegagrus hircus). Food Biotechnol., 2018, 32(1), 60-77.
[http://dx.doi.org/10.1080/08905436.2017.1414700]
[73]
Vidhyasagar, V.; Jeevaratnam, K. Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J. Funct. Foods, 2013, 5(1), 235-243.
[http://dx.doi.org/10.1016/j.jff.2012.10.012]
[74]
Zhu, B.; Macleod, L.C.; Kitten, T.; Xu, P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol., 2018, 13(08), 915-932.
[http://dx.doi.org/10.2217/fmb-2018-0043] [PMID: 29882414]
[75]
Bidossi, A.; De Grandi, R.; Toscano, M.; Bottagisio, M.; De Vecchi, E.; Gelardi, M.; Drago, L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect. Dis., 2018, 18(1), 653.
[76]
Tarrah, A.; Castilhos, J.D.; Rossi, R.C.; Duarte, V.D.; Ziegler, D.R.; Corich, V.; Giacomini, A. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front. Microbiol., 2018, 9.
[http://dx.doi.org/10.3389/fmicb.2018.02214]
[77]
Burton, J.P.; Drummond, B.K.; Chilcott, C.N.; Tagg, J.R.; Thomson, W.M.; Hale, J.D.F.; Wescombe, P.A. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: A randomized double-blind, placebo-controlled trial. J. Med. Microbiol., 2013, 62(Pt 6), 875-884.
[http://dx.doi.org/10.1099/jmm.0.056663-0] [PMID: 23449874]
[78]
Gómez del Pulgar, E.M.; Benítez-Páez, A.; Sanz, Y. Safety assessment of Bacteroides uniformis CECT 7771, a symbiont of the gut microbiota in infants. Nutrients, 2020, 12(2), 55.
[79]
Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol., 2019, 12(6), 1109-1125.
[http://dx.doi.org/10.1111/1751-7915.13410] [PMID: 31006995]
[80]
McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol., 2010, 16(18), 2202-2222.
[http://dx.doi.org/10.3748/wjg.v16.i18.2202] [PMID: 20458757]
[81]
Szajewska, H.; Mrukowicz, J. Meta-analysis: Non-pathogenic yeast Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther., 2005, 22(5), 365-372.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02624.x] [PMID: 16128673]
[82]
Axelsson, L. Lactic acid bacteria: Classification and physiology In: Food Science and Technology; New York-Marcel Dekker, , 2004; 139, pp. 1-66.
[83]
Crociani, F.; Alessandrini, A.; Mucci, M.M.; Biavati, B. Degradation of complex carbohydrates by Bifidobacterium spp. Int. J. Food Microbiol., 1994, 24(1-2), 199-210.
[http://dx.doi.org/10.1016/0168-1605(94)90119-8] [PMID: 7703014]
[84]
Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.L.; Chang, E.B.; Gajewski, T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264), 1084-1089.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[85]
Lee, Y.K. Selection and maintenance of probiotic microorganisms. Handbook of Probiotics and Prebiotics; Wiley-VCH: Weinheim, Germany, 2009, pp. 177-187.
[86]
Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. Antipathogenic activity of probiotics against Salmonella typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe, 2013, 24, 60-65.
[http://dx.doi.org/10.1016/j.anaerobe.2013.09.011] [PMID: 24091275]
[87]
Wang, C.; Shoji, H.; Sato, H.; Nagata, S.; Ohtsuka, Y.; Shimizu, T.; Yamashiro, Y. Effects of oral administration of Bifidobacterium breve on fecal lactic acid and short-chain fatty acids in low birth weight infants. J. Pediatr. Gastroenterol. Nutr., 2007, 44(2), 252-257.
[http://dx.doi.org/10.1097/01.mpg.0000252184.89922.5f] [PMID: 17255840]
[88]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[89]
Linsalata, M.; Cavallini, A.; Messa, C.; Orlando, A.; Refolo, M.G.; Russo, F. Lactobacillus rhamnosus GG influences polyamine metabolism in HGC-27 gastric cancer cell line: A strategy toward nutritional approach to chemoprevention of gastric cance. Curr. Pharm. Des., 2010, 16(7), 847-853.
