Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme

Article ID: e200421192924 Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: Glioblastoma Multiforme (GBM) is one of the most heterogeneous primary brain tumors with high mortality. In spite of the current therapeutic approaches, the survival rate remains poor, with death occurring within 12 to 15 months after the preliminary diagnosis. This warrants the need for an effective treatment modality. The Wnt/β-catenin pathway is presumably the most noteworthy pathway upregulated in almost 80% of GBM cases, contributing to tumor initiation, progression, and survival. Therefore, therapeutic strategies targeting key components of the Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate the Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors, including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemoresistance in GBM.

Objective: In this context, by employing computational tools, an attempt has been made to find out the novel combinations against the Wnt/β-catenin signalling pathway.

Methods: We have explored the binding interactions of three conventional drugs - namely temozolomide, metformin and chloroquine - along with three natural compounds, viz. epigallocatechin gallate, naringenin and phloroglucinol, on the major receptors of Wnt/β-catenin signalling.

Results: It was noted that all the experimental compounds showed profound interaction with two major receptors of the Wnt/β-catenin pathway.

Conclusion: To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the aforementioned drugs with the Wnt/β-catenin signalling in silico, and this will putatively open up new avenues for combination therapies in GBM treatment.

Keywords: Computational analysis, drug repurposing, glioblastoma multiforme, natural compounds, temozolomide, Wnt signalling.

Graphical Abstract

[1]
Sokol, S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development, 2011, 138(20), 4341-4350.
[http://dx.doi.org/10.1242/dev.066209] [PMID: 21903672]
[2]
Laksitorini, M.D.; Yathindranath, V.; Xiong, W.; Hombach-Klonisch, S.; Miller, D.W. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci. Rep., 2019, 9(1), 19718.
[http://dx.doi.org/10.1038/s41598-019-56075-w] [PMID: 31873116]
[3]
Davis, M.E. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs., 2016, 20(Suppl. 5), S2-S8.
[http://dx.doi.org/10.1188/16.CJON.S1.2-8] [PMID: 27668386]
[4]
Asad, A.S.; Nicola Candia, A.J.; Gonzalez, N.; Zuccato, C.F.; Abt, A.; Orrillo, S.J.; Lastra, Y.; De Simone, E.; Boutillon, F.; Goffin, V.; Seilicovich, A.; Pisera, D.A.; Ferraris, M.J.; Candolfi, M. Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Sci. Rep., 2019, 9(1), 19578.
[http://dx.doi.org/10.1038/s41598-019-55860-x] [PMID: 31862900]
[5]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[http://dx.doi.org/10.1101/gad.261982.115] [PMID: 26109046]
[6]
Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther., 2017, 2, 17040.
[http://dx.doi.org/10.1038/sigtrans.2017.40] [PMID: 29263927]
[7]
Wang, D.; Wang, C.; Wang, L.; Chen, Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv., 2019, 26(1), 551-565.
[http://dx.doi.org/10.1080/10717544.2019.1616235] [PMID: 31928355]
[8]
Liebner, S.; Corada, M.; Bangsow, T.; Babbage, J.; Taddei, A.; Czupalla, C.J.; Reis, M.; Felici, A.; Wolburg, H.; Fruttiger, M.; Taketo, M.M.; von Melchner, H.; Plate, K.H.; Gerhardt, H.; Dejana, E. Wnt/β-catenin signaling controls development of the blood-brain barrier. J. Cell Biol., 2008, 183(3), 409-417.
[http://dx.doi.org/10.1083/jcb.200806024] [PMID: 18955553]
[9]
Myung, J.K.; Choi, S.A.; Kim, S-K.; Wang, K-C.; Park, S-H. Snail plays an oncogenic role in glioblastoma by promoting epithelial mesenchymal transition. Int. J. Clin. Exp. Pathol., 2014, 7(5), 1977-1987.
[PMID: 24966907]
[10]
Tripathi, V.; Shin, J-H.; Stuelten, C.H.; Zhang, Y.E. TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene, 2019, 38(17), 3185-3200.
[http://dx.doi.org/10.1038/s41388-018-0655-8] [PMID: 30626936]
[11]
Tamimi, N.A.M.; Ellis, P. Drug development: from concept to marketing! Nephron Clin. Pract., 2009, 113(3), c125-c131.
[http://dx.doi.org/10.1159/000232592] [PMID: 19729922]
[12]
Tobinick, E.L. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect., 2009, 22(2), 119-125.
[http://dx.doi.org/10.1358/dnp.2009.22.2.1303818] [PMID: 19330170]
[13]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[14]
McGranahan, T.; Therkelsen, K.E.; Ahmad, S.; Nagpal, S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr. Treat. Options Oncol., 2019, 20(3), 24.
[http://dx.doi.org/10.1007/s11864-019-0619-4] [PMID: 30790064]
[15]
Rouatbi, N.; Mun Lim, Y.; Grant, V.; Miguel Costa, P.; Pollard, S. M.; Wang, J. T. W.; Al Jamal, K. T. CRISPR/Cas9 Gene Editing of Brain Cancer Stem Cells Using Lipid-Based Nano-Delivery. Neuro-Oncol., 2019, 21(4), iv7.
[http://dx.doi.org/10.1093/neuonc/noz167.029]
[16]
Semonche, A.; Shah, A.H.; Ivan, M.E.; Komotar, R.J. Towards a microRNA-based Gene Therapy for Glioblastoma. Neurosurgery, 2019, 85(2), E210-E211.
[http://dx.doi.org/10.1093/neuros/nyz166] [PMID: 31304544]
[17]
Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin. Transl. Med., 2018, 7(1), 33.
[http://dx.doi.org/10.1186/s40169-018-0211-8] [PMID: 30327965]
[18]
Sharp, M; Corp, D Standard temodal (temozolomide) regimen versus standard regimen plus early postsurgery temodal for newly diagnosed glioblastoma multiforme (study p05572). ClinicalTrials.gov Identifier: NCT00686725, 2017.
[19]
La Roche, H A study of bevacizumab (Avastin®) in combination with temozolomide and radiotherapy in participants with newly diagnosed glioblastoma. ClinicalTrials.gov Identifier: NCT00943826, 2017.
[20]
AstraZeneca. Cediranib in combination with lomustine chemotherapy in recurrent glioblastoma (REGAL). ClinicalTrials.gov Identifier: NCT00777153, 2016.
[21]
Chakraborty, A.; Trivedi, V. Streamlining the Drug Discovery Process through Repurposing of Clinically Approved Drugs. Austin J Biotechnol Bioeng, 2(3), 1047.
[22]
Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C Embryo Today, 2015, 105(2), 140-156.
[http://dx.doi.org/10.1002/bdrc.21096] [PMID: 26043938]
[23]
Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[24]
Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1), 99-109.
[http://dx.doi.org/10.1016/0092-8674(82)90409-3] [PMID: 6297757]
[25]
Wodarz, A.; Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol., 1998, 14, 59-88.
[http://dx.doi.org/10.1146/annurev.cellbio.14.1.59] [PMID: 9891778]
[26]
Willert, K.; Nusse, R. Wnt proteins. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a007864.
[http://dx.doi.org/10.1101/cshperspect.a007864] [PMID: 22952392]
[27]
Janda, C.Y.; Garcia, K.C. Wnt acylation and its functional implication in Wnt signalling regulation. Biochem. Soc. Trans., 2015, 43(2), 211-216.
[http://dx.doi.org/10.1042/BST20140249] [PMID: 25849919]
[28]
Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J., 2012, 31(12), 2714-2736.
[http://dx.doi.org/10.1038/emboj.2012.150] [PMID: 22617422]
[29]
Loh, K.M.; van Amerongen, R.; Nusse, R. Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. Dev. Cell, 2016, 38(6), 643-655.
