Bacteriophages: from Isolation to Application

Page: [337 - 360] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, opened a wide gate, not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and the potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review article summarizes phage application pipelines at different levels, and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for the selection of suitable approaches for phage-related research aims and applications.

Keywords: Bacteriophage, phage therapy, bacteriophage purification, phage isolation, phage applications, bioinformatic tools, prophage, phage annotation, virion, electron microscopy, foodborne illnesses.

Graphical Abstract

[1]
Dy, R.L.; Rigano, L.A.; Fineran, P.C. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans., 2018, 46(6), 1605-1613.
[http://dx.doi.org/10.1042/BST20180178] [PMID: 30514766]
[2]
Zink, R.; Loessner, M.J.; Scherer, S. Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/endolysin gene. Microbiology (Reading), 1995, 141(Pt 10), 2577-2584.
[http://dx.doi.org/10.1099/13500872-141-10-2577] [PMID: 7582018]
[3]
Young, R. Phage lysis: three steps, three choices, one outcome. J. Microbiol., 2014, 52(3), 243-258.
[http://dx.doi.org/10.1007/s12275-014-4087-z] [PMID: 24585055]
[4]
Choi, J.; Kotay, S.M.; Goel, R. Various physico-chemical stress factors cause prophage induction in Nitrosospira multiformis 25196--an ammonia oxidizing bacteria. Water Res., 2010, 44(15), 4550-4558.
[http://dx.doi.org/10.1016/j.watres.2010.04.040] [PMID: 20630557]
[5]
Kourilsky, P. Lysogenization by bacteriophage lambda - I. Multiple infection and the lysogenic response. MGG Mol. Gen. Genet., 1973, 122(2), 183-195.
[http://dx.doi.org/10.1007/BF004351900]
[6]
Swift, S.M.; Seal, B.S.; Garrish, J.K.; Oakley, B.B.; Hiett, K.; Yeh, H.Y.; Woolsey, R.; Schegg, K.M.; Line, J.E.; Donovan, D.M. A Thermophilic phage endolysin fusion to a clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability. Viruses, 2015, 7(6), 3019-3034.
[http://dx.doi.org/10.3390/v7062758] [PMID: 26075507]
[7]
Summers, W.C. In the beginning…. Bacteriophage, 2011, 1(1), 50-51.https://doi.org/https://doi.org/10.4161/bact.1.1.14070
[http://dx.doi.org/10.4161/bact.1.1.14070] [PMID: 21687535]
[8]
Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol., 2019, 10, 513.
[http://dx.doi.org/10.3389/fphar.2019.00513] [PMID: 31139086]
[9]
WHO, Global antimicrobial resistance surveillance system (glass) report,. 2017.http://dx.doi.org/ISBN 978-92-4-151344-9.
[10]
Rose, T.; Verbeken, G.; Vos, D.D.; Merabishvili, M.; Vaneechoutte, M.; Lavigne, R.; Jennes, S.; Zizi, M.; Pirnay, J-P. Experimental phage therapy of burn wound infection: difficult first steps. Int. J. Burns Trauma, 2014, 4(2), 66-73.
[PMID: 25356373]
[11]
Morello, E.; Saussereau, E.; Maura, D.; Huerre, M.; Touqui, L.; Debarbieux, L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One, 2011, 6(2)e16963
[http://dx.doi.org/10.1371/journal.pone.0016963] [PMID: 21347240]
[12]
Ladero, V.; Gómez-Sordo, C.; Sánchez-Llana, E.; Del Rio, B.; Redruello, B.; Fernández, M.; Martín, M.C.; Alvarez, M.A. Q69 (an e. Faecalis-infecting bacteriophage) as a biocontrol agent for reducing tyramine in dairy products. Front. Microbiol., 2016, 7, 445.
[http://dx.doi.org/10.3389/fmicb.2016.00445] [PMID: 27092117]
[13]
Farooq, U.; Yang, Q.; Ullah, M.W.; Wang, S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron., 2018, 118, 204-216.
[http://dx.doi.org/10.1016/j.bios.2018.07.058] [PMID: 30081260]
[14]
El-Shibiny, A.; Dawoud, A. Bacteriophage applications for food safety. Biocommunication of Phages; Witzany, G., Ed.; Springer International Publishing, 2020, pp. 463-484.
[http://dx.doi.org/10.1007/978-3-030-45885-0_21]
[15]
Abdelsattar, A.S.; Abdelrahman, F.; Dawoud, A.; Connerton, I.F.; El-Shibiny, A. Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy. AMB Express, 2019, 9(1), 87.
[http://dx.doi.org/10.1186/s13568-019-0810-9] [PMID: 31209685]
[16]
Clark, J.R.; March, J.B. Bacteriophage-mediated nucleic acid immunisation. FEMS Immunol. Med. Microbiol., 2004, 40(1), 21-26.
[http://dx.doi.org/10.1016/S0928-8244(03)00344-4] [PMID: 14734182]
[17]
Yang, T.; Li, N.; Wang, X.; Zhai, J.; Hu, B.; Chen, M.; Wang, J. Dual functional AgNPs-m13 phage composite serves as antibacterial film and sensing probe for monitoring the corrosion of chromium-containing dental alloys. Chin. Chem. Lett., 2020.
[http://dx.doi.org/10.1016/j.cclet.2019.07.026]
[18]
Pinheiro, L.A.M.; Pereira, C.; Barreal, M.E.; Gallego, P.P.; Balcão, V.M.; Almeida, A. Use of phage φ6 to inactivate pseudomonas syringae pv. Actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Appl. Microbiol. Biotechnol., 2020.
[http://dx.doi.org/10.1007/s00253-019-10301-7]
[19]
Yu, P.; Mathieu, J.; Lu, G.W.; Gabiatti, N.; Alvarez, P.J. Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host. Environ. Sci. Technol. Lett., 2017.
[http://dx.doi.org/10.1021/acs.estlett.7b00045]
[20]
Hyman, P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel), 2019, 12(1), 35.
[http://dx.doi.org/10.3390/ph12010035] [PMID: 30862020]
[21]
Ackermann, H.W. Phage classification and characterization. Methods Mol. Biol., 2009, 501, 127-140.
[http://dx.doi.org/10.1007/978-1-60327-164-6_13] [PMID: 19066817]
[22]
Yap, M.L.; Rossmann, M.G. Structure and function of bacteriophage T4. Future Microbiol., 2014, 9(12), 1319-1327.
[http://dx.doi.org/10.2217/fmb.14.91] [PMID: 25517898]
[23]
Morozova, V.V.; Vlassov, V.V.; Tikunova, N.V. Applications of bacteriophages in the treatment of localized infections in humans. Front. Microbiol., 2018, 9, 1696.
[http://dx.doi.org/10.3389/fmicb.2018.01696] [PMID: 30116226]
[24]
Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol., 2013, 8(6), 769-783.
[http://dx.doi.org/10.2217/fmb.13.47] [PMID: 23701332]
[25]
Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173.
[http://dx.doi.org/10.4292/wjgpt.v8.i3.162] [PMID: 28828194]
[26]
McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current state of compassionate phage therapy. Viruses, 2019, 11(4), 343.
[http://dx.doi.org/10.3390/v11040343] [PMID: 31013833]
[27]
Segall, A.M.; Roach, D.R.; Strathdee, S.A. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr. Opin. Microbiol., 2019, 51, 46-50.
[http://dx.doi.org/10.1016/j.mib.2019.03.005] [PMID: 31226502]
[28]
Moelling, K.; Broecker, F.; Willy, C. A wake-up call: we need phage therapy now. Viruses, 2018, 10(12), 688.
[http://dx.doi.org/10.3390/v10120688] [PMID: 30563034]
[29]
Kim, J.H.; Gomez, D.K.; Nakai, T.; Park, S.C. Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet. Microbiol., 2010, 140(1-2), 109-115.
[http://dx.doi.org/10.1016/j.vetmic.2009.07.002] [PMID: 19647377]
[30]
Cerveny, K.E.; Depaola, A.; Duckworth, D.H.; Gulig, P.A. Phage therapy of local and systemic disease caused by vibrio vulnificus in iron-dextran-treated mice. Infect. Immun., 2002, 70(11), 6251-6262.
[http://dx.doi.org/10.1128/IAI.70.11.6251]
[31]
Ritchie, D.F.; Klos, E.J. Isolation of erwinia amylovora bacteriophage from aerial parts of apple trees. Phytopathology, 1977, 77(1), 101.
[http://dx.doi.org/10.1094/Phyto-67-101]
[32]
Gill, J.J.; Svircev, A.M.; Smith, R.; Castle, A.J. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol., 2003, 69(4), 2133-2138.
[http://dx.doi.org/10.1128/AEM.69.4.2133-2138.2003] [PMID: 12676693]
[33]
Balogh, B.; Jones, J.B.; Iriarte, F.B.; Momol, M.T. Phage therapy for plant disease control. Curr. Pharm. Biotechnol., 2010, 11(1), 48-57.
[http://dx.doi.org/10.2174/138920110790725302] [PMID: 20214607]
[34]
Sulakvelidze, A.; Barrow, P. phage therapy in animals and agribusiness. Bacteriophages 2004.