[http://dx.doi.org/10.2174/138161210790883598] [PMID: 20388096]
[90]
Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol., 2006, 100(6), 1171-1185.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x] [PMID: 16696665]
[91]
Currò, D.; Ianiro, G.; Pecere, S.; Bibbò, S.; Cammarota, G. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders. Br. J. Pharmacol., 2017, 174(11), 1426-1449.
[http://dx.doi.org/10.1111/bph.13632] [PMID: 27696378]
[92]
Reid, G.; Sanders, M.E.; Gaskins, H.R.; Gibson, G.R.; Mercenier, A.; Rastall, R.; Roberfroid, M.; Rowland, I.; Cherbut, C.; Klaenhammer, T.R. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol., 2003, 37(2), 105-118.
[http://dx.doi.org/10.1097/00004836-200308000-00004] [PMID: 12869879]
[93]
Kim, Y.; Lee, D.; Kim, D.; Cho, J.; Yang, J.; Chung, M.; Kim, K.; Ha, N. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res., 2008, 31(4), 468-473.
[http://dx.doi.org/10.1007/s12272-001-1180-y] [PMID: 18449504]
[94]
Thirabunyanon, M.; Boonprasom, P.; Niamsup, P. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett., 2009, 31(4), 571-576.
[http://dx.doi.org/10.1007/s10529-008-9902-3] [PMID: 19116692]
[95]
Baccigalupi, L.; Donato, A.D.; Parlato, M.; Luongo, D.; Carbone, V.; Rossi, M.; Ricca, E.; De Felice, M. Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Res. Microbiol., 2005, 156(7), 830-836.
[http://dx.doi.org/10.1016/j.resmic.2005.05.001]
[96]
Altonsy, M.O.; Andrews, S.C.; Tuohy, K.M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway. Int. J. Food Microbiol., 2010, 137(2-3), 190-203.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.11.015] [PMID: 20036023]
[97]
Zhao, H.; Zhao, X.; Lei, S.; Zhang, Y.; Shao, D.; Jiang, C.; Sun, H.; Shi, J. Effect of cell culture models on the evaluation of anticancer activity and mechanism analysis of the potential bioactive compound, iturin A, produced by Bacillus subtilis. Food Funct., 2019, 10(3), 1478-1489.
[http://dx.doi.org/10.1039/C8FO02433B] [PMID: 30778489]
[98]
Femia, A.P.; Luceri, C.; Dolara, P.; Giannini, A.; Biggeri, A.; Salvadori, M.; Clune, Y.; Collins, K.J.; Paglierani, M.; Caderni, G. Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis, 2002, 23(11), 1953-1960.
[http://dx.doi.org/10.1093/carcin/23.11.1953] [PMID: 12419846]
[99]
Ma, E.L.; Choi, Y.J.; Choi, J.; Pothoulakis, C.; Rhee, S.H.; Im, E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer, 2010, 127(4), 780-790.
[PMID: 19876926]
[100]
Orlando, A.; Refolo, M.G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer, 2012, 64(7), 1103-1111.
[http://dx.doi.org/10.1080/01635581.2012.717676] [PMID: 23061912]
[101]
Thirabunyanon, M.; Hongwittayakorn, P. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol., 2013, 169(2), 511-525.
[http://dx.doi.org/10.1007/s12010-012-9995-y] [PMID: 23239414]
[102]
Chen, Z.F.; Ai, L.Y.; Wang, J.L.; Ren, L.L.; Yu, Y.N.; Xu, J.; Chen, H.Y.; Yu, J.; Li, M.; Qin, W.X.; Ma, X.; Shen, N.; Chen, Y.X.; Hong, J.; Fang, J.Y. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol., 2015, 10(9), 1433-1445.
[http://dx.doi.org/10.2217/fmb.15.66] [PMID: 26346930]
[103]
Han, K.J.; Lee, N-K.; Park, H.; Paik, H-D. Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J. Microbiol. Biotechnol., 2015, 25(10), 1697-1701.
[http://dx.doi.org/10.4014/jmb.1503.03033] [PMID: 26165315]
[104]
Lee, N-K.; Son, S-H.; Jeon, E.B.; Jung, G.H.; Lee, J-Y.; Paik, H-D. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct. Foods, 2015, 14, 513-518.