[http://dx.doi.org/10.1016/j.devcel.2016.08.011] [PMID: 27676437]
[30]
Zhong, Z.; Virshup, D. M. Wnt signaling and drug resistance in cancer. Mol. Pharmacol., 2020, 97(2), 72-89.
[http://dx.doi.org/10.1124/mol.119.117978]
[31]
Katoh, M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int. J. Oncol., 2017, 51(5), 1357-1369. [Review].
[http://dx.doi.org/10.3892/ijo.2017.4129] [PMID: 29048660]
[32]
Skromne, I.; Stern, C.D. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development, 2001, 128(15), 2915-2927.
[PMID: 11532915]
[33]
Inestrosa, N.C.; Varela-Nallar, L. Wnt signalling in neuronal differentiation and development. Cell Tissue Res., 2015, 359(1), 215-223.
[http://dx.doi.org/10.1007/s00441-014-1996-4] [PMID: 25234280]
[34]
Nusse, R. Wnt signaling in disease and in development. Cell Res., 2005, 15(1), 28-32.
[http://dx.doi.org/10.1038/sj.cr.7290260] [PMID: 15686623]
[35]
Martí, E.; Takada, R.; Bumcrot, D.A.; Sasaki, H.; McMahon, A.P. Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development, 1995, 121(8), 2537-2547.
[PMID: 7671817]
[36]
Stone, D.M.; Hynes, M.; Armanini, M.; Swanson, T.A.; Gu, Q.; Johnson, R.L.; Scott, M.P.; Pennica, D.; Goddard, A.; Phillips, H.; Noll, M.; Hooper, J.E.; de Sauvage, F.; Rosenthal, A. The tumour- suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature, 1996, 384(6605), 129-134.
[http://dx.doi.org/10.1038/384129a0] [PMID: 8906787]
[37]
Ciani, L.; Salinas, P.C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci., 2005, 6(5), 351-362.
[http://dx.doi.org/10.1038/nrn1665] [PMID: 15832199]
[38]
Srahna, M.; Leyssen, M.; Choi, C.M.; Fradkin, L.G.; Noordermeer, J.N.; Hassan, B.A. A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol., 2006, 4(11), e348.
[http://dx.doi.org/10.1371/journal.pbio.0040348] [PMID: 17032066]
[39]
Ciani, L.; Krylova, O.; Smalley, M.J.; Dale, T.C.; Salinas, P.C. A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J. Cell Biol., 2004, 164(2), 243-253.
[http://dx.doi.org/10.1083/jcb.200309096] [PMID: 14734535]
[40]
Rosso, S.B.; Sussman, D.; Wynshaw-Boris, A.; Salinas, P.C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci., 2005, 8(1), 34-42.
[http://dx.doi.org/10.1038/nn1374] [PMID: 15608632]
[41]
Beretta, C.A.; Brinkmann, I.; Carl, M. All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns, 2011, 11(3-4), 277-284.
[http://dx.doi.org/10.1016/j.gep.2011.01.004] [PMID: 21300182]
[42]
Zhou, Y.; Wang, Y.; Tischfield, M.; Williams, J.; Smallwood, P.M.; Rattner, A.; Taketo, M.M.; Nathans, J. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Invest., 2014, 124(9), 3825-3846.
[http://dx.doi.org/10.1172/JCI76431] [PMID: 25083995]
[43]
Findley, M.K.; Koval, M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life, 2009, 61(4), 431-437.
[http://dx.doi.org/10.1002/iub.175] [PMID: 19319969]
[44]
James, J.M.; Mukouyama, Y.S. Neuronal action on the developing blood vessel pattern. Semin. Cell Dev. Biol., 2011, 22(9), 1019-1027.
[http://dx.doi.org/10.1016/j.semcdb.2011.09.010] [PMID: 21978864]
[45]
Zhao, C.; Deng, W.; Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132(4), 645-660.
[http://dx.doi.org/10.1016/j.cell.2008.01.033] [PMID: 18295581]
[46]
Caricasole, A.; Copani, A.; Caraci, F.; Aronica, E.; Rozemuller, A.J.; Caruso, A.; Storto, M.; Gaviraghi, G.; Terstappen, G.C.; Nicoletti, F. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci., 2004, 24(26), 6021-6027.
[http://dx.doi.org/10.1523/JNEUROSCI.1381-04.2004] [PMID: 15229249]
[47]
Delgado-Deida, Y.; Alula, K.M.; Theiss, A.L. The influence of mitochondrial-directed regulation of Wnt signaling on tumorigenesis. Gastroenterol. Rep. (Oxf.), 2020, 8(3), 215-223.
[http://dx.doi.org/10.1093/gastro/goaa025] [PMID: 32665853]
[48]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[49]
Zheng, H.; Ying, H.; Wiedemeyer, R.; Yan, H.; Quayle, S.N.; Ivanova, E.V.; Paik, J-H.; Zhang, H.; Xiao, Y.; Perry, S.R.; Hu, J.; Vinjamoori, A.; Gan, B.; Sahin, E.; Chheda, M.G.; Brennan, C.; Wang, Y.A.; Hahn, W.C.; Chin, L.; DePinho, R.A. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell, 2010, 17(5), 497-509.
[http://dx.doi.org/10.1016/j.ccr.2010.03.020] [PMID: 20478531]
[50]
Lee, Y.; Lee, J-K.; Ahn, S.H.; Lee, J.; Nam, D-H. WNT signaling in glioblastoma and therapeutic opportunities. Lab. Invest., 2016, 96(2), 137-150.
[http://dx.doi.org/10.1038/labinvest.2015.140] [PMID: 26641068]
[51]
Lee, Y.; Kim, K.H.; Kim, D.G.; Cho, H.J.; Kim, Y.; Rheey, J.; Shin, K.; Seo, Y.J.; Choi, Y-S.; Lee, J-I.; Lee, J.; Joo, K.M.; Nam, D.H. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS One, 2015, 10(10), e0137703.
[http://dx.doi.org/10.1371/journal.pone.0137703] [PMID: 26444992]
[52]
Gong, A.; Huang, S. FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer Res., 2012, 72(22), 5658-5662.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0953] [PMID: 23139209]
[53]
Rheinbay, E.; Suvà, M.L.; Gillespie, S.M.; Wakimoto, H.; Patel, A.P.; Shahid, M.; Oksuz, O.; Rabkin, S.D.; Martuza, R.L.; Rivera, M.N.; Louis, D.N.; Kasif, S.; Chi, A.S.; Bernstein, B.E. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep., 2013, 3(5), 1567-1579.
[http://dx.doi.org/10.1016/j.celrep.2013.04.021] [PMID: 23707066]
[54]
Semënov, M.V.; He, X. Secreted antagonists/modulators of wnt signaling. Landes Bioscience: Austin (TX), 2000-2013. Available from:https://www.ncbi.nlm.nih.gov/books/NBK6536/ (Accessed September 15, 2020).
[55]
Szemes, M.; Greenhough, A.; Malik, K. Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Front. Mol. Neurosci., 2019, 12, 90.
[http://dx.doi.org/10.3389/fnmol.2019.00090] [PMID: 31040767]
[56]
Serman, L.; Nikuseva Martic, T.; Serman, A.; Vranic, S. Epigenetic alterations of the Wnt signaling pathway in cancer: a mini review. Bosn. J. Basic Med. Sci., 2014, 14(4), 191-194.
[http://dx.doi.org/10.17305/bjbms.2014.4.205] [PMID: 25428669]
[57]
Zeng, C-M.; Chen, Z.; Fu, L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. Int. J. Mol. Sci., 2018, 19(5), 1543.
