[1]
Solé, D.; Fernández, I. Advances in transition-metal mediated heterocyclic synthesis; Academic Press, 2018.
[2]
Anamika; Utreja, D.; Kaur, J.; Sharma, S. Synthesis of Schiff bases of coumarin and their antifungal activity. Indian J. Heterocycl. Chem., 2018, 28(4), 433-439.
[5]
Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclo-release strategy in solid-phase combinatorial synthesis of heterocyclic skeletons. Adv. Hetero. Chem; Academic Press, 2012, Vol. 107, pp. 41-99.
[6]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947-2954.
[7]
Wamhoff, H.; Gribble, G.W. Wine and heterocycles. Advances in Heterocyclic Chemistry; Academic Press, 2012, Vol. 106, pp. 185-225.
[10]
Anamika; Utrja, D.; Ekta; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[11]
Kaur, G.; Utreja, D. Ekta; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[15]
Kaur, K.; Utreja, D. Dhillon, N.K.; Pathak, R.K.; Singh, K. N-alkyl isatin derivatives: Synthesis, nematicidal evaluation and protein target identifications for their mode of action. Pestic. Biochem. Physiol., 2020, 171, 1-26.
[17]
Levi, L. The barbituric acids, their chemical struture, synthesis and nomenclature. Bull. Narc., 1957, 9(1), 30-40.
[18]
Apostolov, S.; Vaštag, Đ.; Matijević, B.; Mrđan, G.; Nakomčić, J. Study of the biological activity descriptors of the barbituric acid derivatives. Contemp. Mater., 2020, XI-2, 77-84.
[48]
Dasgupta, A. Alcohol, Drugs, Genes and The Clinical Laboratory; Science Direct, 2017.
[49]
Vardanyan, R.; Hruby, V. Synthesis of Essential Drugs; Elsevier, 2006, p. 634.
[50]
Malamed, S.F. Medical Emergencies in the Dental Office-E-Book; Elsevier Health Sciences, 2014, p. 576.
[53]
Vibha, V.; Utreja, D.; Kaur, J.; Kaur, M. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst. Agri. Res. J., 2018, 55(2), 313-317.
[54]
Kaur, K.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Plant Dis. Res., 2016, 31(2), 171-173.
[55]
European Commission. A European one health action plan against antimicrobial resistance (AMR); European Commission, 2017.
[56]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1, C-3 substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2020, 57(1), 428-435.
[58]
Febriantini, D.; Cahyana, A.H.; Yunarti, R.T. A microwave assisted, Fe3O4/Camphor-catalysed three component synthesis of 2-amino-4Hchromenes and their antibacterial and antioxidant activity. IOP Conf. Ser: Mater. Sci. Eng., 2019, 509(1), p. 012036.
[60]
Angulwar, J.A.; Khansole, G.S.; Bhosale, V.N. Synthesis, antimicrobial activities of pyrano[2,3-d]pyrimidine derivatives. Int. J. Chem. Phys. Sci., 2018, 7, 1-10.
[62]
Bhat, A.R. Petra, osiris and molinspiration: A computational bioinformatic platform for experimental in vitro antibacterial activity of annulated uracil derivatives. Iran. Chem. Commun., 2018, 6(2), 114-124.
[74]
Mohammadi Ziarani, G.; Saidian, F.; Gholamzadeh, P.; Badiei, A.; Abolhasani Soorki, A. Green synthesis of pyrazol-chromeno [2,3-d] pyrimidinones using SBA-Pr-SO3H as an efficient nanocatalyst. Iran. J. Chem. Chem. Eng., 2017, 36(6), 39-48.
[76]
Venkatesh, T.; Bodke, Y.D.; Kenchappa, R.; Telkar, S. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med. Chem., 2016, 6(7), 440-448.
[79]
Kumarasamy, D.; Mookerjee, M.; Maity, S. Design, synthesis, and in vitro antibacterial activity studies of 5-arylidene(thio)barbituric acid derivatives. Int. J. Pharm. Pharm. Anal., 2016, 1, 25-32.
[83]
Venkatesh, T.; Bodke, Y.D. SJ, A.R. Facile CAN catalyzed one pot synthesis of novel indol-5,8-pyrimido[4,5-d]pyrimidine derivatives and their pharmacological study. Chem. Data Collect., 2020, 25100335
[85]
Hassan, F.S.; Kuran, W.S.; Ibrahim, A.A.; Adam, F.A. Synthesis, characterization and biological activity of sodium barbitone-group-VIII metals (viz. Ni(II), Pd(II) and Pt(II)) complexes. Open J. Inorg. Non-met. Mater., 2020, 10(1), 1-14.
[86]
Abbas, N.F.; Abbas, A.K. Novel complexes of thiobarbituric acid–azo dye: structural, spectroscopic, biological activity and dying. Biochem. Cell. Arch., 2020, 20(1), 2419-2433.
[93]
Sattar, M.A.; Khatun, M.K.; Sarkar, T.K.; Al-Reza, S.M. Ecofriendly synthesis of bioactive 2-thiobarbituric acid derivatives. Int. J. Bioorg. Chem., 2017, 2(3), 83-86.
[95]
Oraby, A.K.; Abdellatif, K.R.A.; Abdelgawad, M.A.; Attia, K.M.; Georghiou, P.E. Synthesis and antimicrobial activities of a series of disubstitutedarylazo-barbituric- and thiobarbituric acid derivativess. Int. J. Pharm. Chem., 2016, 6(4), 1-8.