[http://dx.doi.org/10.1016/j.jff.2015.02.019]
[105]
Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Santarmaki, V. Lactobacillus casei exerts anti-proliferative efectsaccompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One 2016, 11(2), e0147960.
[106]
Saxami, G.; Karapetsas, A.; Lamprianidou, E.; Kotsianidis, I.; Chlichlia, A.; Tassou, C.; Zoumpourlis, V. J. Funct. Foods, 2016, 24, 461-471.
[http://dx.doi.org/10.1016/j.jff.2016.04.036]
[107]
Chen, X.; Fruehauf, J.; Goldsmith, J.D.; Xu, H.; Katchar, K.K.; Koon, H.W.; Zhao, D.; Kokkotou, E.G.; Pothoulakis, C.; Kelly, C.P. Saccharomyces boulardii inhibits EGF receptor signaling and intestinal tumor growth in Apc(min) mice. Gastroenterology, 2009, 137(3), 914-923.
[http://dx.doi.org/10.1053/j.gastro.2009.05.050] [PMID: 19482027]
[108]
Strus, M.; Janczyk, A.; Gonet-Surowka, A.; Brzychczy-Wloch, M.; Stochel, G.; Kochan, P.; Heczko, P.B. Effect of hydrogen peroxide of bacterial origin on apoptosis and necrosis of gut mucosa epithelial cells as a possible pathomechanism of inflammatory bowel disease and cancer. J. Physiol. Pharmacol., 2009, 60(6)(Suppl. 6), 55-60.
[PMID: 20224152]
[109]
Borowicki, A.; Michelmann, A.; Stein, K.; Scharlau, D.; Scheu, K.; Obst, U.; Glei, M. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells. Nutr. Cancer, 2011, 63(1), 151-160.
[PMID: 21161821]
[110]
Wang, S.; Zhang, L.; Gu, W. Effects of lactobacillus strains on colon cancer cell proliferation and cell cycle blockage In: 2012 Int. Conf. Biomed. Engin. Biotechnol., IEEE Xplore, 23rd July, Macau, Macao,, 2012, pp. 1015-1018.
[111]
Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng., 2013, 115(5), 552-556.
[http://dx.doi.org/10.1016/j.jbiosc.2012.11.022] [PMID: 23290992]
[112]
Kumar, R.S.; Kanmani, P.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Thirunavukkarasu, C.; Arul, V. Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-Dimethyl Hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl. Biochem. Biotechnol., 2012, 166(3), 620-631.
[http://dx.doi.org/10.1007/s12010-011-9453-2] [PMID: 22161238]
[113]
Kumar, M.; Nagpal, R.; Verma, V.; Kumar, A.; Kaur, N.; Hemalatha, R.; Gautam, S.K.; Singh, B. Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr. Rev., 2013, 71(1), 23-34.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00542.x] [PMID: 23282249]
[114]
Hassan, Z.; Mustafa, S.; Rahim, R.A.; Isa, N.M. Anti-breast cancer effects of live, heat-killed and cytoplasmic fractions of Enterococcus faecalis and Staphylococcus hominis isolated from human breast milk. In Vitro Cell. Dev. Biol. Anim., 2016, 52(3), 337-348.
[http://dx.doi.org/10.1007/s11626-015-9978-8] [PMID: 26659392]
[115]
Biffi, A.; Coradini, D.; Larsen, R.; Riva, L.; Di Fronzo, G. Antiproliferative effect of fermented milk on the growth of a human breast cancer cell line. Nutr. Cancer, 1997, 28(1), 93-99.
[http://dx.doi.org/10.1080/01635589709514558]
[116]
Lee, N.K.; Han, K.J.; Son, S.H.; Eom, S.J.; Lee, S.K.; Paik, H.D. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. Lebensm. Wiss. Technol., 2015, 64(2), 1036-1041.
[http://dx.doi.org/10.1016/j.lwt.2015.07.019]
[117]
Oliveira Silva, E.; Cruz de Carvalho, T.; Parshikov, I.A.; Alves dos Santos, R.; Silva Emery, F.; Jacometti Cardoso Furtado, N.A. Cytotoxicity of lapachol metabolites produced by probiotics. Lett. Appl. Microbiol., 2014, 59(1), 108-114.