[http://dx.doi.org/10.3390/ijms19051543] [PMID: 29789460]
[58]
Pez, F.; Lopez, A.; Kim, M.; Wands, J.R.; Caron de Fromentel, C.; Merle, P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J. Hepatol., 2013, 59(5), 1107-1117.
[http://dx.doi.org/10.1016/j.jhep.2013.07.001] [PMID: 23835194]
[59]
MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a007880.
[http://dx.doi.org/10.1101/cshperspect.a007880] [PMID: 23209147]
[60]
Jin, X.; Jeon, H-Y.; Joo, K.M.; Kim, J-K.; Jin, J.; Kim, S.H.; Kang, B.G.; Beck, S.; Lee, S.J.; Kim, J.K.; Park, A.K.; Park, W.Y.; Choi, Y.J.; Nam, D.H.; Kim, H. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res., 2011, 71(8), 3066-3075.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1495] [PMID: 21363911]
[61]
Rajakulendran, N.; Rowland, K.J.; Selvadurai, H.J.; Ahmadi, M.; Park, N.I.; Naumenko, S.; Dolma, S.; Ward, R.J.; So, M.; Lee, L.; MacLeod, G.; Pasiliao, C.; Brandon, C.; Clarke, I.D.; Cusimano, M.D.; Bernstein, M.; Batada, N.; Angers, S.; Dirks, P.B. Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev., 2019, 33(9-10), 498-510.
[http://dx.doi.org/10.1101/gad.321968.118] [PMID: 30842215]
[62]
Zuccarini, M.; Giuliani, P.; Ziberi, S.; Carluccio, M.; Iorio, P.D.; Caciagli, F.; Ciccarelli, R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2), 105.
[http://dx.doi.org/10.3390/genes9020105] [PMID: 29462960]
[63]
Nager, M.; Bhardwaj, D.; Cantí, C.; Medina, L.; Nogués, P.; Herreros, J. β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemother. Res. Pract., 2012, 2012, 192362.
[http://dx.doi.org/10.1155/2012/192362] [PMID: 22400111]
[64]
Jia, B.; Xue, Y.; Yan, X.; Li, J.; Wu, Y.; Guo, R.; Zhang, J.; Zhang, L.; Li, Y.; Liu, Y.; Sun, L. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol. Lett., 2018, 16(3), 3509-3516.
[http://dx.doi.org/10.3892/ol.2018.9131] [PMID: 30127955]
[65]
Hu, T.; Li, P.; Luo, Z.; Chen, X.; Zhang, J.; Wang, C.; Chen, P.; Dong, Z. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(1), 43-49.
[http://dx.doi.org/10.3892/or.2015.4380] [PMID: 26530158]
[66]
Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. J. Cell. Biochem., 2017, 118(5), 1118-1131.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[67]
Chang, H-L.; Chang, Y-M.; Lai, S-C.; Chen, K-M.; Wang, K-C.; Chiu, T-T.; Chang, F-H.; Hsu, L-S. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Exp. Ther. Med., 2017, 13(2), 739-744.
[http://dx.doi.org/10.3892/etm.2016.3994] [PMID: 28352360]
[68]
Kim, R.K.; Suh, Y.; Yoo, K.C.; Cui, Y-H.; Hwang, E.; Kim, H.J.; Kang, J.S.; Kim, M.J.; Lee, Y.Y.; Lee, S.J. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci., 2015, 106(1), 94-101.
[http://dx.doi.org/10.1111/cas.12562] [PMID: 25456733]
[69]
Kang, M-H.; Kim, I-H.; Nam, T-J.N. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells. Oncol. Rep., 2014, 32(4), 1341-1346.
[http://dx.doi.org/10.3892/or.2014.3355] [PMID: 25070748]
[70]
Ugwueze, C.V.; Ogamba, O.J.; Young, E.E.; Onyenekwe, B.M.; Ezeokpo, B.C. Metformin: A Possible Option in Cancer Chemotherapy. Anal. Cell. Pathol. (Amst.), 2020, 2020, 7180923.
[http://dx.doi.org/10.1155/2020/7180923] [PMID: 32399389]
[71]
Lee, C.Y. Strategies of temozolomide in future glioblastoma treatment. OncoTargets Ther., 2017, 10, 265-270.
[http://dx.doi.org/10.2147/OTT.S120662] [PMID: 28123308]
[72]
Chen, Y.; Wang, X-Q.; Zhang, Q.; Zhu, J-Y.; Li, Y.; Xie, C-F.; Li, X-T.; Wu, J-S.; Geng, S-S.; Zhong, C-Y.; Han, H.Y. (-)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway. Nutrients, 2017, 9(6), 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[73]
Ould Ahmedou Salem, M. S.; Mohamed Lemine, Y. O.; Deida, J. M.; Lemrabott, M. A.; Ouldabdallahi, M.; Ba, M. D.; Boukhary, A. O.; Khairy, M. L.; Abdel Aziz, M. B.; Ringwald, P.; Basco, L. K.; Niang, S. D.; Lebatt, S. M. Efficacy of Chloroquine for the Treatment of Plasmodium Vivax in the Saharan Zone in Mauritania. Malar. J., 2015, 14(39), 5.
[http://dx.doi.org/10.1186/s12936-015-0563-0]
[74]
Lehane, A.M.; Hayward, R.; Saliba, K.J.; Kirk, K. A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites. J. Cell Sci., 2008, 121(Pt 10), 1624-1632.
[http://dx.doi.org/10.1242/jcs.016758] [PMID: 18445688]
[75]
Coronado, L.M.; Nadovich, C.T.; Spadafora, C. Malarial hemozoin: from target to tool. Biochim. Biophys. Acta, 2014, 1840(6), 2032-2041.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.009] [PMID: 24556123]
[76]
Chude, C.I.; Amaravadi, R.K. Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. Int. J. Mol. Sci., 2017, 18(6), 1279.
[http://dx.doi.org/10.3390/ijms18061279] [PMID: 28621712]
[77]
Al-Bari, M.A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[78]
Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-purposing Chloroquine for Glioblastoma: Potential Merits and Confounding Variables. Front. Oncol., 2018, 8, 335.
[http://dx.doi.org/10.3389/fonc.2018.00335] [PMID: 30211116]
[79]
Zheng, Y.; Zhao, Y.L.; Deng, X.; Yang, S.; Mao, Y.; Li, Z.; Jiang, P.; Zhao, X.; Wei, Y. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest., 2009, 27(3), 286-292.
[http://dx.doi.org/10.1080/07357900802427927] [PMID: 19194831]
[80]
Monma, H.; Iida, Y.; Moritani, T.; Okimoto, T.; Tanino, R.; Tajima, Y.; Harada, M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One, 2018, 13(3), e0193990.
[http://dx.doi.org/10.1371/journal.pone.0193990] [PMID: 29513749]
[81]
Fan, C.; Wang, W.; Zhao, B.; Zhang, S.; Miao, J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem., 2006, 14(9), 3218-3222.
[http://dx.doi.org/10.1016/j.bmc.2005.12.035] [PMID: 16413786]
[82]
Wu, Z.; Chang, P.C.; Yang, J.C.; Chu, C.Y.; Wang, L-Y.; Chen, N.T.; Ma, A.H.; Desai, S.J.; Lo, S.H.; Evans, C.P.; Lam, K.S.; Kung, H.J. Autophagy Blockade Sensitizes Prostate Cancer Cells towards Src Family Kinase Inhibitors. Genes Cancer, 2010, 1(1), 40-49.
[http://dx.doi.org/10.1177/1947601909358324] [PMID: 20811583]
[83]
Haładyj, E.; Sikora, M.; Felis-Giemza, A.; Olesińska, M. Antimalarials - are they effective and safe in rheumatic diseases? Reumatologia, 2018, 56(3), 164-173.