[http://dx.doi.org/10.1201/9780203491751.ch13]
[35]
Rees, C.E.D.; Dodd, C.E.R. Phage for rapid detection and control of bacterial pathogens in food. Adv. Appl. Microbiol., 2006, 59, 159-186.
[http://dx.doi.org/10.1016/S0065-2164(06)59006-9] [PMID: 16829259]
[36]
Callaway, T.R.; Edrington, T.S.; Brabban, A.D.; Keen, J.E.; Anderson, R.C.; Rossman, M.L.; Engler, M.J.; Genovese, K.J.; Gwartney, B.L.; Reagan, J.O.; Poole, T.L.; Harvey, R.B.; Kutter, E.M.; Nisbet, D.J. Fecal prevalence of escherichia coli o157, salmonella, listeria, and bacteriophage infecting E. Coli o157:h7 in feedlot cattle in the southern plains region of the united states. Foodborne Pathog. Dis., 2006, 3(3), 234-244.
[http://dx.doi.org/10.1089/fpd.2006.3.234] [PMID: 16972771]
[37]
Johnson, R. P.; Gyles, C. L.; Huff, W. E.; Ojha, S.; Huff, G. R.; Rath, N. C.; Donoghue, A. M. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs.Animal health research reviews / Conference of Research Workers in Animal Diseases,, 2008.
[http://dx.doi.org/10.1017/S1466252308001576]
[38]
Bronfenbrenner, J. True polyvalence of pure bacteriophages. Proc. Soc. Exp. Biol. Med., 1933, 30(6), 729-732.
[http://dx.doi.org/10.3181/00379727-30-6648]
[39]
Malki, K.; Kula, A.; Bruder, K.; Sible, E.; Hatzopoulos, T.; Steidel, S.; Watkins, S.C.; Putonti, C. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol. J., 2015, 12(1), 164.
[http://dx.doi.org/10.1186/s12985-015-0395-0] [PMID: 26453042]
[40]
Amarillas, L.; Cháidez-Quiroz, C.; Sañudo-Barajas, A.; León-Félix, J. Complete genome sequence of a polyvalent bacteriophage, phiKP26, active on Salmonella and Escherichia coli. Arch. Virol., 2013, 158(11), 2395-2398.
[http://dx.doi.org/10.1007/s00705-013-1725-4] [PMID: 23677676]
[41]
Yu, P.; Mathieu, J.; Li, M.; Dai, Z.; Alvarez, P.J.J. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl. Environ. Microbiol., 2015, 82(3), 808-815.
[http://dx.doi.org/10.1128/AEM.02382-15] [PMID: 26590277]
[42]
Ross, A.; Ward, S.; Hyman, P. More is better: selecting for broad host range bacteriophages. Front. Microbiol., 2016, 7(SEP), 1352.
[http://dx.doi.org/10.3389/fmicb.2016.01352] [PMID: 27660623]
[43]
Muniesa, M.; Blanch, A.R.; Lucena, F.; Jofre, J. Bacteriophages may bias outcome of bacterial enrichment cultures. Appl. Environ. Microbiol., 2005, 71(8), 4269-4275.
[http://dx.doi.org/10.1128/AEM.71.8.4269-4275.2005] [PMID: 16085813]
[44]
Mattila, S.; Ruotsalainen, P.; Jalasvuori, M. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front. Microbiol., 2015, 6, 1271.
[http://dx.doi.org/10.3389/fmicb.2015.01271] [PMID: 26617601]
[45]
Gill, J.J.; Hyman, P. Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol., 2010, 11(1), 2-14.
[http://dx.doi.org/10.2174/138920110790725311] [PMID: 20214604]
[46]
Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Zhang, H.; Yang, J.; Deng, D.; Huang, S.; Ma, Y. Isolation and characterization of specific phages to prepare a cocktail preventing vibrio sp. Va-f3 infections in shrimp (litopenaeus vannamei). Front. Microbiol., 2019, 10, 2337.
[http://dx.doi.org/10.3389/fmicb.2019.02337] [PMID: 31681202]
[47]
Nilsson, A.S. Phage therapy--constraints and possibilities. Ups. J. Med. Sci., 2014, 119(2), 192-198.
[http://dx.doi.org/10.3109/03009734.2014.902878] [PMID: 24678769]
[48]
Olsen, N.S.; Hendriksen, N.B.; Hansen, L.H.; Kot, W. A new high-throughput screening method for phages: enabling crude isolation and fast identification of diverse phages with therapeutic potential. Phage, 2020, 1(3), 137-148.
[http://dx.doi.org/10.1089/phage.2020.0016]
[49]
Abdelsattar, A.; El-Shibiny, A. A modified high-throughput screening protocol to isolate bacteriophages from environmental samples., 2021.
[50]
Lin, R.C.Y.; Sacher, J.C.; Ceyssens, P-J.; Zheng, J.; Khalid, A.; Iredell, J.R.; Network, T.A.P.B. Australian phage biobanking network. phage biobank: present challenges and future perspectives. Curr. Opin. Biotechnol., 2021, 68, 221-230.
[http://dx.doi.org/10.1016/j.copbio.2020.12.018] [PMID: 33581425]
[51]
Méndez, J.; Audicana, A.; Isern, A.; Llaneza, J.; Moreno, B.; Tarancón, M.L.; Jofre, J.; Lucena, F. Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water. J. Virol. Methods, 2004, 117(1), 19-25.
[http://dx.doi.org/10.1016/j.jviromet.2003.11.013] [PMID: 15019256]
[52]
Clokie, M. R. J.; Kropinski, A. M. Bacteriophages methods and protocols, 2009.
[http://dx.doi.org/10.1007/978-1-60327-164-6]
[53]
Clokie, M.R.J.; Kropinski, A.M. Bacteriophages. Methods in molecular biology; Clokie, M.R.J; Kropinski, A.M., Ed.; Humana Press: Totowa, NJ, 2009, Vol. 501, .
[http://dx.doi.org/10.1007/978-1-60327-164-6]
[54]
Serwer, P.; Wright, E.T. In-gel isolation and characterization of large (and other) phages. Viruses, 2020, 12(4), 410.
[http://dx.doi.org/10.3390/v12040410] [PMID: 32272774]
[55]
Górski, A.; Bollyky, P.L.; Przybylski, M.; Borysowski, J.; Międzybrodzki, R.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B. perspectives of phage therapy in non-bacterial infections. Front. Microbiol., 2019, 9(JAN), 3306.
[http://dx.doi.org/10.3389/fmicb.2018.03306] [PMID: 30687285]
[56]
Paranchych, W. Stages in phage R17 infection: the role of divalent cations. Virology, 1966, 28(1), 90-99.
[http://dx.doi.org/10.1016/0042-6822(66)90309-6] [PMID: 4955195]
[57]
El-Shibiny, A.; El-Sahhar, S.; Adel, M. Phage applications for improving food safety and infection control in Egypt. J. Appl. Microbiol., 2017, 123(2), 556-567.
[http://dx.doi.org/10.1111/jam.13500] [PMID: 28557189]
[58]
El-Shibiny, A.; El-Sahhar, S. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can. J. Microbiol., 2017, 63(11), 865-879.
[http://dx.doi.org/10.1139/cjm-2017-0030] [PMID: 28863269]
[59]
Bryan, D.; El-Shibiny, A.; Hobbs, Z.; Porter, J.; Kutter, E.M. Bacteriophage t4 infection of stationary phase e. Coli: life after log from a phage perspective. Front. Microbiol., 2016, 7, 1391.
[http://dx.doi.org/10.3389/fmicb.2016.01391] [PMID: 27660625]
[60]
Mohamed, A.; Taha, O.; El-Sherif, H.M.; Connerton, P.L.; Hooton, S.P.T.; Bassim, N.D.; Connerton, I.F.; El-Shibiny, A. Bacteriophage zcse2 is a potent antimicrobial against salmonella enterica serovars: ultrastructure, genomics and efficacy. Viruses, 2020, 12(4)E424
[http://dx.doi.org/10.3390/v12040424] [PMID: 32283768]
[61]
van Charante, F.; Holtappels, D.; Blasdel, B.; Burrowes, B. H. Isolation of bacteriophages.Bacteriophages Biol. Technol. Ther.,, 2021, 433-464.
[62]
Ra’l, R.R.; H’bert, E.M. Isolation of phage via induction of lysogens. Bacteriophages; Springer, 2009, pp. 23-32.
[63]
Radford, D.R.; Ahmadi, H.; Leon-Velarde, C.G.; Balamurugan, S. Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures. Res. Microbiol., 2016, 167(8), 685-691.
[http://dx.doi.org/10.1016/j.resmic.2016.05.010] [PMID: 27287043]
[64]
Leshkasheli, L.; Kutateladze, M.; Balarjishvili, N.; Bolkvadze, D.; Save, J.; Oechslin, F.; Que, Y-A.; Resch, G. Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J. Glob. Antimicrob. Resist., 2019, 19, 255-261.
[http://dx.doi.org/10.1016/j.jgar.2019.05.005] [PMID: 31100499]
[65]
Zrelovs, N.; Cernooka, E.; Dislers, A.; Kazaks, A. Isolation and characterization of the novel Virgibacillus-infecting bacteriophage Mimir87. Arch. Virol., 2020, 165(3), 737-741.