[http://dx.doi.org/10.1111/lam.12251] [PMID: 24635204]
[118]
Nami, Y.; Abdullah, N.; Haghshenas, B.; Radiah, D.; Rosli, R.; Khosroushahi, A.Y. Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiol. Immunol., 2014, 58(9), 492-502.
[http://dx.doi.org/10.1111/1348-0421.12175] [PMID: 25039934]
[119]
Ke, Y.Y.; Tsai, C.H.; Yu, H.M.; Jao, Y.C.; Fang, J.M.; Wong, C.H. Latifolicinin a from a fermented soymilk product and the structure-activity relationship of synthetic analogues as inhibitors of breast cancer cell growth. J. Agric. Food Chem., 2015, 63(44), 9715-9721.
[http://dx.doi.org/10.1021/acs.jafc.5b04028] [PMID: 26499209]
[120]
Chen, C.; Chan, H.M.; Kubow, S. Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells. J. Med. Food, 2007, 10(3), 416-422.
[http://dx.doi.org/10.1089/jmf.2006.236] [PMID: 17887934]
[121]
Gupta, S.V.; Pathak, Y.V. Advances in nutraceutical applications in cancer: recent research trends and clinical applications; CRC Press, Taylor and Francis, 2019, pp. 1-348.
[122]
Brown, G.R. Breast cancer in transgender veterans: A ten-case series. LGBT Health, 2015, 2(1), 77-80.
[http://dx.doi.org/10.1089/lgbt.2014.0123] [PMID: 26790021]
[123]
Siciliano, R.A.; Mazzeo, M.F. Molecular mechanisms of probiotic action: A proteomic perspective. Curr. Opin. Microbiol., 2012, 15(3), 390-396.
[http://dx.doi.org/10.1016/j.mib.2012.03.006] [PMID: 22538051]
[124]
Gayathri, D.; Rashmi, B.S. Anti-cancer properties of probiotics: A natural strategy for cancer prevention. EC Nutr., 2016, 5(4), 1191-1202.
[125]
Rhee, C.H.; Park, H.D. Three glycoproteins with antimutagenic activity identified in Lactobacillus plantarum KLAB21. Appl. Environ. Microbiol., 2001, 67(8), 3445-3449.
[http://dx.doi.org/10.1128/AEM.67.8.3445-3449.2001] [PMID: 11472917]
[126]
Orrhage, K.; Sillerström, E.; Gustafsson, J.Å.; Nord, C.E.; Rafter, J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res., 1994, 311(2), 239-248.
[http://dx.doi.org/10.1016/0027-5107(94)90182-1] [PMID: 7526189]
[127]
Goldin, B.R.; Gorbach, S.L. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J. Natl. Cancer Inst., 1980, 64(2), 263-265.
[http://dx.doi.org/10.1093/jnci/64.2.263] [PMID: 6766509]
[128]
Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(2), 111-128.
[http://dx.doi.org/10.1038/nrgastro.2017.119] [PMID: 29018272]
[129]
Bernstein, H.; Bernstein, C.; Payne, C.M.; Dvorakova, K.; Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res., 2005, 589(1), 47-65.
[http://dx.doi.org/10.1016/j.mrrev.2004.08.001] [PMID: 15652226]
[130]
Biasco, G.; Paganelli, G.M.; Brandi, G.; Brillanti, S.; Lami, F.; Callegari, C.; Gizzi, G. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics and fecal pH. Ital. J. Gastroenterol., 1991, 23(3), 142.
[PMID: 1742509]
[131]
Lidbeck, A.; Allinger, U.G.; Orrhage, K.M.; Ottova, L.; Brismar, B.; Gustafsson, J.Å.; Rafter, J.J.; Nord, C.E. Impact of Lactobacillus acidophilus supplements on the faecal microflora and soluble faecal bile acids in colon cancer patients. Microb. Ecol. Health Dis., 1991, 4(2), 81-88.
[132]
Okawa, T.; Niibe, H.; Arai, T.; Sekiba, K.; Noda, K.; Takeuchi, S.; Hashimoto, S.; Ogawa, N. Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase III, multicenter, randomized, controlled study. Cancer, 1993, 72(6), 1949-1954.