[http://dx.doi.org/10.5114/reum.2018.76904] [PMID: 30042604]
[84]
O’Dell, J.R.; Mikuls, T.R.; Taylor, T.H.; Ahluwalia, V.; Brophy, M.; Warren, S.R.; Lew, R.A.; Cannella, A.C.; Kunkel, G.; Phibbs, C.S.; Anis, A.H.; Leatherman, S.; Keystone, E. CSP 551 RACAT Investigators. Therapies for active rheumatoid arthritis after methotrexate failure. N. Engl. J. Med., 2013, 369(4), 307-318.
[http://dx.doi.org/10.1056/NEJMoa1303006] [PMID: 23755969]
[85]
Fukuda, T.; Oda, K.; Wada-Hiraike, O.; Sone, K.; Inaba, K.; Ikeda, Y.; Makii, C.; Miyasaka, A.; Kashiyama, T.; Tanikawa, M.; Arimoto, T.; Yano, T.; Kawana, K.; Osuga, Y.; Fujii, T. Autophagy inhibition augments resveratrol-induced apoptosis in Ishikawa endometrial cancer cells. Oncol. Lett., 2016, 12(4), 2560-2566.
[http://dx.doi.org/10.3892/ol.2016.4978] [PMID: 27698828]
[86]
du Jiang, P.; Zhao, Y. lan; Shi, W.; Deng, X. qiang; Xie, G.; Mao, Y. qiu; Li, Z. guang; Zheng, Y. zhu; Yang, S. yong; Wei, Y. quan. Cell Growth Inhibition, G2/M Cell Cycle Arrest, and Apoptosis Induced by Chloroquine in Human Breast Cancer Cell Line Bcap-37. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 2008, 22(5–6), 431-440.
[http://dx.doi.org/10.1159/000185488]
[87]
Choi, D.S.; Blanco, E.; Kim, Y-S.; Rodriguez, A.A.; Zhao, H.; Huang, T.H-M.; Chen, C-L.; Jin, G.; Landis, M.D.; Burey, L.A.; Qian, W.; Granados, S.M.; Dave, B.; Wong, H.H.; Ferrari, M.; Wong, S.T.; Chang, J.C. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells, 2014, 32(9), 2309-2323.
[http://dx.doi.org/10.1002/stem.1746] [PMID: 24809620]
[88]
Liang, D.H.; Choi, D.S.; Ensor, J.E.; Kaipparettu, B.A.; Bass, B.L.; Chang, J.C. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett., 2016, 376(2), 249-258.
[http://dx.doi.org/10.1016/j.canlet.2016.04.002] [PMID: 27060208]
[89]
Avniel-Polak, S.; Leibowitz, G.; Doviner, V.; Gross, D.J.; Grozinsky-Glasberg, S. Combining chloroquine with RAD001 inhibits tumor growth in a NEN mouse model. Endocr. Relat. Cancer, 2018, 25(6), 677-686.
[http://dx.doi.org/10.1530/ERC-18-0121] [PMID: 29636368]
[90]
Avniel-Polak, S.; Leibowitz, G.; Riahi, Y.; Glaser, B.; Gross, D.J.; Grozinsky-Glasberg, S. Abrogation of Autophagy by Chloroquine Alone or in Combination with mTOR Inhibitors Induces Apoptosis in Neuroendocrine Tumor Cells. Neuroendocrinology, 2016, 103(6), 724-737.
[http://dx.doi.org/10.1159/000442589] [PMID: 26619207]
[91]
Tao, H.; Chen, F.; Liu, H.; Hu, Y.; Wang, Y.; Li, H. Wnt/β- catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line. Mol. Med. Rep., 2017, 16(2), 1701-1706.
[http://dx.doi.org/10.3892/mmr.2017.6828] [PMID: 28656199]
[92]
Gao, C.; Cao, W.; Bao, L.; Zuo, W.; Xie, G.; Cai, T.; Fu, W.; Zhang, J.; Wu, W.; Zhang, X.; Chen, Y.G. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol., 2010, 12(8), 781-790.
[http://dx.doi.org/10.1038/ncb2082] [PMID: 20639871]
[93]
Petherick, K.J.; Williams, A.C.; Lane, J.D.; Ordóñez-Morán, P.; Huelsken, J.; Collard, T.J.; Smartt, H.J.; Batson, J.; Malik, K.; Paraskeva, C.; Greenhough, A. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J., 2013, 32(13), 1903-1916.
[http://dx.doi.org/10.1038/emboj.2013.123] [PMID: 23736261]
[94]
Panda, P.K.; Naik, P.P.; Praharaj, P.P.; Meher, B.R.; Gupta, P.K.; Verma, R.S.; Maiti, T.K.; Shanmugam, M.K.; Chinnathambi, A.; Alharbi, S.A.; Sethi, G.; Agarwal, R.; Bhutia, S.K. Abrus agglutinin stimulates BMP-2-dependent differentiation through autophagic degradation of β-catenin in colon cancer stem cells. Mol. Carcinog., 2018, 57(5), 664-677.
[http://dx.doi.org/10.1002/mc.22791] [PMID: 29457276]
[95]
Li, R.N.; Liu, B.; Li, X.M.; Hou, L.S.; Mu, X.L.; Wang, H.; Linghu, H. DACT1 Overexpression in type I ovarian cancer inhibits malignant expansion and cis-platinum resistance by modulating canonical Wnt signalling and autophagy. Sci. Rep., 2017, 7(1), 9285.
[http://dx.doi.org/10.1038/s41598-017-08249-7] [PMID: 28839145]
[96]
Jing, Q.; Li, G.; Chen, X.; Liu, C.; Lu, S.; Zheng, H.; Ma, H.; Qin, Y.; Zhang, D.; Zhang, S.; Ren, S.; Huang, D.; Tan, P.; Chen, J.; Qiu, Y.; Liu, Y. Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. J. Cell. Mol. Med., 2019, 23(7), 4711-4722.
[http://dx.doi.org/10.1111/jcmm.14394] [PMID: 31111621]
[97]
Li, Q.; Yuan, D. M.; Ma, L. H.; Ma, C. H.; Liu, Y. F.; Lv, T. F.; Song, Y. Chloroquine Inhibits Tumor Growth and Angiogenesis in Malignant Pleural Effusion. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med., 2016.
[http://dx.doi.org/10.1007/s13277-016-5441-z]
[98]
Choi, J-H.; Yoon, J.S.; Won, Y-W.; Park, B-B.; Lee, Y.Y. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration. APMIS, 2012, 120(7), 597-604.
[http://dx.doi.org/10.1111/j.1600-0463.2012.02876.x] [PMID: 22716215]
[99]
Roy, L.O.; Poirier, M.B.; Fortin, D. Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF- beta. Invest. New Drugs, 2015, 33(5), 1020-1031.
[http://dx.doi.org/10.1007/s10637-015-0275-x] [PMID: 26271735]
[100]
Golden, E.B.; Cho, H-Y.; Jahanian, A.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus, 2014, 37(6), E12.
[http://dx.doi.org/10.3171/2014.9.FOCUS14504] [PMID: 25434381]
[101]
Sotelo, J.; Briceño, E.; López-González, M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med., 2006, 144(5), 337-343.
[http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00008] [PMID: 16520474]
[102]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[103]
Kaur, N.; Chettiar, S.; Rathod, S.; Rath, P.; Muzumdar, D.; Shaikh, M.L.; Shiras, A. Wnt3a mediated activation of Wnt/β- catenin signaling promotes tumor progression in glioblastoma. Mol. Cell. Neurosci., 2013, 54, 44-57.