[http://dx.doi.org/10.1007/s00705-019-04516-2] [PMID: 31875246]
[66]
Reyes-Robles, T.; Dillard, R.S.; Cairns, L.S.; Silva-Valenzuela, C.A.; Housman, M.; Ali, A.; Wright, E.R.; Camilli, A. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol., 2018, 200(15), e00792-e17.
[http://dx.doi.org/10.1128/JB.00792-17] [PMID: 29661863]
[67]
Nabergoj, D.; Modic, P.; Podgornik, A. Effect of bacterial growth rate on bacteriophage population growth rate. Microbil. Open, 2018, 7(2)e00558
[http://dx.doi.org/10.1002/mbo3.558] [PMID: 29195013]
[68]
Slopek, S.; Durlakowa, I.; Weber-Dabrowska, B.; Kucharewicz-Krukowska, A.; Dabrowski, M.; Bisikiewicz, R. Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch. Immunol. Ther. Exp. (Warsz)
[69]
Speck, P.; Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett., 2016, 363(3)fnv242
[http://dx.doi.org/10.1093/femsle/fnv242] [PMID: 26691737]
[70]
Uhr, J.W.; Dancis, J.; Franklin, E.C.; Finkelstein, M.S.; Lewis, E.W. The antibody response to bacteriophage phi-X 174 in newborn premature infants. J. Clin. Invest., 1962, 41, 1509-1513.
[http://dx.doi.org/10.1172/JCI104606] [PMID: 13923602]
[71]
Hsu, F.C.; Shieh, Y.S.; Sobsey, M.D. Enteric bacteriophages as potential fecal indicators in ground beef and poultry meat. J. Food Prot., 2002, 65(1), 93-99.
[http://dx.doi.org/10.4315/0362-028X-65.1.93] [PMID: 11811158]
[72]
Merril, C.R.; Biswas, B.; Carlton, R.; Jensen, N.C.; Creed, G.J.; Zullo, S.; Adhya, S. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA, 1996, 93(8), 3188-3192.
[http://dx.doi.org/10.1073/pnas.93.8.3188] [PMID: 8622911]
[73]
Bourdin, G.; Schmitt, B.; Marvin Guy, L.; Germond, J.E.; Zuber, S.; Michot, L.; Reuteler, G.; Brüssow, H. Amplification and purification of T4-like escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl. Environ. Microbiol., 2014, 80(4), 1469-1476.
[http://dx.doi.org/10.1128/AEM.03357-13] [PMID: 24362424]
[74]
Adriaenssens, E.M.; Lehman, S.M.; Vandersteegen, K.; Vandenheuvel, D.; Philippe, D.L.; Cornelissen, A.; Clokie, M.R.J.; García, A.J.; De Proft, M.; Maes, M.; Lavigne, R. CIM(®) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology, 2012, 434(2), 265-270.
[http://dx.doi.org/10.1016/j.virol.2012.09.018] [PMID: 23079104]
[75]
James, K.T.; Cooney, B.; Agopsowicz, K.; Trevors, M.A.; Mohamed, A.; Stoltz, D.; Hitt, M.; Shmulevitz, M. novel high-throughput approach for purification of infectious virions. Sci. Rep., 2016, 6(1), 36826.
[http://dx.doi.org/10.1038/srep36826] [PMID: 27827454]
[76]
Nasukawa, T.; Uchiyama, J.; Taharaguchi, S.; Ota, S.; Ujihara, T.; Matsuzaki, S.; Murakami, H.; Mizukami, K.; Sakaguchi, M. Virus purification by CsCl density gradient using general centrifugation. Arch. Virol., 2017, 162(11), 3523-3528.
[http://dx.doi.org/10.1007/s00705-017-3513-z] [PMID: 28785814]
[77]
Hietala, V.; Horsma-Heikkinen, J.; Carron, A.; Skurnik, M.; Kiljunen, S. The removal of endo- and enterotoxins from bacteriophage preparations. Front. Microbiol., 2019, 10, 1674.
[http://dx.doi.org/10.3389/fmicb.2019.01674] [PMID: 31396188]
[78]
Fouladvand, F.; Bemani, P.; Mohammadi, M.; Amini, R.; Azizi Jalilian, F. A review of the methods for concentrating m13 phage. J. Appl. Biotechnol. Reports, 2020, 7(1), 7-15.
[79]
Bair, C.L.; Oppenheim, A.; Trostel, A.; Prag, G.; Adhya, S. A phage display system designed to detect and study protein-protein interactions. Mol. Microbiol., 2008, 67(4), 719-728.
[http://dx.doi.org/10.1111/j.1365-2958.2007.06077.x] [PMID: 18179417]
[80]
Ren, Z.J.; Lewis, G.K.; Wingfield, P.T.; Locke, E.G.; Steven, A.C.; Black, L.W. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci., 1996, 5(9), 1833-1843.
[http://dx.doi.org/10.1002/pro.5560050909] [PMID: 8880907]
[81]
Lenherr, H.; Bartsch, R. Process and system for the industrial scale purification of bacteriophages intended for bacteriophage therapy., 2011.
[82]
Pirnay, J.P.; Merabishvili, M.; Van Raemdonck, H.; De Vos, D.; Verbeken, G. Bacteriophage production in compliance with regulatory requirements. Methods Mol. Biol., 2018, 1693, 233-252.
[http://dx.doi.org/10.1007/978-1-4939-7395-8_18]
[83]
Parada, V.; Herndl, G.J.; Weinbauer, M.G. Viral burst size of heterotrophic prokaryotes in aquatic systems. J. Mar. Biol. Assoc. U. K., 2006.
[http://dx.doi.org/10.1017/S002531540601352X]
[84]
Weinbauer, M.G.; Peduzzi, P. Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar. Ecol. Prog. Ser., 1994.
[http://dx.doi.org/10.3354/meps108011]
[85]
Weinbauer, M.G.; Höfle, M.G. Size-specific mortality of lake bacterioplankton by natural virus communities. Aquat. Microb. Ecol., 1998.
[http://dx.doi.org/10.3354/ame015103]
[86]
Adriaenssens, E.; Brister, R. How to name and classify your phage: an informal guide. bioRxiv, 2017.
[http://dx.doi.org/10.1101/111526]
[87]
Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol., 2009, 501, 141-149.
[http://dx.doi.org/10.1007/978-1-60327-164-6_14] [PMID: 19066818]
[88]
Braun, V.; Hantke, K. Bacterial receptors for phages and colicins as constituents of specific transport systems.Microbial Interactions; Springer US: Boston, MA, 1977, pp. 99-137.
[http://dx.doi.org/10.1007/978-1-4615-9698-1_3]
[89]
Rakhuba, D.V.; Kolomiets, E.I.; Dey, E.S.; Novik, G.I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol., 2010, 59(3), 145-155.
[http://dx.doi.org/10.33073/pjm-2010-023] [PMID: 21033576]
[90]
Schlesinger, M. Adsorption of bacteriophages to homologous bacteria. Ii. Quantitative investigation of adsorption velocity and saturation. Estimation of the particle size of the bacteriophage. Zeitschrift fur Hygenie und Immunitaetsforsch., 1932, 114, 149-160.
[91]
Shao, Y.; Wang, I.N. Bacteriophage adsorption rate and optimal lysis time. Genetics, 2008, 180(1), 471-482.
[http://dx.doi.org/10.1534/genetics.108.090100] [PMID: 18757924]
[92]
Young, I.; Wang, I.; Roof, W.D. Phages will out: strategies of host cell lysis. Trends Microbiol., 2000, 8(3), 120-128.
[http://dx.doi.org/10.1016/S0966-842X(00)01705-4] [PMID: 10707065]
[93]
Wang, I.N.; Dykhuizen, D.E.; Slobodkin, L.B. The evolution of phage lysis timing. Evol. Ecol., 1996, 10(5), 545-558.
[http://dx.doi.org/10.1007/BF01237884]
[94]
Calsina, À.; Palmada, J.M.; Ripoll, J. Optimal latent period in a bacteriophage population model structured by infection-Age; Math. Model. Methods Appl. Sci, 2011.
[http://dx.doi.org/10.1142/S0218202511005180]
[95]
Fortier, L.C.; Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence, 2013, 4(5), 354-365.
[http://dx.doi.org/10.4161/viru.24498] [PMID: 23611873]
[96]
Waldor, M. K.; Mekalanos, J. J. Lysogenic conversion by a Filamentous phage encoding cholera toxin. science, 1996, 272(5270), 1910-1914.
[http://dx.doi.org/10.1126/science.272.5270.1910]
[97]
Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage therapy: going temperate? Trends Microbiol., 2019, 27(4), 368-378.
[http://dx.doi.org/10.1016/j.tim.2018.10.008] [PMID: 30466900]
[98]
Khalil, R.K.; Skinner, C.; Patfield, S.; He, X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog. Dis., 2016, 74(5)ftw037
[http://dx.doi.org/10.1093/femspd/ftw037] [PMID: 27109772]
[99]
Novick, R.P.; Ram, G. Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament. Curr. Opin. Microbiol., 2017, 38, 197-204.
[http://dx.doi.org/10.1016/j.mib.2017.08.001] [PMID: 29100762]
[100]
Zinder, N.D.; Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol., 1952, 64(5), 679-699.