[http://dx.doi.org/10.1002/1097-0142(19930915)72:6<1949:AID-CNCR2820720626>3.0.CO;2-W] [PMID: 8364872]
[133]
Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic bacteria: A promising tool in cancer prevention and therapy. Curr. Microbiol., 2019, 76(8), 939-949.
[http://dx.doi.org/10.1007/s00284-019-01679-8] [PMID: 30949803]
[134]
Orlando, A.; Linsalata, M.; Bianco, G.; Notarnicola, M.; D’Attoma, B.; Scavo, M.P.; Tafaro, A.; Russo, F. Lactobacillus rhamnosus GG protects the epithelial barrier of wistar rats from the Pepsin-Trypsin-Digested Gliadin (PTG)-induced enteropathy. Nutrients, 2018, 10(11), 1698.
[http://dx.doi.org/10.3390/nu10111698] [PMID: 30405050]
[135]
Escamilla, J.; Lane, M.A.; Maitin, V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr. Cancer, 2012, 64(6), 871-878.
[http://dx.doi.org/10.1080/01635581.2012.700758] [PMID: 22830611]
[136]
Lee, D.K.; Jang, S.; Kim, M.J.; Kim, J.H.; Chung, M.J.; Kim, K.J.; Ha, N.J. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. BMC Cancer, 2008, 8(1), 310.
[http://dx.doi.org/10.1186/1471-2407-8-310] [PMID: 18950540]
[137]
van Faassen, A.; Hazen, M.J.; van den Brandt, P.A.; van den Bogaard, A.E.; Hermus, R.J.; Janknegt, R.A. Bile acids and pH values in total feces and in fecal water from habitually omnivorous and vegetarian subjects. Am. J. Clin. Nutr., 1993, 58(6), 917-922.
[http://dx.doi.org/10.1093/ajcn/58.6.917] [PMID: 8249879]
[138]
Ran, S.; Chu, M.; Gu, S.; Wang, J.; Liang, J. Enterococcus faecalis induces apoptosis and pyroptosis of human osteoblastic MG63 cells via the NLRP3 inflammasome. Int. Endod. J., 2019, 52(1), 44-53.
[http://dx.doi.org/10.1111/iej.12965] [PMID: 29904931]
[139]
Gamallat, Y.; Meyiah, A.; Kuugbee, E.D.; Hago, A.M.; Chiwala, G.; Awadasseid, A.; Bamba, D.; Zhang, X.; Shang, X.; Luo, F.; Xin, Y. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed. Pharmacother., 2016, 83, 536-541.
[http://dx.doi.org/10.1016/j.biopha.2016.07.001] [PMID: 27447122]
[140]
Yan, M.; Xu, Q.; Zhang, P.; Zhou, X.J.; Zhang, Z.Y.; Chen, W.T. Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010, 10(1), 437.
[http://dx.doi.org/10.1186/1471-2407-10-437] [PMID: 20716363]
[141]
Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest., 2004, 114(4), 569-581.
[http://dx.doi.org/10.1172/JCI200421358] [PMID: 15314694]
[142]
Tien, M.T.; Girardin, S.E.; Regnault, B.; Le Bourhis, L.; Dillies, M.A.; Coppée, J.Y.; Bourdet-Sicard, R.; Sansonetti, P.J.; Pédron, T. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol., 2006, 176(2), 1228-1237.
[http://dx.doi.org/10.4049/jimmunol.176.2.1228] [PMID: 16394013]
[143]
Kumar, A.; Wu, H.; Collier-Hyams, L.S.; Hansen, J.M.; Li, T.; Yamoah, K.; Pan, Z.Q.; Jones, D.P.; Neish, A.S. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J., 2007, 26(21), 4457-4466.
[http://dx.doi.org/10.1038/sj.emboj.7601867] [PMID: 17914462]
[144]
Lin, P.W.; Myers, L.E.; Ray, L.; Song, S.C.; Nasr, T.R.; Berardinelli, A.J.; Kundu, K.; Murthy, N.; Hansen, J.M.; Neish, A.S. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med., 2009, 47(8), 1205-1211.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.033] [PMID: 19660542]
[145]
Petrof, E.O.; Claud, E.C.; Sun, J.; Abramova, T.; Guo, Y.; Waypa, T.S.; He, S.M.; Nakagawa, Y.; Chang, E.B. Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm. Bowel Dis., 2009, 15(10), 1537-1547.