[http://dx.doi.org/10.1016/j.mcn.2013.01.001] [PMID: 23337036]
[104]
Pulvirenti, T.; Van Der Heijden, M.; Droms, L.A.; Huse, J.T.; Tabar, V.; Hall, A. Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res., 2011, 71(23), 7280-7290.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1531] [PMID: 21990322]
[105]
Zhang, N.; Wei, P.; Gong, A.; Chiu, W-T.; Lee, H-T.; Colman, H.; Huang, H.; Xue, J.; Liu, M.; Wang, Y.; Sawaya, R.; Xie, K.; Yung, W.K.; Medema, R.H.; He, X.; Huang, S. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell, 2011, 20(4), 427-442.
[http://dx.doi.org/10.1016/j.ccr.2011.08.016] [PMID: 22014570]
[106]
Náger, M.; Santacana, M.; Bhardwaj, D.; Valls, J.; Ferrer, I.; Nogués, P.; Cantí, C.; Herreros, J. Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion. Cell Cycle, 2015, 14(22), 3644-3655.
[http://dx.doi.org/10.1080/15384101.2015.1104443] [PMID: 26654598]
[107]
Zhang, Y.; Wang, F.; Han, L.; Wu, Y.; Li, S.; Yang, X.; Wang, Y.; Ren, F.; Zhai, Y.; Wang, D.; Jia, B.; Xia, Y.; Chang, Z. GABARAPL1 negatively regulates Wnt/β-catenin signaling by mediating Dvl2 degradation through the autophagy pathway. Cell. Physiol. Biochem., 2011, 27(5), 503-512.
[http://dx.doi.org/10.1159/000329952] [PMID: 21691068]
[108]
Nàger, M.; Sallán, M.C.; Visa, A.; Pushparaj, C.; Santacana, M.; Macià, A.; Yeramian, A.; Cantí, C.; Herreros, J. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy, 2018, 14(4), 619-636.
[http://dx.doi.org/10.1080/15548627.2017.1423439] [PMID: 29313411]
[109]
Colella, B.; Faienza, F.; Carinci, M.; D’Alessandro, G.; Catalano, M.; Santoro, A.; Cecconi, F.; Limatola, C.; Di Bartolomeo, S. Autophagy induction impairs Wnt/β-catenin signalling through β- catenin relocalisation in glioblastoma cells. Cell. Signal., 2019, 53, 357-364.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.017] [PMID: 30442596]
[110]
Pascolo, S. Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur. J. Pharmacol., 2016, 771, 139-144.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.017] [PMID: 26687632]
[111]
Kimura, T.; Takabatake, Y.; Takahashi, A.; Kaimori, J.Y.; Matsui, I.; Namba, T.; Kitamura, H.; Niimura, F.; Matsusaka, T.; Soga, T.; Rakugi, H.; Isaka, Y. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol., 2011, 22(5), 902-913.
[http://dx.doi.org/10.1681/ASN.2010070705] [PMID: 21493778]
[112]
Sahoo, S.; Kumar, M.; Sinha, V.K. Chloroquine-induced recurrent psychosis. Am. J. Ther., 2007, 14(4), 406-407.
[http://dx.doi.org/10.1097/MJT.0b013e31802e4b0e] [PMID: 17667217]
[113]
Tzekov, R. Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc. Ophthalmol., 2005, 110(1), 111-120.
[http://dx.doi.org/10.1007/s10633-005-7349-6] [PMID: 16249962]
[114]
Rustogi, A.; Munshi, A.; Jalali, R. Unexpected skin reaction induced by radiotherapy after chloroquine use. Lancet Oncol., 2006, 7(7), 608-609.
[http://dx.doi.org/10.1016/S1470-2045(06)70763-X] [PMID: 16814214]
[115]
Wilcox, L.J.; Borradaile, N.M.; Huff, M.W. Antiatherogenic Properties of Naringenin, a Citrus Flavonoid. Cardiovasc. Drug Rev., 1999, 17(2), 160-178.
[http://dx.doi.org/10.1111/j.1527-3466.1999.tb00011.x]
[116]
Zobeiri, M.; Belwal, T.; Parvizi, F.; Naseri, R.; Farzaei, M.H.; Nabavi, S.F.; Sureda, A.; Nabavi, S.M. Naringenin and its Nano- formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. Curr. Pharm. Biotechnol., 2018, 19(3), 196-205.
[http://dx.doi.org/10.2174/1389201019666180514170122] [PMID: 29766801]
[117]
Soltana, H.; De Rosso, M.; Lazreg, H.; Vedova, A.D.; Hammami, M.; Flamini, R. LC-QTOF characterization of non-anthocyanic flavonoids in four Tunisian fig varieties. J. Mass Spectrom., 2018, 53(9), 817-823.
[http://dx.doi.org/10.1002/jms.4209] [PMID: 29859515]
[118]
Shulman, M.; Cohen, M.; Soto-Gutierrez, A.; Yagi, H.; Wang, H.; Goldwasser, J.; Lee-Parsons, C.W.; Benny-Ratsaby, O.; Yarmush, M.L.; Nahmias, Y. Enhancement of naringenin bioavailability by complexation with hydroxypropyl-β-cyclodextrin. [corrected]. PLoS One, 2011, 6(4), e18033.
[http://dx.doi.org/10.1371/journal.pone.0018033] [PMID: 21494673]
[119]
Rashmi, R.; Bojan Magesh, S.; Mohanram Ramkumar, K.; Suryanarayanan, S.; Venkata SubbaRao, M. Antioxidant Potential of Naringenin Helps to Protect Liver Tissue from Streptozotocin-Induced Damage. Rep. Biochem. Mol. Biol., 2018, 7(1), 76-84.
[PMID: 30324121]
[120]
Chung, T-W.; Li, S.; Lin, C.C.; Tsai, S.W. Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin. Ci Ji Yi Xue Za Zhi, 2019, 31(2), 81-85.
[http://dx.doi.org/10.4103/tcmj.tcmj_103_18] [PMID: 31007486]
[121]
Maatouk, M.; Elgueder, D.; Mustapha, N.; Chaaban, H.; Bzéouich, I.M.; Loannou, I.; Kilani, S.; Ghoul, M.; Ghedira, K.; Chekir-Ghedira, L. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress Chaperones, 2016, 21(6), 1101-1109.
[http://dx.doi.org/10.1007/s12192-016-0734-0] [PMID: 27623863]
[122]
Wang, Q.; Yang, J.; Zhang, X.; Zhou, L.; Liao, X.; Yang, B. Practical Synthesis of Naringenin. J. Chem. Res., 2015, 39(8), 455-457.
[http://dx.doi.org/10.3184/174751915X14379994045537]
[123]
Frabasile, S.; Koishi, A.C.; Kuczera, D.; Silveira, G.F.; Verri, W.A., Jr; Duarte Dos Santos, C.N.; Bordignon, J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci. Rep., 2017, 7, 41864.
[http://dx.doi.org/10.1038/srep41864] [PMID: 28157234]
[124]
Ahmadi, A.; Hassandarvish, P.; Lani, R.; Yadollahi, P.; Jokar, A.; Bakar, S.A.; Zandi, K. Inhibition of Chikungunya Virus Replication by Hesperetin and Naringenin. RSC Advances, 2016, 6(73), 69421-69430.
[http://dx.doi.org/10.1039/C6RA16640G]
[125]
Testai, L.; Calderone, V. Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502] [PMID: 28509871]
[126]
Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 2002, 76(3), 560-568.
[http://dx.doi.org/10.1093/ajcn/76.3.560] [PMID: 12198000]
[127]
Cassidy, A.; Rimm, E.B.; O’Reilly, E.J.; Logroscino, G.; Kay, C.; Chiuve, S.E.; Rexrode, K.M. Dietary flavonoids and risk of stroke in women. Stroke, 2012, 43(4), 946-951.