[http://dx.doi.org/10.1128/JB.64.5.679-699.1952] [PMID: 12999698]
[101]
Fattah, K.R.; Mizutani, S.; Fattah, F.J.; Matsushiro, A.; Sugino, Y. A comparative study of the immunity region of lambdoid phages including Shiga-toxin-converting phages: molecular basis for cross immunity. Genes Genet. Syst., 2000, 75(5), 223-232.
[http://dx.doi.org/10.1266/ggs.75.223] [PMID: 11245215]
[102]
Fogg, P.C.M.; Allison, H.E.; Saunders, J.R.; McCarthy, A.J. Bacteriophage lambda: a paradigm revisited. J. Virol., 2010, 84(13), 6876-6879.
[http://dx.doi.org/10.1128/JVI.02177-09] [PMID: 20375161]
[103]
Lee, Y.D.; Park, J.H. Phage conversion for β-lactam antibiotic resistance of staphylococcus aureus from foods. J. Microbiol. Biotechnol., 2015.
[http://dx.doi.org/10.4014/jmb.1508.08042] [PMID: 26562692]
[104]
Salmond, G.P.C.; Fineran, P.C. A century of the phage: past, present and future. Nat. Rev. Microbiol., 2015, 13(12), 777-786.
[http://dx.doi.org/10.1038/nrmicro3564] [PMID: 26548913]
[105]
Chiang, Y.N.; Penadés, J.R.; Chen, J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog., 2019, 15(8)e1007878
[http://dx.doi.org/10.1371/journal.ppat.1007878] [PMID: 31393945]
[106]
Wang, I.N. Lysis timing and bacteriophage fitness. Genetics, 2006, 172(1), 17-26.
[http://dx.doi.org/10.1534/genetics.105.045922] [PMID: 16219778]
[107]
Letarov, A.V.; Kulikov, E.E. Determination of the bacteriophage host range: culture-based approach. Methods Mol. Biol., 2018, 1693, 75-84.
[http://dx.doi.org/10.1007/978-1-4939-7395-8_7]]
[108]
Zhao, J.; Zhang, Z.; Tian, C.; Chen, X.; Hu, L.; Wei, X.; Li, H.; Lin, W.; Jiang, A.; Feng, R.; Yuan, J.; Yin, Z.; Zhao, X. Characterizing the Biology of Lytic Bacteriophage vb_eaem_φeap-3 Infecting Multidrug-Resistant Enterobacter aerogenes. Front. Microbiol., 2019, 10, 420.
[http://dx.doi.org/10.3389/fmicb.2019.00420] [PMID: 30891025]
[109]
Hyman, P.; Abedon, S.T. Practical methods for determining phage growth parameters. Methods Mol. Biol., 2009, 501, 175-202.
[http://dx.doi.org/10.1007/978-1-60327-164-6_18] [PMID: 19066822]
[110]
Anderson, B.; Rashid, M.H.; Carter, C.; Pasternack, G.; Rajanna, C.; Revazishvili, T.; Dean, T.; Senecal, A.; Sulakvelidze, A. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage, 2011, 1(2), 86-93.
[http://dx.doi.org/10.4161/bact.1.2.15456] [PMID: 22334864]
[111]
Peng, Q.; Yuan, Y. Characterization of a newly isolated phage infecting pathogenic Escherichia coli and analysis of its mosaic structural genes. Sci. Rep., 2018, 8(1), 8086.
[http://dx.doi.org/10.1038/s41598-018-26004-4] [PMID: 29795390]
[112]
Collar, C. Book Reviews : Dairy Starter Cultures. Editado Por T.M. Cogan y J.P. Accolas. Publicado En 1995 Por VCH Publishers, Inc. 220 East 23rd Street. Nueva York, Nueva York 10010. XII + 277 Pp., ISBN 1 56081 628 7. Food Sci. Technol. Int., 1996, 2(5), 343-343.
[http://dx.doi.org/10.1177/108201329600200509]
[113]
Klaenhammer, T.R.; Fitzgerald, G.F. Bacteriophages and Bacteriophage Resistance.Genetics and biotechnology of lactic acid bacteria, 1994, 106-168.
[http://dx.doi.org/10.1007/978-94-011-1340-3_3]
[114]
Tanji, Y.; Shimada, T.; Fukudomi, H.; Miyanaga, K.; Nakai, Y.; Unno, H. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J. Biosci. Bioeng., 2005, 100(3), 280-287.
[http://dx.doi.org/10.1263/jbb.100.280] [PMID: 16243277]
[115]
Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res., 2006, 40(1), 3-22.
[http://dx.doi.org/10.1016/j.watres.2005.10.030] [PMID: 16386286]
[116]
Briggiler Marcó, M.; De Antoni, G.L.; Reinheimer, J.A.; Quiberoni, A. Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages. J. Food Prot., 2009, 72(5), 1012-1019.
[http://dx.doi.org/10.4315/0362-028X-72.5.1012] [PMID: 19517728]
[117]
Briggiler Marcó, M.; Quiberoni, A. del L.; Negro, A. C.; Reinheimer, J. A.; Alfano, O. M. Evaluation of the photocatalytic inactivation efficiency of dairy bacteriophages. Chem. Eng. J., 2011, 172(2–3), 987-993.
[http://dx.doi.org/10.1016/j.cej.2011.07.012]
[118]
Olofsson, L.; Ankarloo, J.; Nicholls, I.A. Phage viability in organic media: insights into phage stability. J. Mol. Recognit., 1998, 11(1–6), 91-93.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<91:AID-JMR397>3.0.CO;2-O.]
[119]
Jiang, Y.H.; Liu, J.Q.; Zhao, C.Y.; Yu, S.; Sun, Y.B.; Shi, H.Y.; Huang, H.L. Isolation and Genome Sequencing of a Novel Pseudomonas aeruginosa Phage PA-YS35. Curr. Microbiol., 2020, 77(1), 123-128.
[http://dx.doi.org/10.1007/s00284-019-01792-8] [PMID: 31664502]
[120]
Atamer, Z.; Dietrich, J.; Müller-Merbach, M.; Neve, H.; Heller, K.J.; Hinrichs, J. Screening for and characterization of lactococcus lactis bacteriophages with high thermal resistance. Int. Dairy J., 2009, 19(4), 228-235.
[http://dx.doi.org/10.1016/j.idairyj.2008.10.012]
[121]
Wagner, N.; Matzen, S.; Walte, H.G.; Neve, H.; Franz, C.M.A.P.; Heller, K.J.; Hammer, P. Extreme thermal stability of lactococcus lactis bacteriophages: Evaluation of phage inactivation in a pilot-plant pasteurizer; LWT, 2018.
[http://dx.doi.org/10.1016/j.lwt.2018.02.056]
[122]
Ebrecht, A.C.; Guglielmotti, D.M.; Tremmel, G.; Reinheimer, J.A.; Suárez, V.B. Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance. Food Microbiol., 2010, 27(4), 515-520.
[http://dx.doi.org/10.1016/j.fm.2009.12.012] [PMID: 20417401]
[123]
Ahmadi, H.; Wang, Q.; Lim, L.T.; Balamurugan, S. Encapsulation of listeria phage a511 by alginate to improve its thermal stability. Methods Mol. Biol., 2018.
[http://dx.doi.org/10.1007/978-1-4939-7343-9_7]
[124]
Guglielmotti, D.M.; Mercanti, D.J.; Reinheimer, J.A. Quiberoni, Adel.L. Review: efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol., 2012, 2, 282.
[http://dx.doi.org/10.3389/fmicb.2011.00282] [PMID: 22275912]
[125]
Maillard, J.Y.; Hann, A.C.; Baubet, V.; Perrin, R. Efficacy and mechanisms of action of sodium hypochlorite on Pseudomonas aeruginosa PAO1 phage F116. J. Appl. Microbiol., 1998, 85(6), 925-932.
[http://dx.doi.org/10.1111/j.1365-2672.1998.tb05255.x] [PMID: 9871311]
[126]
Maillard, J-Y.; Beggs, T.S.; Day, M.J.; Hudson, R.A.; Russell, A.D. Effect Of Biocides On Pseudomonas Aeruginosa Phage F116. Lett. Appl. Microbiol., 1993.
[http://dx.doi.org/10.1111/j.1472-765X.1993.tb00386.x]
[127]
Müller-Merbach, M.; Rauscher, T.; Hinrichs, J. Inactivation of bacteriophages by thermal and high-pressure treatment. Int. Dairy J., 2005.
[http://dx.doi.org/10.1016/j.idairyj.2004.08.019]
[128]
Ackermann, H. Classification of Bacteriophages; The Bacteriophages, 2006.
[129]
Kęsik-Szeloch, A.; Drulis-Kawa, Z.; Weber-Dąbrowska, B.; Kassner, J.; Majkowska-Skrobek, G.; Augustyniak, D.; Łusiak-Szelachowska, M.; Zaczek, M.; Górski, A.; Kropinski, A.M. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol. J., 2013, 10, 100.
[http://dx.doi.org/10.1186/1743-422X-10-100] [PMID: 23537199]
[130]
Adnan, M.; Ali Shah, M.R.; Jamal, M.; Jalil, F.; Andleeb, S.; Nawaz, M.A.; Pervez, S.; Hussain, T.; Shah, I.; Imran, M.; Kamil, A. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals, 2020, 63, 89-96.
[http://dx.doi.org/10.1016/j.biologicals.2019.10.003] [PMID: 31685418]
[131]
Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci., 2017, 249, 100-133.