[http://dx.doi.org/10.1002/ibd.20930] [PMID: 19373789]
[146]
Sharaf, L.K.; Sharma, M.; Chandel, D.; Shukla, G. Prophylactic intervention of probiotics (L. acidophilus, L. rhamnosus GG) and celecoxib modulate Bax-mediated apoptosis in 1,2-dimethylhydrazine-induced experimental colon carcinogenesis. BMC Cancer, 2018, 18(1), 1111.
[http://dx.doi.org/10.1186/s12885-018-4999-9] [PMID: 30424722]
[147]
Lee, J.E.; Lee, J.; Kim, J.H.; Cho, N.; Lee, S.H.; Park, S.B.; Koh, B.; Kang, D.; Kim, S.; Yoo, H.M. Characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum using 2D vs. 3D culture in colorectal cancer cells. Biomolecules, 2019, 9(10), 557.
[http://dx.doi.org/10.3390/biom9100557] [PMID: 31581581]
[148]
Liu, B.; Zhang, J.; Yi, R.; Zhou, X.; Long, X.; Pan, Y.; Zhao, X. Preventive effect of Lactobacillus fermentum CQPC08 on 4-nitroquineline-1-oxide induced tongue cancer in C57BL/6 mice. Foods, 2019, 8(3), 93.
[http://dx.doi.org/10.3390/foods8030093] [PMID: 30861992]
[149]
Chen, X.; Yang, G.; Song, J.H.; Xu, H.; Li, D.; Goldsmith, J.; Zeng, H.; Parsons-Wingerter, P.A.; Reinecker, H.C.; Kelly, C.P. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS One, 2013, 8(5), e64227
[http://dx.doi.org/10.1371/journal.pone.0064227] [PMID: 23675530]
[150]
Scaldaferri, F.; Vetrano, S.; Sans, M.; Arena, V.; Straface, G.; Stigliano, E.; Repici, A.; Sturm, A.; Malesci, A.; Panes, J.; Yla-Herttuala, S.; Fiocchi, C.; Danese, S. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterol., 2009, 136(2), 585-95.e5.
[http://dx.doi.org/10.1053/j.gastro.2008.09.064] [PMID: 19013462]
[151]
Pousa, I.D.; Maté, J.; Gisbert, J.P. Angiogenesis in inflammatory bowel disease. Eur. J. Clin. Invest., 2008, 38(2), 73-81.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01914.x] [PMID: 18226040]
[152]
Coconnier, M.H.; Bernet, M.F.; Kernéis, S.; Chauvière, G.; Fourniat, J.; Servin, A.L. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol. Lett., 1993, 110(3), 299-305.
[http://dx.doi.org/10.1111/j.1574-6968.1993.tb06339.x] [PMID: 8354463]
[153]
El-Kenawi, A.E.; El-Remessy, A.B. Angiogenesis inhibitors in cancer therapy: Mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol., 2013, 170(4), 712-729.
[http://dx.doi.org/10.1111/bph.12344] [PMID: 23962094]
[154]
Giavazzi, R.; Taraboletti, G. Angiogenesis and angiogenesis inhibi. cancer. Forum (Genoa, Italy), 1999, 9(3), 261-272.
[155]
Javanmard, A.; Ashtari, S.; Sabet, B.; Davoodi, S.H.; Rostami-Nejad, M.; Esmaeil Akbari, M.; Niaz, A.; Mortazavian, A.M. Probiotics and their role in gastrointestinal cancers prevention and treatment; an overview. Gastroenterol. Hepatol. Bed Bench, 2018, 11(4), 284-295.
[PMID: 30425806]
[156]
Ouwehand, A.C. Antiallergic effects of probiotics. J. Nutr., 2007, 137(3)(Suppl. 2), 794S-797S.
[http://dx.doi.org/10.1093/jn/137.3.794S] [PMID: 17311977]
[157]
Nami, Y.; Haghshenas, B.; Haghshenas, M.; Abdullah, N. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Front. Microbiol., 2015, 6, 1317.