[http://dx.doi.org/10.1161/STROKEAHA.111.637835] [PMID: 22363060]
[128]
Reshef, N.; Hayari, Y.; Goren, C.; Boaz, M.; Madar, Z.; Knobler, H. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am. J. Hypertens., 2005, 18(10), 1360-1363.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.021] [PMID: 16202862]
[129]
Zhang, F.; Dong, W.; Zeng, W.; Zhang, L.; Zhang, C.; Qiu, Y.; Wang, L.; Yin, X.; Zhang, C.; Liang, W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 2016, 18(1), 38.
[http://dx.doi.org/10.1186/s13058-016-0698-0] [PMID: 27036297]
[130]
Nasr Bouzaiene, N.; Chaabane, F.; Sassi, A.; Chekir-Ghedira, L.; Ghedira, K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci., 2016, 144, 80-85.
[http://dx.doi.org/10.1016/j.lfs.2015.11.030] [PMID: 26656314]
[131]
Stompor, M.; Uram, Ł.; Podgórski, R. In Vitro Effect of 8-Prenylnaringenin and Naringenin on Fibroblasts and Glioblastoma Cells- Cellular Accumulation and Cytotoxicity. Molecules, 2017, 22(7), 1092.
[http://dx.doi.org/10.3390/molecules22071092] [PMID: 28665345]
[132]
Bao, L.; Liu, F.; Guo, H.B.; Li, Y.; Tan, B.B.; Zhang, W.X.; Peng, Y.H. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumour Biol., 2016, 37(8), 11365-11374.
[http://dx.doi.org/10.1007/s13277-016-5013-2] [PMID: 26960693]
[133]
Lou, C.; Zhang, F.; Yang, M.; Zhao, J.; Zeng, W.; Fang, X.; Zhang, Y.; Zhang, C.; Liang, W. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One, 2012, 7(12), e50956.
[http://dx.doi.org/10.1371/journal.pone.0050956] [PMID: 23300530]
[134]
Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.; Ishikawa, M. Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett., 2006, 166(2), 131-139.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.005] [PMID: 16860949]
[135]
Aroui, S.; Aouey, B.; Chtourou, Y.; Meunier, A-C.; Fetoui, H.; Kenani, A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem. Biol. Interact., 2016, 244, 195-203.
[http://dx.doi.org/10.1016/j.cbi.2015.12.011] [PMID: 26721195]
[136]
Li, J.; Dong, Y.; Hao, G.; Wang, B.; Wang, J.; Liang, Y.; Liu, Y.; Zhen, E.; Feng, D.; Liang, G. Naringin suppresses the development of glioblastoma by inhibiting FAK activity. J. Drug Target., 2017, 25(1), 41-48.
[http://dx.doi.org/10.1080/1061186X.2016.1184668] [PMID: 27125297]
[137]
Sabarinathan, D.; Mahalakshmi, P.; Vanisree, A.J. Naringenin promote apoptosis in cerebrally implanted C6 glioma cells. Mol. Cell. Biochem., 2010, 345(1-2), 215-222.
[http://dx.doi.org/10.1007/s11010-010-0575-6] [PMID: 20717707]
[138]
Devan, S.; Janardhanam, V.A. Effect of Naringenin on metabolic markers, lipid profile and expression of GFAP in C6 glioma cells implanted rat’s brain. Ann. Neurosci., 2011, 18(4), 151-155.
[http://dx.doi.org/10.5214/ans.0972.7531.1118406] [PMID: 25205946]
[139]
Song, T.; Zhang, M.; Wu, J.; Chen, F.; Wang, Y.; Ma, Y.; Dai, Z. Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest. New Drugs, 2020, 38(6), 1743-1754.
[http://dx.doi.org/10.1007/s10637-020-00979-2] [PMID: 32767162]
[140]
Lee, J.H.; Park, C.H.; Jung, K.C.; Rhee, H.S.; Yang, C.H. Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. Biochem. Biophys. Res. Commun., 2005, 335(3), 771-776.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.146] [PMID: 16102728]
[141]
Mima, K.; Hayashi, H.; Kuroki, H.; Nakagawa, S.; Okabe, H.; Chikamoto, A.; Watanabe, M.; Beppu, T.; Baba, H. Epithelial-mesenchymal transition expression profiles as a prognostic factor for disease-free survival in hepatocellular carcinoma: Clinical significance of transforming growth factor-β signaling. Oncol. Lett., 2013, 5(1), 149-154.
[http://dx.doi.org/10.3892/ol.2012.954] [PMID: 23255911]
[142]
Xu, F.; Na, L.; Li, Y.; Chen, L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10, 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[143]
Xu, W.; Yang, Z.; Lu, N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr., 2015, 9(4), 317-324.
[http://dx.doi.org/10.1080/19336918.2015.1016686] [PMID: 26241004]
[144]
Majewska, E.; Szeliga, M. AKT/GSK3β Signaling in Glioblastoma. Neurochem. Res., 2017, 42(3), 918-924.
[http://dx.doi.org/10.1007/s11064-016-2044-4] [PMID: 27568206]
[145]
Annaházi, A.; Róka, R.; Rosztóczy, A.; Wittmann, T. Role of antispasmodics in the treatment of irritable bowel syndrome. World J. Gastroenterol., 2014, 20(20), 6031-6043.
[http://dx.doi.org/10.3748/wjg.v20.i20.6031] [PMID: 24876726]
[146]
Wijesinghe, W.A.J.P.; Ko, S-C.; Jeon, Y-J. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutr. Res. Pract., 2011, 5(2), 93-100.
[http://dx.doi.org/10.4162/nrp.2011.5.2.93] [PMID: 21556221]
[147]
Quéguineur, B.; Goya, L.; Ramos, S.; Martín, M.A.; Mateos, R.; Bravo, L. Phloroglucinol: antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem. Toxicol., 2012, 50(8), 2886-2893.
[http://dx.doi.org/10.1016/j.fct.2012.05.026] [PMID: 22617350]
[148]
Li, N.; Khan, S.I.; Qiu, S.; Li, X-C. Synthesis and Anti-Inflammatory Activities of Phloroglucinol-Based Derivatives. Molecules, 2018, 23(12), 3232.
[http://dx.doi.org/10.3390/molecules23123232] [PMID: 30544542]
[149]
Yoon, J.Y.; Choi, H.; Jun, H.S. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production. Mar. Drugs, 2017, 15(4), 106.
[http://dx.doi.org/10.3390/md15040106] [PMID: 28379184]
[150]
Casero, C.; Machín, F.; Méndez-Álvarez, S.; Demo, M.; Ravelo, A.G.; Pérez-Hernández, N.; Joseph-Nathan, P.; Estévez-Braun, A. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides. J. Nat. Prod., 2015, 78(1), 93-102.
[http://dx.doi.org/10.1021/np500735f] [PMID: 25517209]
[151]
Artan, M.; Li, Y.; Karadeniz, F.; Lee, S.H.; Kim, M.M.; Kim, S.K. Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg. Med. Chem., 2008, 16(17), 7921-7926.
[http://dx.doi.org/10.1016/j.bmc.2008.07.078] [PMID: 18693022]
[152]
Zhang, Y.; Luo, M.; Zu, Y.; Fu, Y.; Gu, C.; Wang, W.; Yao, L.; Efferth, T. Dryofragin, a phloroglucinol derivative, induces apoptosis in human breast cancer MCF-7 cells through ROS-mediated mitochondrial pathway. Chem. Biol. Interact., 2012, 199(2), 129-136.