[http://dx.doi.org/10.1016/j.cis.2017.05.014] [PMID: 28688779]
[132]
Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science (80-. ),, 1985.
[http://dx.doi.org/10.1126/science.4001944]
[133]
ANNE K.. VIDAVER; R. K., KOSKI; A. J., L. V. E. Bacteriophage Φ6: A lipid-containing virus of pseudomonas phaseolicola.pdf. J; Virol: Nebraska, 1972.
[134]
Tulloch, A. P.; Craig, B. M.; Ledingham, G. A. The Oil of Wheat Stem Rust Uredospores., 1958. 4(5327)
[135]
Lingohr, E.; Frost, S.; Johnson, R.P. Determination of bacteriophage genome size by pulsed-field gel electrophoresis. Methods Mol. Biol., 2009, 502, 19-25.
[http://dx.doi.org/10.1007/978-1-60327-565-1_3] [PMID: 19082549]
[136]
Matochko, W.L.; Chu, K.; Jin, B.; Lee, S.W.; Whitesides, G.M.; Derda, R. Deep sequencing analysis of phage libraries using Illumina platform. Methods, 2012, 58(1), 47-55.
[http://dx.doi.org/10.1016/j.ymeth.2012.07.006] [PMID: 22819855]
[137]
Fokine, A.; Rossmann, M.G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage, 2014, 4(1)e28281
[http://dx.doi.org/10.4161/bact.28281] [PMID: 24616838]
[138]
Jakubowska-Deredas, M.; Jurczak-Kurek, A.; Richert, M.; Łoś, M.; Narajczyk, M.; Wróbel, B. Diversity of tailed phages in Baltic Sea sediment: large number of siphoviruses with extremely long tails. Res. Microbiol., 2012, 163(4), 292-296.
[http://dx.doi.org/10.1016/j.resmic.2012.02.002] [PMID: 22366738]
[139]
Beniac, D.R.; Siemens, C.G.; Wright, C.J.; Booth, T.F. A filtration based technique for simultaneous SEM and TEM sample preparation for the rapid detection of pathogens. Viruses, 2014, 6(9), 3458-3471.
[http://dx.doi.org/10.3390/v6093458] [PMID: 25243370]
[140]
Goldsmith, C.S.; Miller, S.E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev., 2009, 22(4), 552-563.
[http://dx.doi.org/10.1128/CMR.00027-09] [PMID: 19822888]
[141]
Laue, M.; Bannert, N. Detection limit of negative staining electron microscopy for the diagnosis of bioterrorism-related micro-organisms. J. Appl. Microbiol., 2010, 109(4), 1159-1168.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04737.x] [PMID: 20456527]
[142]
Hammond, G.W.; Hazelton, P.R.; Chuang, I.; Klisko, B. Improved detection of viruses by electron microscopy after direct ultracentrifuge preparation of specimens. J. Clin. Microbiol., 1981, 14(2), 210-221.
[http://dx.doi.org/10.1128/JCM.14.2.210-221.1981] [PMID: 6268658]
[143]
Ackermann, H.W. Bacteriophage Electron Microscopy. Adv. Virus Res., 2012.
[http://dx.doi.org/10.1016/B978-0-12-394621-8.00017-0]
[144]
Belnap, D. M. Detection of Bacteriophages: Electron Microscopy and Visualization. Bacteriophages Biol. Technol. Ther., 2021, 561-620.
[145]
Kuznetsov, Y.G.; McPherson, A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol. Mol. Biol. Rev., 2011, 75(2), 268-285.
[http://dx.doi.org/10.1128/MMBR.00041-10] [PMID: 21646429]
[146]
Kutter, E.M.; Skutt-Kakaria, K.; Blasdel, B.; El-Shibiny, A.; Castano, A.; Bryan, D.; Kropinski, A.M.; Villegas, A.; Ackermann, H.W.; Toribio, A.L.; Pickard, D.; Anany, H.; Callaway, T.; Brabban, A.D. Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol. J., 2011, 8, 430.
[http://dx.doi.org/10.1186/1743-422X-8-430] [PMID: 21899740]
[147]
Szermer-Olearnik, B.; Drab, M.; Mąkosa, M.; Zembala, M.; Barbasz, J.; Dąbrowska, K.; Boratyński, J. Aggregation/dispersion transitions of T4 phage triggered by environmental ion availability. J. Nanobiotechnology, 2017, 15(1), 32.
[http://dx.doi.org/10.1186/s12951-017-0266-5] [PMID: 28438164]
[148]
Erb, M.L.; Kraemer, J.A.; Coker, J.K.C.; Chaikeeratisak, V.; Nonejuie, P.; Agard, D.A.; Pogliano, J. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife, 2014, 3.
[http://dx.doi.org/10.7554/eLife.03197] [PMID: 25429514]
[149]
Sen, A.; Heymann, J.B.; Cheng, N.; Qiao, J.; Mindich, L.; Steven, A.C. Initial location of the RNA-dependent RNA polymerase in the bacteriophage Φ6 procapsid determined by cryo-electron microscopy. J. Biol. Chem., 2008, 283(18), 12227-12231.
[http://dx.doi.org/10.1074/jbc.M710508200] [PMID: 18287088]
[150]
Aprea, G.; D’Angelo, A.R.; Prencipe, V.A.; Igliorati, G. Bacteriophage morphological characterization by using transmission electron microscopy. J. Life Sci., 2015, 9(1), 214-220.
[http://dx.doi.org/10.17265/1934-7391/2015.05.004]
[151]
Yazdi, M.; Bouzari, M.; Ghaemi, E.A. Isolation and Characterization of a Lytic Bacteriophage (vB_PmiS-TH) and Its Application in Combination with Ampicillin against Planktonic and Biofilm Forms of Proteus mirabilis Isolated from Urinary Tract Infection. J. Mol. Microbiol. Biotechnol., 2018, 28(1), 37-46.
[http://dx.doi.org/10.1159/000487137] [PMID: 29617701]
[152]
Shlezinger, M.; Friedman, M.; Houri-Haddad, Y.; Hazan, R.; Beyth, N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One, 2019, 14(7)e0219599
[http://dx.doi.org/10.1371/journal.pone.0219599] [PMID: 31291645]
[153]
Liu, Z.; Liu, S.; Cui, J.; Tan, Y.; He, J.; Zhang, J. Transmission electron microscopy studies of cellular responses to entry of virions: one kind of natural nanobiomaterial. Int. J. Cell Biol., 2012, 2012596589
[http://dx.doi.org/10.1155/2012/596589] [PMID: 22567012]
[154]
Cuervo, A.; Carrascosa, J.L. Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy. Bacteriophage Therapy; Springer, 2018, pp. 43-55.
[http://dx.doi.org/10.1007/978-1-4939-7395-8_5]
[155]
Sun, L.; Zhang, X.; Gao, S.; Rao, P.A.; Padilla-Sanchez, V.; Chen, Z.; Sun, S.; Xiang, Y.; Subramaniam, S.; Rao, V.B.; Rossmann, M.G. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat. Commun., 2015, 6(1), 7548.
[http://dx.doi.org/10.1038/ncomms8548] [PMID: 26144253]
[156]
Koning, R.I.; Gomez-Blanco, J.; Akopjana, I.; Vargas, J.; Kazaks, A.; Tars, K.; Carazo, J.M.; Koster, A.J. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun., 2016, 7(1), 12524.
[http://dx.doi.org/10.1038/ncomms12524] [PMID: 27561669]
[157]
EMSearch. Advanced search results, https://www.ebi.ac.uk/pdbe/emdb/searchResults.html/?q=*phage*accessedFeb 13;2021
[158]
Hrebík, D.; Štveráková, D.; Škubník, K.; Füzik, T.; Pantůček, R.; Plevka, P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci. Adv., 2019, 5(10)eaaw7414
[http://dx.doi.org/10.1126/sciadv.aaw7414] [PMID: 31663016]
[159]
Wang, C.; Tu, J.; Liu, J.; Molineux, I.J. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol., 2019, 4(6), 1049-1056.
[http://dx.doi.org/10.1038/s41564-019-0403-z] [PMID: 30886360]
[160]
Lichtman, J.W.; Conchello, J.A. Fluorescence microscopy. Nat. Methods, 2005, 2(12), 910-919.
[http://dx.doi.org/10.1038/nmeth817] [PMID: 16299476]
[161]
Newton, J.R.; Kelly, K.A.; Mahmood, U.; Weissleder, R.; Deutscher, S.L. In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia, 2006, 8(9), 772-780.
[http://dx.doi.org/10.1593/neo.06331] [PMID: 16984734]
[162]
Kelly, K.A.; Waterman, P.; Weissleder, R. In vivo imaging of molecularly targeted phage. Neoplasia, 2006, 8(12), 1011-1018.
[http://dx.doi.org/10.1593/neo.06610] [PMID: 17217618]
[163]
Namura, M.; Hijikata, T.; Miyanaga, K.; Tanji, Y. Detection of Escherichia coli with fluorescent labeled phages that have a broad host range to E. coli in sewage water. Biotechnol. Prog., 2008, 24(2), 481-486.
[http://dx.doi.org/10.1021/bp070326c] [PMID: 18225914]
[164]
Edgar, R.; McKinstry, M.; Hwang, J.; Oppenheim, A.B.; Fekete, R.A.; Giulian, G.; Merril, C.; Nagashima, K.; Adhya, S. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 4841-4845.