[158]
Azam, R.; Ghafouri-Fard, S.; Tabrizi, M.; Modarressi, M.H.; Ebrahimzadeh-Vesal, R.; Daneshvar, M.; Mobasheri, M.B.; Motevaseli, E. Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac. J. Cancer Prev., 2014, 15(10), 4255-4259.
[http://dx.doi.org/10.7314/APJCP.2014.15.10.4255] [PMID: 24935380]
[159]
Yazdi, M.H.; Mahdavi, M.; Kheradmand, E.; Shahverdi, A.R. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittelforschung, 2012, 62(11), 525-531.
[http://dx.doi.org/10.1055/s-0032-1323700] [PMID: 22945771]
[160]
Marinelli, L.; Tenore, G.C.; Novellino, E. Probiotic species in the modulation of the anticancer immune response. Semin. Cancer Biol., 2017, 46, 182-190.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.007] [PMID: 28844794]
[161]
Konishi, H.; Fujiya, M.; Tanaka, H.; Ueno, N.; Moriichi, K.; Sasajima, J.; Ikuta, K.; Akutsu, H.; Tanabe, H.; Kohgo, Y. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun., 2016, 7(1), 12365.
[http://dx.doi.org/10.1038/ncomms12365] [PMID: 27507542]
[162]
Sharma, A. Importance of probiotics in cancer prevention and treatment. Rec. Develop. Appl. Microbial. Biochemis., 2019, 4, 33-45.
[http://dx.doi.org/10.1016/B978-0-12-816328-3.00004-0]
[163]
Russo, F.; Orlando, A.; Linsalata, M.; Cavallini, A.; Messa, C. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr. Cancer, 2007, 59(1), 106-114.
[http://dx.doi.org/10.1080/01635580701365084] [PMID: 17927509]
[164]
Orlando, A.; Messa, C.; Linsalata, M.; Cavallini, A.; Russo, F. Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol. Immunotoxicol., 2009, 31(1), 108-116.
[http://dx.doi.org/10.1080/08923970802443631] [PMID: 19234959]
[165]
Shafi, S.; Khan, S.; Hoda, F.; Fayaz, F.; Singh, A.; Khan, M.A.; Ali, R.; Pottoo, F.H.; Tariq, S.; Najmi, A.K. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance. Curr. Drug Metab., 2020, 21(3), 199-210.https://www.eurekaselect.net/article/104980
[PMID: 32124694]
[166]
Mendoza, L. Potential effect of probiotics in the treatment of breast cancer. Oncol. Revi., 2019, 13(2)
[http://dx.doi.org/10.4081/oncol.2019.422]
[167]
Zamberi, N.R.; Abu, N.; Mohamed, N.E.; Nordin, N.; Keong, Y.S.; Beh, B.K.; Zakaria, Z.A.; Nik Abdul Rahman, N.M.; Alitheen, N.B. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr. Cancer Ther., 2016, 15(4), NP53-NP66.
[http://dx.doi.org/10.1177/1534735416642862] [PMID: 27230756]
[168]
Ranjbar, S.; Seyednejad, S.A.; Azimi, H.; Rezaeizadeh, H.; Rahimi, R. Emerging roles of probiotics in prevention and treatment of breast cancer: A comprehensive review of their therapeutic potential. Nutr. Cancer, 2019, 71(1), 1-12.
[http://dx.doi.org/10.1080/01635581.2018.1557221] [PMID: 30686054]
[169]
Maroof, H.; Hassan, Z.M.; Mobarez, A.M.; Mohamadabadi, M.A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J. Clin. Immunol., 2012, 32(6), 1353-1359.
[http://dx.doi.org/10.1007/s10875-012-9708-x] [PMID: 22711009]
[170]
Patterson, R.E.; Flatt, S.W.; Newman, V.A.; Natarajan, L.; Rock, C.L.; Thomson, C.A.; Caan, B.J.; Parker, B.A.; Pierce, J.P. Marine fatty acid intake is associated with breast cancer prognosis. J. Nutr., 2011, 141(2), 201-206.
[http://dx.doi.org/10.3945/jn.110.128777] [PMID: 21178081]
[171]
de Lorgeril, M.; Salen, P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med., 2012, 10(1), 50.