[http://dx.doi.org/10.1016/j.cbi.2012.06.007] [PMID: 22796323]
[153]
Kwon, Y.H.; Jung, S.Y.; Kim, J.W.; Lee, S.H.; Lee, J.H.; Lee, B.Y.; Kwon, S.M. Phloroglucinol inhibits the bioactivities of endothelial progenitor cells and suppresses tumor angiogenesis in LLC-tumor-bearing mice. PLoS One, 2012, 7(4), e33618.
[http://dx.doi.org/10.1371/journal.pone.0033618] [PMID: 22496756]
[154]
Mondal, M. T, P. L.; Krishna, R.; Sakthivel, N. Molecular Interaction between Human Serum Albumin (HSA) and Phloroglucinol Derivative That Shows Selective Anti-Proliferative Potential. J. Lumin., 2017, 192, 990-998.
[http://dx.doi.org/10.1016/j.jlumin.2017.08.007]
[155]
Lu, D-Y.; Chang, C-S.; Yeh, W-L.; Tang, C-H.; Cheung, C-W.; Leung, Y-M.; Liu, J-F.; Wong, K-L. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine, 2012, 19(12), 1093-1100.
[http://dx.doi.org/10.1016/j.phymed.2012.06.010] [PMID: 22819448]
[156]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[157]
DailyMed - TEMODAR- temozolomide capsule TEMODAR- temozolomide injection, powder, lyophilized, for solution Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=046a9011-3911-4d3f-a15f-fbb56d5aad56accessed Sep 24, 2020
[158]
Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of care for treatment of recurrent glioblastoma--are we there yet? Neuro-oncol., 2013, 15(1), 4-27.
[http://dx.doi.org/10.1093/neuonc/nos273] [PMID: 23136223]
[159]
Strobel, H.; Baisch, T.; Fitzel, R.; Schilberg, K.; Siegelin, M.D.; Karpel-Massler, G.; Debatin, K-M.; Westhoff, M-A. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines, 2019, 7(3), E69.
[http://dx.doi.org/10.3390/biomedicines7030069] [PMID: 31505812]
[160]
Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol., 2020, 9, 1547.
[http://dx.doi.org/10.3389/fonc.2019.01547] [PMID: 32010632]
[161]
Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol. Med. Chir. (Tokyo), 2018, 58(10), 405-421.
[http://dx.doi.org/10.2176/nmc.ra.2018-0141] [PMID: 30249919]
[162]
Mao, H.; Lebrun, D.G.; Yang, J.; Zhu, V.F.; Li, M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest., 2012, 30(1), 48-56.
[http://dx.doi.org/10.3109/07357907.2011.630050] [PMID: 22236189]
[163]
Haas, B.; Klinger, V.; Keksel, C.; Bonigut, V.; Kiefer, D.; Caspers, J.; Walther, J.; Wos-Maganga, M.; Weickhardt, S.; Röhn, G.; Timmer, M.; Frötschl, R.; Eckstein, N. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int., 2018, 18(1), 69.
[http://dx.doi.org/10.1186/s12935-018-0565-4] [PMID: 29755294]
[164]
Yu, G.; Wu, F.; Wang, E. KLF8 Promotes Temozolomide Resistance in Glioma Cells via β-Catenin Activation. Cell. Physiol. Biochem., 2016, 38(4), 1596-1604.
[http://dx.doi.org/10.1159/000443100] [PMID: 27081861]
[165]
Chu, C-W.; Ko, H-J.; Chou, C-H.; Cheng, T-S.; Cheng, H-W.; Liang, Y-H.; Lai, Y-L.; Lin, C-Y.; Wang, C.; Loh, J-K.; Cheng, J.T.; Chiou, S.J.; Su, C.L.; Huang, C.F.; Hong, Y.R. Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells. Int. J. Mol. Sci., 2019, 20(3), E473.
[http://dx.doi.org/10.3390/ijms20030473] [PMID: 30678307]
[166]
Nanoparticle Albumin-Bound Rapamycin, Temozolomide, and Irinotecan Hydrochloride in Treating Pediatric Patients with Recurrent or Refractory Solid Tumors Available at: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2016-01412accessed Sep 22, 2020
[167]
Pevonedistat, Irinotecan Hydrochloride, and Temozolomide in Treating Patients with Recurrent or Refractory Solid Tumors or Lymphoma Available at: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2017-01229accessed Sep 22, 2020
[168]
Temodal Capsules - Summary of Product Characteristics (SmPC) - (emc) Available at: https://www.medicines.org.uk/emc/medicine/7027accessed Sep 24, 2020
[169]
Association, A. D.. 8. Pharmacologic Approaches to Glycemic Treatment. Diabetes Care, 2017, 40(1), S64-S74.
[http://dx.doi.org/10.2337/dc17-S011] [PMID: 27979895]
[170]
Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; DeFronzo, R.A.; Einhorn, D.; Fonseca, V.A.; Garber, J.R.; Garvey, W.T.; Grunberger, G.; Handelsman, Y.; Hirsch, I.B.; Jellinger, P.S.; McGill, J.B.; Mechanick, J.I.; Rosenblit, P.D.; Umpierrez, G.E. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2019 Executive Summary. Endocr. Pract., 2019, 25(1), 69-100.
[http://dx.doi.org/10.4158/CS-2018-0535] [PMID: 30742570]
[171]
Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313.
[http://dx.doi.org/10.2147/CMAR.S200059] [PMID: 31114366]
[172]
Rêgo, D.F.; Pavan, L.M.C.; Elias, S.T.; De Luca Canto, G.; Guerra, E.N.S. Effects of metformin on head and neck cancer: a systematic review. Oral Oncol., 2015, 51(5), 416-422.
[http://dx.doi.org/10.1016/j.oraloncology.2015.01.007] [PMID: 25636350]
[173]
Mazurek, M.; Litak, J.; Kamieniak, P.; Kulesza, B.; Jonak, K.; Baj, J.; Grochowski, C. Metformin as Potential Therapy for High-Grade Glioma. Cancers (Basel), 2020, 12(1), E210.
[http://dx.doi.org/10.3390/cancers12010210] [PMID: 31952173]
[174]
Sesen, J.; Dahan, P.; Scotland, S.J.; Saland, E.; Dang, V-T.; Lemarié, A.; Tyler, B.M.; Brem, H.; Toulas, C.; Cohen-Jonathan Moyal, E.; Sarry, J.E.; Skuli, N. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS One, 2015, 10(4), e0123721.
[http://dx.doi.org/10.1371/journal.pone.0123721] [PMID: 25867026]
[175]
Bao, B.; Azmi, A.S.; Ali, S.; Zaiem, F.; Sarkar, F.H. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. Ann. Transl. Med., 2014, 2(6), 59.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.06.05] [PMID: 25333034]
[176]
Chuang, H-C.; Chou, C-C.; Kulp, S.K.; Chen, C-S. AMPK as a potential anticancer target - friend or foe? Curr. Pharm. Des., 2014, 20(15), 2607-2618.
[http://dx.doi.org/10.2174/13816128113199990485] [PMID: 23859619]
[177]
Cao, W.; Li, J.; Hao, Q.; Vadgama, J.V.; Wu, Y. AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer. Breast Cancer Res., 2019, 21(1), 29.
[http://dx.doi.org/10.1186/s13058-019-1107-2] [PMID: 30791936]
[178]
Jiang, X.; Tan, H-Y.; Teng, S.; Chan, Y-T.; Wang, D.; Wang, N. The Role of AMP-Activated Protein Kinase as a Potential Target of Treatment of Hepatocellular Carcinoma. Cancers (Basel), 2019, 11(5), E647.
[http://dx.doi.org/10.3390/cancers11050647] [PMID: 31083406]
[179]
Park, S.Y.; Kim, D.; Kee, S-H. Metformin-activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol. Lett., 2019, 17(3), 2695-2702.