[http://dx.doi.org/10.1073/pnas.0601211103] [PMID: 16549760]
[165]
Gill, J.J.; Wang, B.; Sestak, E.; Young, R.; Chu, K.H. Characterization of a Novel Tectivirus Phage Toil and Its Potential as an Agent for Biolipid Extraction. Sci. Rep., 2018, 8(1), 1062.
[http://dx.doi.org/10.1038/s41598-018-19455-2] [PMID: 29348539]
[166]
Baldvinsson, S.B.; Sørensen, M.C.; Vegge, C.S.; Clokie, M.R.J.; Brøndsted, L. Campylobacter jejuni motility is required for infection of the flagellotropic bacteriophage F341. Appl. Environ. Microbiol., 2014, 80(22), 7096-7106.
[http://dx.doi.org/10.1128/AEM.02057-14] [PMID: 25261508]
[167]
Binnig, G.; Quate, C.F.; Gerber, C.; Binnig, G.; Quate, C.F.; Gerber, C.H. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9), 930-933.
[http://dx.doi.org/10.1103/PhysRevLett.56.930] [PMID: 10033323]
[168]
Dufrêne, Y.F. AFM for nanoscale microbe analysis. Analyst (Lond.), 2008, 133(3), 297-301.
[http://dx.doi.org/10.1039/B716646J] [PMID: 18299742]
[169]
Müller, D.J.; Krieg, M.; Alsteens, D.; Dufrêne, Y.F. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr. Opin. Biotechnol., 2009, 20(1), 4-13.
[http://dx.doi.org/10.1016/j.copbio.2009.02.005] [PMID: 19264474]
[170]
Dubrovin, E.V.; Voloshin, A.G.; Kraevsky, S.V.; Ignatyuk, T.E.; Abramchuk, S.S.; Yaminsky, I.V.; Ignatov, S.G. Atomic force microscopy investigation of phage infection of bacteria. Langmuir, 2008, 24(22), 13068-13074.
[http://dx.doi.org/10.1021/la8022612] [PMID: 18850726]
[171]
Dubrovin, E.V.; Popova, A.V.; Kraevskiy, S.V.; Ignatov, S.G.; Ignatyuk, T.E.; Yaminsky, I.V.; Volozhantsev, N.V. Atomic force microscopy analysis of the Acinetobacter baumannii bacteriophage AP22 lytic cycle. PLoS One, 2012, 7(10)e47348
[http://dx.doi.org/10.1371/journal.pone.0047348] [PMID: 23071792]
[172]
Chang, Y.; Shin, H.; Lee, J.H.; Park, C.J.; Paik, S.Y.; Ryu, S. Isolation and genome characterization of the virulent staphylococcus aureus bacteriophage sa97. Viruses, 2015, 7(10), 5225-5242.
[http://dx.doi.org/10.3390/v7102870] [PMID: 26437428]
[173]
Stern, A.; Sorek, R. The phage-host arms race: shaping the evolution of microbes. BioEssays, 2011, 33(1), 43-51.
[http://dx.doi.org/10.1002/bies.201000071] [PMID: 20979102]
[174]
Chang, Y.; Bai, J.; Lee, J.H.; Ryu, S. Mutation of a Staphylococcus aureus temperate bacteriophage to a virulent one and evaluation of its application. Food Microbiol., 2019, 82, 523-532.
[http://dx.doi.org/10.1016/j.fm.2019.03.025] [PMID: 31027814]
[175]
Schirmeier, E.; Zimmermann, P.; Hofmann, V.; Biebl, M.; Gerstmans, H.; Maervoet, V.E.T.; Briers, Y. Inhibitory and bactericidal effect of Artilysin® Art-175 against colistin-resistant mcr-1-positive Escherichia coli isolates. Int. J. Antimicrob. Agents, 2018, 51(3), 528-529.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.027] [PMID: 28843823]
[176]
Black, L.W. DNA packaging in dsDNA bacteriophages. Annu. Rev. Microbiol., 1989, 43, 267-292.
[http://dx.doi.org/10.1146/annurev.mi.43.100189.001411] [PMID: 2679356]
[177]
Loeb, T.; Zinder, N.D. A bacteriophage containing RNA. Proc. Natl. Acad. Sci. USA, 1961, 47, 282-289.
[http://dx.doi.org/10.1073/pnas.47.3.282] [PMID: 13763053]
[178]
Semancik, J.S.; Vidaver, A.K.; Van Etten, J.L. Characterization of segmented double-helical RNA from bacteriophage phi6. J. Mol. Biol., 1973, 78(4), 617-625.
[http://dx.doi.org/10.1016/0022-2836(73)90283-0] [PMID: 4357756]
[179]
Sanger, F.; Air, G.M.; Barrell, B.G.; Brown, N.L.; Coulson, A.R.; Fiddes, C.A.; Hutchison, C.A.; Slocombe, P.M.; Smith, M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 1977, 265(5596), 687-695.
[http://dx.doi.org/10.1038/265687a0] [PMID: 870828]
[180]
Almog, R.; Shirey, T.L. A modified orcinol test for the specific determination of RNA. Anal. Biochem., 1978, 91(1), 130-137.
[http://dx.doi.org/10.1016/0003-2697(78)90823-0] [PMID: 9762091]
[181]
Pederson, T. Use of diphenylamine as a colorimetric reagent for ribonucleic acid. Anal. Biochem., 1969, 28(1), 35-46.
[http://dx.doi.org/10.1016/0003-2697(69)90154-7] [PMID: 5781427]
[182]
Patterson, J.; Mura, C. Rapid colorimetric assays to qualitatively distinguish RNA and DNA in biomolecular samples. J. Vis. Exp., 2013, (72)e50225
[http://dx.doi.org/10.3791/50225] [PMID: 23407542]
[183]
Yang, Y.; Lu, S.; Shen, W.; Zhao, X.; Shen, M.; Tan, Y.; Li, G.; Li, M.; Wang, J.; Hu, F.; Le, S. Characterization of the first double-stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci. Rep., 2016, 6, 38795.
[http://dx.doi.org/10.1038/srep38795] [PMID: 27934909]
[184]
Umemura, K.; Nagami, F.; Okada, T.; Kuroda, R. AFM characterization of single strand-specific endonuclease activity on linear DNA. Nucleic Acids Res., 2000, 28(9)E39
[http://dx.doi.org/10.1093/nar/28.9.e39] [PMID: 10756206]
[185]
Åkerman, B. Effects of supercoiling in electrophoretic trapping of circular DNA in polyacrylamide gels. Biophys. J., 1998, 74(6), 3140-3151.
[http://dx.doi.org/10.1016/S0006-3495(98)78020-8] [PMID: 9635767]
[186]
Casjens, S.R.; Gilcrease, E.B. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol. Biol., 2009, 502, 91-111.
[http://dx.doi.org/10.1007/978-1-60327-565-1_7] [PMID: 19082553]
[187]
Merrill, B.D.; Ward, A.T.; Grose, J.H.; Hope, S. Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genomics, 2016, 17, 679.
[http://dx.doi.org/10.1186/s12864-016-3018-2] [PMID: 27561606]
[188]
Garneau, J.R.; Depardieu, F.; Fortier, L.C.; Bikard, D.; Monot, M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep., 2017, 7(1), 8292.
[http://dx.doi.org/10.1038/s41598-017-07910-5] [PMID: 28811656]
[189]
Hendrix, R.W.; Smith, M.C.M.; Burns, R.N.; Ford, M.E.; Hatfull, G.F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2192-2197.
[http://dx.doi.org/10.1073/pnas.96.5.2192] [PMID: 10051617]
[190]
Brüssow, H.; Canchaya, C.; Hardt, W-D. phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev., 2004, 68(3), 560-602.
[http://dx.doi.org/10.1128/MMBR.68.3]
[191]
Canchaya, C.; Fournous, G.; Chibani-Chennoufi, S.; Dillmann, M.L.; Brüssow, H. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol., 2003, 6(4), 417-424.
[http://dx.doi.org/10.1016/S1369-5274 (03)00086-9] [PMID: 12941415]
[192]
Aziz, R.K.; Edwards, R.A.; Taylor, W.W.; Low, D.E.; McGeer, A.; Kotb, M. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol., 2005, 187(10), 3311-3318.
[http://dx.doi.org/10.1128/JB.187.10.3311-3318.2005] [PMID: 15866915]
[193]
Aziz, R.K.; Ismail, S.A.; Park, H.W.; Kotb, M. Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Mol. Microbiol., 2004, 54(1), 184-197.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04255.x] [PMID: 15458415]
[194]
Bose, M.; Barber, R.D. Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol., 2006, 6(3), 223-227.
[PMID: 16922685]
[195]
Arndt, D.; Marcu, A.; Liang, Y.; Wishart, D.S. Phast, phaster and phastest: tools for finding prophage in bacterial genomes. Brief. Bioinform., 2018.
[http://dx.doi.org/10.1093/bib/bbx121] [PMID: 29028989]
[196]
Fouts, D.E. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res., 2006, 34(20), 5839-5851.
[http://dx.doi.org/10.1093/nar/gkl732] [PMID: 17062630]
[197]
Lima-Mendez, G.; Van Helden, J.; Toussaint, A.; Leplae, R. Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics, 2008, 24(6), 863-865.