[http://dx.doi.org/10.1186/1741-7015-10-50] [PMID: 22613931]
[172]
Montales, M.T.; Rahal, O.M.; Kang, J.; Rogers, T.J.; Prior, R.L.; Wu, X.; Simmen, R.C. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis, 2012, 33(3), 652-660.
[http://dx.doi.org/10.1093/carcin/bgr317] [PMID: 22219179]
[173]
Yan, L.; DeMars, L.C. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int. J. Cancer, 2012, 131(6), 1260-1266.
[http://dx.doi.org/10.1002/ijc.27355] [PMID: 22095442]
[174]
Bassett, J.K.; Baglietto, L.; Hodge, A.M.; Severi, G.; Hopper, J.L.; English, D.R.; Giles, G.G. Dietary intake of B vitamins and methionine and breast cancer risk. Cancer Causes Control, 2013, 24(8), 1555-1563.
[http://dx.doi.org/10.1007/s10552-013-0232-y] [PMID: 23686442]
[175]
Malik, S.S.; Saeed, A.; Baig, M.; Asif, N.; Masood, N.; Yasmin, A. Anticarcinogenecity of microbiota and probiotics in breast cancer. Int. J. Food Prop., 2018, 21(1), 655-666.
[http://dx.doi.org/10.1080/10942912.2018.1448994]
[176]
Nicoletti, A.; Pompili, M.; Gasbarrini, A.; Ponziani, F.R. Going with the gut: probiotics as a novel therapy for hepatocellular carcinoma. Hepatobiliary Surg. Nutr., 2019, 8(3), 295-297.
[http://dx.doi.org/10.21037/hbsn.2019.01.16] [PMID: 31245418]
[177]
Singh, A.; Shafi, S.; Upadhyay, T.; Najmi, A.K.; Kohli, K.; Pottoo, F.H. Insights into nanotherapeutic strategies as an impending approach to liver cancer treatment. Curr. Top. Med. Chem., 2020, 20(20), 1839-1854.
[http://dx.doi.org/10.2174/1568026620666200624161801] [PMID: 32579503]
[178]
Harshita; Barkat, M.A.; Rizwanullah, M.; Beg, S.; Pottoo, F.H.; Siddiqui, S.; Ahmad, F.J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anti-cancer activity against human liver carcinoma. AAPS PharmSciTech, 2019, 20(2), 87.
[http://dx.doi.org/10.1208/s12249-019-1304-4] [PMID: 30675689]
[179]
Li, J.; Sung, C.Y.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl. Acad. Sci. USA, 2016, 113(9), E1306-E1315.
[http://dx.doi.org/10.1073/pnas.1518189113] [PMID: 26884164]
[180]
Rifatbegovic, Z.; Mesic, D.; Ljuca, F.; Zildzic, M.; Avdagic, M.; Grbic, K.; Agic, M.; Hadziefendic, B. Effect of probiotics on liver function after surgery resection for malignancy in the liver cirrhotic. Med. Arh., 2010, 64(4), 208-211.
[PMID: 21246916]
[181]
El-Nezami, H.S.; Polychronaki, N.N.; Ma, J.; Zhu, H.; Ling, W.; Salminen, E.K.; Juvonen, R.O.; Salminen, S.J.; Poussa, T.; Mykkänen, H.M. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am. J. Clin. Nutr., 2006, 83(5), 1199-1203.
[http://dx.doi.org/10.1093/ajcn/83.5.1199] [PMID: 16685066]
[182]
Goldin, B.; Gorbach, S.L. Alterations in fecal microflora enzymes related to diet, age, Lactobacillus supplements, and dimethylhydrazine. Cancer, 1977, 40(5)(Suppl.), 2421-2426.
[http://dx.doi.org/10.1002/1097-0142(197711)40:5+<2421:AID-CNCR2820400905>3.0.CO;2-I] [PMID: 411567]
[183]
Kailasapathy, K.; Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol., 2000, 78(1), 80-88.
[http://dx.doi.org/10.1046/j.1440-1711.2000.00886.x] [PMID: 10651933]
[184]
Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 2013, 4(3), 181-192.
[http://dx.doi.org/10.4161/gmic.23919] [PMID: 23511582]