[http://dx.doi.org/10.3892/ol.2019.9892] [PMID: 30854043]
[180]
McCubrey, J.A.; Steelman, L.S.; Bertrand, F.E.; Davis, N.M.; Sokolosky, M.; Abrams, S.L.; Montalto, G.; D’Assoro, A.B.; Libra, M.; Nicoletti, F.; Maestro, R.; Basecke, J.; Rakus, D.; Gizak, A.; Demidenko, Z.N.; Cocco, L.; Martelli, A.M.; Cervello, M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014, 5(10), 2881-2911.
[http://dx.doi.org/10.18632/oncotarget.2037] [PMID: 24931005]
[181]
Melnik, S.; Dvornikov, D.; Müller-Decker, K.; Depner, S.; Stannek, P.; Meister, M.; Warth, A.; Thomas, M.; Muley, T.; Risch, A.; Plass, C.; Klingmüller, U.; Niehrs, C.; Glinka, A. Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification. Cell Discov., 2018, 4(1), 37.
[http://dx.doi.org/10.1038/s41421-018-0033-2] [PMID: 29977599]
[182]
Amable, G.; Martínez-León, E.; Picco, M.E.; Di Siervi, N.; Davio, C.; Rozengurt, E.; Rey, O. Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/Akt pathway in colorectal cancer cells. Int. J. Biochem. Cell Biol., 2019, 112, 88-94.
[http://dx.doi.org/10.1016/j.biocel.2019.05.004] [PMID: 31082618]
[183]
Shenouda, G. Metformin, neo-adjuvant temozolomide and hypo- accelerated radiotherapy followed by adjuvant TMZ in patients with GBM. ClinicalTrials.gov Identifier: NCT02780024, 2019.
[184]
Clinical trial on glioblastoma multiforme: Metformin - Clinical trials registry - ICH GCP. Available at: https://ichgcp.net/clinical-trials-registry/NCT02780024(Accessed September 24, 2020).
[185]
Triggle, C.R.; Ding, H. Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol. (Oxf.), 2017, 219(1), 138-151.
[http://dx.doi.org/10.1111/apha.12644] [PMID: 26680745]
[186]
Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients, 2018, 11(1), E39.
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[187]
Khan, N.; Mukhtar, H. Tea and health: studies in humans. Curr. Pharm. Des., 2013, 19(34), 6141-6147.
[http://dx.doi.org/10.2174/1381612811319340008] [PMID: 23448443]
[188]
Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules, 2018, 23(6), E1297.
[http://dx.doi.org/10.3390/molecules23061297] [PMID: 29843466]
[189]
Yang, C.S.; Wang, H.; Sheridan, Z.P. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 1-13.
[http://dx.doi.org/10.1016/j.jfda.2017.10.010] [PMID: 29389543]
[190]
Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X. A Review on Anti-Cancer Effect of Green Tea Catechins. J. Funct. Foods, 2020, 74, 104172.
[http://dx.doi.org/10.1016/j.jff.2020.104172]
[191]
Yang, C.S.; Wang, H.; Chen, J.X.; Zhang, J. Effects of Tea Catechins on Cancer Signaling Pathways. Enzymes, 2014, 36, 195-221.
[http://dx.doi.org/10.1016/B978-0-12-802215-3.00010-0] [PMID: 27102705]
[192]
Navaneetha Krishnan, S.; Rosales, J.L.; Lee, K.-Y. ros-mediated cancer cell killing through dietary phytochemicals Available at: https://www.hindawi.com/journals/omcl/2019/9051542/(Accessed September 25, 2020).
[http://dx.doi.org/10.1155/2019/9051542]
[193]
Khiewkamrop, P.; Phunsomboon, P.; Richert, L.; Pekthong, D.; Srisawang, P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int., 2018, 18(1), 46.
[http://dx.doi.org/10.1186/s12935-018-0539-6] [PMID: 29588626]
[194]
Wang, Y-Q.; Lu, J-L.; Liang, Y-R.; Li, Q-S. Suppressive Effects of EGCG on Cervical Cancer. Molecules, 2018, 23(9), 2334.
[http://dx.doi.org/10.3390/molecules23092334] [PMID: 30213130]
[195]
Le, C.T.; Leenders, W.P.J.; Molenaar, R.J.; van Noorden, C.J.F. Effects of the Green Tea Polyphenol Epigallocatechin-3-Gallate on Glioma: A Critical Evaluation of the Literature. Nutr. Cancer, 2018, 70(3), 317-333.
[http://dx.doi.org/10.1080/01635581.2018.1446090] [PMID: 29570984]
[196]
Elsakka, A.M.A.; Bary, M.A.; Abdelzaher, E.; Elnaggar, M.; Kalamian, M.; Mukherjee, P.; Seyfried, T.N. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front. Nutr., 2018, 5, 20.
[http://dx.doi.org/10.3389/fnut.2018.00020] [PMID: 29651419]
[197]
Oh, S.; Gwak, J.; Park, S.; Yang, C.S. Green tea polyphenol EGCG suppresses Wnt/β-catenin signaling by promoting GSK-3β- and PP2A-independent β-catenin phosphorylation/degradation. Biofactors, 2014, 40(6), 586-595.
[http://dx.doi.org/10.1002/biof.1185] [PMID: 25352148]
[198]
Yi, G.Z.; Huang, G.; Guo, M.; Zhang, X.; Wang, H.; Deng, S.; Li, Y.; Xiang, W.; Chen, Z.; Pan, J.; Li, Z.; Yu, L.; Lei, B.; Liu, Y.; Qi, S. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain, 2019, 142(8), 2352-2366.
[http://dx.doi.org/10.1093/brain/awz202] [PMID: 31347685]
[199]
Wickström, M.; Dyberg, C.; Milosevic, J.; Einvik, C.; Calero, R.; Sveinbjörnsson, B.; Sandén, E.; Darabi, A.; Siesjö, P.; Kool, M.; Kogner, P.; Baryawno, N.; Johnsen, J.I. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun., 2015, 6(1), 8904.
[http://dx.doi.org/10.1038/ncomms9904] [PMID: 26603103]
[200]
Farooqi, A.A.; Pinheiro, M.; Granja, A.; Farabegoli, F.; Reis, S.; Attar, R.; Sabitaliyevich, U.Y.; Xu, B.; Ahmad, A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel), 2020, 12(4), 951.
[http://dx.doi.org/10.3390/cancers12040951] [PMID: 32290543]
[201]
Shin, Y.S.; Kang, S.U.; Park, J.K.; Kim, Y.E.; Kim, Y.S.; Baek, S.J.; Lee, S-H.; Kim, C-H. Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin. Phytomedicine, 2016, 23(12), 1344-1355.
[http://dx.doi.org/10.1016/j.phymed.2016.07.005] [PMID: 27765354]
[202]
Hong, O-Y.; Noh, E-M.; Jang, H-Y.; Lee, Y-R.; Lee, B.K.; Jung, S.H.; Kim, J-S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[203]
Wei, R.; Penso, N.E.C.; Hackman, R.M.; Wang, Y.; Mackenzie, G.G. Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial-Mesenchymal Transition: Enhanced Efficacy when Combined with Gemcitabine. Nutrients, 2019, 11(8), 1856.
[http://dx.doi.org/10.3390/nu11081856] [PMID: 31405071]
[204]
Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des., 2007, 69(2), 146-148.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00483.x] [PMID: 17381729]
[205]
Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model., 2009, 49(2), 377-389.
[http://dx.doi.org/10.1021/ci800324m] [PMID: 19434839]
[206]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[207]
Zacharias, N.; Dougherty, D.A. Cation-π interactions in ligand recognition and catalysis. Trends Pharmacol. Sci., 2002, 23(6), 281-287.
[http://dx.doi.org/10.1016/S0165-6147(02)02027-8] [PMID: 12084634]