[http://dx.doi.org/10.1093/bioinformatics/btn043] [PMID: 18238785]
[198]
Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: a fast phage search tool.Nucleic Acids Res.,, 2011, 39(Web Server issue), W347-52.
[http://dx.doi.org/10.1093/nar/gkr485] [PMID: 21672955]
[199]
Akhter, S.; Aziz, R.K.; Edwards, R.A. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res., 2012, 40(16)e126
[http://dx.doi.org/10.1093/nar/gks406] [PMID: 22584627]
[200]
Reis-Cunha, J.L.; Bartholomeu, D.C.; Manson, A.L.; Earl, A.M.; Cerqueira, G.C.; Proph, E.T. ProphET, prophage estimation tool: A stand-alone prophage sequence prediction tool with self-updating reference database. PLoS One, 2019, 14(10)e0223364
[http://dx.doi.org/10.1371/journal.pone.0223364] [PMID: 31577829]
[201]
Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: mining viral signal from microbial genomic data. PeerJ, 2015, 3e985
[http://dx.doi.org/10.7717/peerj.985] [PMID: 26038737]
[202]
Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res., 2016, 44(W1)W16-21
[http://dx.doi.org/10.1093/nar/gkw387] [PMID: 27141966]
[203]
Li, J.; Tai, C.; Deng, Z.; Zhong, W.; He, Y.; Ou, H.Y. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief. Bioinform., 2018, 19(4), 566-574.
[http://dx.doi.org/10.1093/bib/bbw141] [PMID: 28077405]
[204]
de Sousa, A.L.; Maués, D.; Lobato, A.; Franco, E.F.; Pinheiro, K.; Araújo, F.; Pantoja, Y.; da Costa da Silva, A.L.; Morais, J.; Ramos, R.T.J. Phageweb - Web interface for rapid identification and characterization of prophages in bacterial genomes. Front. Genet., 2018, 9, 644.
[http://dx.doi.org/10.3389/fgene.2018.00644] [PMID: 30619469]
[205]
Cresawn, S.G.; Bogel, M.; Day, N.; Jacobs-Sera, D.; Hendrix, R.W.; Hatfull, G.F. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics, 2011, 12, 395.
[http://dx.doi.org/10.1186/1471-2105-12-395] [PMID: 21991981]
[206]
Chung, C.H.; Walter, M.H.; Yang, L.; Chen, S.G.; Winston, V.; Thomas, M.A. Predicting genome terminus sequences of Bacillus cereus-group bacteriophage using next generation sequencing data. BMC Genomics, 2017, 18(1), 350.
[http://dx.doi.org/10.1186/s12864-017-3744-0] [PMID: 28472946]
[207]
McNair, K.; Aziz, R.K.; Pusch, G.D.; Overbeek, R.; Dutilh, B.E.; Edwards, R. Phage genome annotation using the rast pipeline. Methods Mol. Biol., 2018, 1681, 231-238.
[http://dx.doi.org/10.1007/978-1-4939-7343-9_17] [PMID: 29134599]
[208]
Kang, H.S.; McNair, K.; Cuevas, D.; Bailey, B.; Segall, A.; Edwards, R.A. prophage genomics reveals patterns in phage genome organization and replication. bioRxiv, 2017.
[http://dx.doi.org/10.1101/114819]
[209]
McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A.; Hancock, J. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics, 2019, 35(22), 4537-4542.
[http://dx.doi.org/10.1093/bioinformatics/btz265] [PMID: 31329826]
[210]
Mcnair, K.; Zhou, C.; Souza, B.; Edwards, R.A. THEA: A Novel Approach to Gene Identification in Phage Genomes. bioRxiv, 2018.
[http://dx.doi.org/10.1093/bioinformatics/btz265] [PMID: 31329826]
[211]
Ecale Zhou, C.L.; Malfatti, S.; Kimbrel, J.; Philipson, C.; McNair, K.; Hamilton, T.; Edwards, R.; Souza, B.; Hancock, J. multiPhATE: bioinformatics pipeline for functional annotation of phage isolates. Bioinformatics, 2019, 35(21), 4402-4404.
[http://dx.doi.org/10.1093/bioinformatics/btz258] [PMID: 31086982]
[212]
Philipson, C.W.; Voegtly, L.J.; Lueder, M.R.; Long, K.A.; Rice, G.K.; Frey, K.G.; Biswas, B.; Cer, R.Z.; Hamilton, T.; Bishop-Lilly, K.A. Characterizing phage genomes for therapeutic applications. Viruses, 2018, 10(4)E188
[http://dx.doi.org/10.3390/v10040188] [PMID: 29642590]
[213]
Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; Meyer, F.; Olsen, G.J.; Olson, R.; Osterman, A.L.; Overbeek, R.A.; McNeil, L.K.; Paarmann, D.; Paczian, T.; Parrello, B.; Pusch, G.D.; Reich, C.; Stevens, R.; Vassieva, O.; Vonstein, V.; Wilke, A.; Zagnitko, O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 2008, 9, 75.
[http://dx.doi.org/10.1186/1471-2164-9-75] [PMID: 18261238]
[214]
Aziz, R.K.; Devoid, S.; Disz, T.; Edwards, R.A.; Henry, C.S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; Stevens, R.L.; Vonstein, V.; Xia, F. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One, 2012, 7(10)e48053
[http://dx.doi.org/10.1371/journal.pone.0048053] [PMID: 23110173]
[215]
Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; Shukla, M.; Thomason, J.A., III; Stevens, R.; Vonstein, V.; Wattam, A.R.; Xia, F. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep., 2015, 5, 8365.
[http://dx.doi.org/10.1038/srep08365] [PMID: 25666585]
[216]
Otto, T.D.; Dillon, G.P.; Degrave, W.S.; Berriman, M. RATT: Rapid annotation transfer tool. Nucleic Acids Res., 2011, 39(9)e57
[http://dx.doi.org/10.1093/nar/gkq1268] [PMID: 21306991]
[217]
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14), 2068-2069.
[http://dx.doi.org/10.1093/bioinformatics/btu153] [PMID: 24642063]
[218]
Tanizawa, Y.; Fujisawa, T.; Nakamura, Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 2018, 34(6), 1037-1039.
[http://dx.doi.org/10.1093/bioinformatics/btx713] [PMID: 29106469]
[219]
Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P.; Drummond, A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 2012, 28(12), 1647-1649.
[http://dx.doi.org/10.1093/bioinformatics/bts199] [PMID: 22543367]
[220]
Zhang, K.Y.; Gao, Y.Z.; Du, M.Z.; Liu, S.; Dong, C.; Guo, F.B. Vgas: A viral genome annotation system. Front. Microbiol., 2019, 10, 184.
[http://dx.doi.org/10.3389/fmicb.2019.00184] [PMID: 30814982]
[221]
Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 1999, 27(23), 4636-4641.
[http://dx.doi.org/10.1093/nar/27.23.4636] [PMID: 10556321]
[222]
Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010, 11, 119.
[http://dx.doi.org/10.1186/1471-2105-11-119] [PMID: 20211023]
[223]
Ramakrishna, R.; Srinivasan, R. Gene identification in bacterial and organellar genomes using GeneScan. Comput. Chem., 1999, 23(2), 165-174.
[http://dx.doi.org/10.1016/S0097-8485(98)00034-5] [PMID: 10353188]
[224]
Guo, F.B.; Zhang, C.T. ZCURVE_V: a new self-training system for recognizing protein-coding genes in viral and phage genomes. BMC Bioinformatics, 2006, 7, 9.
[http://dx.doi.org/10.1186/1471-2105-7-9] [PMID: 16401352]
[225]
Besemer, J.; Borodovsky, M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses.Nucleic Acids Res.,, 2005, 33(Web Server issue (Suppl. 2)), W451-4.
[http://dx.doi.org/10.1093/nar/gki487] [PMID: 15980510]
[226]
Guzina, J.; Djordjevic, M. Bioinformatics as a first-line approach for understanding bacteriophage transcription. Bacteriophage, 2015, 5(3)e1062588
[http://dx.doi.org/10.1080/21597081.2015.1062588] [PMID: 26442194]
[227]
Lavigne, R.; Sun, W.D.; Volckaert, G. PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics, 2004, 20(5), 629-635.
[http://dx.doi.org/10.1093/bioinformatics/btg456] [PMID: 15033869]
[228]
Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res., 2015, 43(W1)W39-49
[http://dx.doi.org/10.1093/nar/gkv416] [PMID: 25953851]
[229]
Sampaio, M.; Rocha, M.; Oliveira, H.; Dias, O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics, 2019, 35(24), 5301-5302.
[http://dx.doi.org/10.1093/bioinformatics/btz580] [PMID: 31359029]
[230]
Edwards, R.A.; McNair, K.; Faust, K.; Raes, J.; Dutilh, B.E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev., 2016, 40(2), 258-272.
[http://dx.doi.org/10.1093/femsre/fuv048] [PMID: 26657537]
[231]
Villarroel, J.; Kleinheinz, K.A.; Jurtz, V.I.; Zschach, H.; Lund, O.; Nielsen, M.; Larsen, M.V. HostPhinder: A phage host prediction tool. Viruses, 2016, 8(5)E116
[http://dx.doi.org/10.3390/v8050116] [PMID: 27153081]
[232]
Ahlgren, N.A.; Ren, J.; Lu, Y.Y.; Fuhrman, J.A.; Sun, F. Alignment-free $d_2^*$ oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res., 2017, 45(1), 39-53.
[http://dx.doi.org/10.1093/nar/gkw1002] [PMID: 27899557]
[233]
Galiez, C.; Siebert, M.; Enault, F.; Vincent, J.; Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics, 2017, 33(19), 3113-3114.
[http://dx.doi.org/10.1093/bioinformatics/btx383] [PMID: 28957499]
[234]
Ripp, S.; Miller, R.V. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology (Reading), 1997, 143(6), 2065-2070.
[http://dx.doi.org/10.1099/00221287-143-6-2065] [PMID: 33711876]
[235]
Olszak, T.; Latka, A.; Roszniowski, B.; Valvano, M.A.; Drulis-Kawa, Z. Phage life cycles behind bacterial biodiversity. Curr. Med. Chem., 2017, 24(36), 3987-4001.
[http://dx.doi.org/10.2174/0929867324666170413100136] [PMID: 28412903]
[236]
Rakonjac, J.; Bennett, N.J.; Spagnuolo, J.; Gagic, D.; Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol., 2011, 13(2), 51-76.
[http://dx.doi.org/10.21775/cimb.013.051] [PMID: 21502666]
[237]
Pires, D.P.; Melo, L.; Vilas Boas, D.; Sillankorva, S.; Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol., 2017, 39, 48-56.
[http://dx.doi.org/10.1016/j.mib.2017.09.004] [PMID: 28964986]
[238]
Hansen, M.F.; Svenningsen, S.L.; Røder, H.L.; Middelboe, M.; Burmølle, M. Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. Trends Microbiol., 2019, 27(9), 739-752.
[http://dx.doi.org/10.1016/j.tim.2019.04.006] [PMID: 31128928]
[239]
Geredew Kifelew, L.; Mitchell, J.G.; Speck, P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling, 2019, 35(4), 472-481.
[http://dx.doi.org/10.1080/08927014.2019.1613525] [PMID: 31144513]
[240]
Azeredo, J.; Sutherland, I.W. The use of phages for the removal of infectious biofilms. Curr. Pharm. Biotechnol., 2008, 9(4), 261-266.
[http://dx.doi.org/10.2174/138920108785161604] [PMID: 18691087]
[241]
Sommer, J.; Trautner, C.; Witte, A.K.; Fister, S.; Schoder, D.; Rossmanith, P.; Mester, P-J. Don’t shut the stable door after the phage has bolted-the importance of bacteriophage inactivation in food environments. Viruses, 2019, 11(5), 468.
[http://dx.doi.org/10.3390/v11050468] [PMID: 31121941]
[242]
Rahbarnia, L.; Farajnia, S.; Babaei, H.; Majidi, J.; Veisi, K.; Ahmadzadeh, V.; Akbari, B. Evolution of phage display technology: from discovery to application. J. Drug Target., 2017, 25(3), 216-224.
[http://dx.doi.org/10.1080/1061186X.2016.1258570] [PMID: 27819143]
[243]
Crabb, H.K.; Allen, J.L.; Devlin, J.M.; Firestone, S.M.; Stevenson, M.; Wilks, C.R.; Gilkerson, J.R. Traditional Salmonella Typhimurium typing tools (phage typing and MLVA) are sufficient to resolve well-defined outbreak events only. Food Microbiol., 2019, 84103237
[http://dx.doi.org/10.1016/j.fm.2019.06.001] [PMID: 31421774]
[244]
Anderson, E.S.; Williams, R.E.O. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J. Clin. Pathol., 1956, 9(2), 94-127.
[http://dx.doi.org/10.1136/jcp.9.2.94] [PMID: 13332068]
[245]
Kirchhelle, C. The Forgotten Typers: The Rise and Fall of Weimar Bacteriophage-Typing (1921–1935). Notes Rec., 2020, 74(4), 539-565.
[http://dx.doi.org/10.1098/rsnr.2019.0020]
[246]
Baggesen, D.L.; Sørensen, G.; Nielsen, E.M.; Wegener, H.C. Phage typing of Salmonella Typhimurium - is it still a useful tool for surveillance and outbreak investigation? Euro Surveill., 2010, 15(4), 19471.
[PMID: 20122382]
[247]
Mohammed, M. Old School Wins: Outbreak Investigation of Foodborne Salmonellosis; Atlas Sci, 2018.
[248]
Mohammed, M. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium? BMC Res. Notes, 2017, 10(1), 578.
[http://dx.doi.org/10.1186/s13104-017-2878-0] [PMID: 29115982]
[249]
Tarifi, A.; Naboka, O. I.; Luchko, E. N.; Filiptsova, O. V. Phage Typing and Its Uses.Тhe Exemple of Phage Therapy,, 2019.
[250]
Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect., 2008, 38(8), 426-430.
[http://dx.doi.org/10.1016/j.medmal.2008.06.023] [PMID: 18687542]
[251]
McNerney, R.; Kambashi, B.S.; Kinkese, J.; Tembwe, R.; Godfrey-Faussett, P. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J. Clin. Microbiol., 2004, 42(5), 2115-2120.
[http://dx.doi.org/10.1128/JCM.42.5.2115-2120.2004] [PMID: 15131178]
[252]
Tawil, N.; Sacher, E.; Mandeville, R.; Meunier, M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron., 2012, 37(1), 24-29.
[http://dx.doi.org/10.1016/j.bios.2012.04.048] [PMID: 22609555]
[253]
Singh, A.; Arutyunov, D.; McDermott, M.T.; Szymanski, C.M.; Evoy, S. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst (Lond.), 2011, 136(22), 4780-4786.
[http://dx.doi.org/10.1039/c1an15547d] [PMID: 21955997]
[254]
Shin, J.H.; Lee, S.E.; Kim, T.S.; Ma, D.W.; Cho, S.H.; Chai, J.Y.; Shin, E.H. Development of molecular diagnosis using multiplex real-time pcr and t4 phage internal control to simultaneously detect cryptosporidium parvum, giardia lamblia, and cyclospora cayetanensis from human stool samples. Korean J. Parasitol., 2018, 56(5), 419-427.
[http://dx.doi.org/10.3347/kjp.2018.56.5.419] [PMID: 30419727]
[255]
Shlezinger, M.; Coppenhagen-Glazer, S.; Gelman, D.; Beyth, N.; Hazan, R. Eradication of vancomycin-resistant enterococci by combining phage and vancomycin. Viruses, 2019, 11(10)E954
[http://dx.doi.org/10.3390/v11100954] [PMID: 31623253]
[256]
Bao, Q.; Li, X.; Han, G.; Zhu, Y.; Mao, C.; Yang, M. Phage-based vaccines. Adv. Drug Deliv. Rev., 2019, 145, 40-56.
[http://dx.doi.org/10.1016/j.addr.2018.12.013] [PMID: 30594492]
[257]
Leung, V.; Szewczyk, A.; Chau, J.; Hosseinidoust, Z.; Groves, L.; Hawsawi, H.; Anany, H.; Griffiths, M.W.; Ali, M.M.; Filipe, C.D.M. Long-term preservation of bacteriophage antimicrobials using sugar glasses. ACS Biomater. Sci. Eng., 2018, 4(11), 3802-3808.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00468] [PMID: 33429601]
[258]
Huang, J. Y. Bacteriophage to Combat Biofilms in Hospital Drains., 2019, 1-30.
[259]
Hyeon, S.H.; Lim, W.K.; Shin, H.J. Novel surface plasmon resonance biosensor that uses full-length det7 phage tail protein for rapid and selective detection of salmonella enterica serovar typhimurium. Biotechnol. Appl. Biochem., 2020.
[http://dx.doi.org/10.1002/bab.1883] [PMID: 31916280]
[260]
Khalili, S.; Rasaee, M.J.; Bamdad, T.; Mard-Soltani, M.; Asadi Ghalehni, M.; Jahangiri, A.; Pouriayevali, M.H.; Aghasadeghi, M.R.; Malaei, F. A novel molecular design for a hybrid phage-DNA construct against DKK1. Mol. Biotechnol., 2018, 60(11), 833-842.
[http://dx.doi.org/10.1007/s12033-018-0115-2] [PMID: 30182325]
[261]
García, P.; Madera, C.; Martínez, B.; Rodríguez, A.; Evaristo Suárez, J. Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. J. Dairy Sci., 2009, 92(7), 3019-3026.
[http://dx.doi.org/10.3168/jds.2008-1744] [PMID: 19528579]
[262]
Rohde, C.; Resch, G.; Pirnay, J.P.; Blasdel, B.G.; Debarbieux, L.; Gelman, D.; Górski, A.; Hazan, R.; Huys, I.; Kakabadze, E.; Łobocka, M.; Maestri, A.; Almeida, G.M.F.; Makalatia, K.; Malik, D.J.; Mašlaňová, I.; Merabishvili, M.; Pantucek, R.; Rose, T.; Štveráková, D.; Van Raemdonck, H.; Verbeken, G.; Chanishvili, N. expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses, 2018, 10(4), 178.
[http://dx.doi.org/10.3390/v10040178] [PMID: 29621199]