Critical Residues in Hsp70 Nucleotide Binding Domain for Challenges in Drug Design

Page: [83 - 90] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The association of a drug with its target protein correlates to its medicinal activity and the microenvironment plays a key role in this association. The key challenge is to identify mutations which unlikely to respond to designed drugs.

Objective: Hsp70 is an anti-apoptotic factor and tumor cells overexpress Hsp70 to survive against anti-cancer agents. The impact of pathogenic mutations on Hsp70 is unknown. Elucidation of these alterations is essential to understand the molecular switch mechanism. Thus, critical spots on Hsp70 Nucleotide Binding Domain (NBD) are important since mutation-driven sensitivity may be useful in designing innovative inhibitors.

Methods: ATP, AMP-PNP (non-hydrolyzable analog of ATP) along with commercially available compounds VER-155008 (ATP analog and competitive inhibitor) and MKT-077 (allosteric inhibitor of ADP bound form) were docked to Hsp70 NBD structure in silico to identify critical amino acids of inhibition mechanism. Site-directed mutagenesis of the determined critical residues along with ATP hydrolysis and luciferase refolding was performed. Wild-type and mutant Hsp70s were compared to determine the effect on protein functions in the presence or absence of inhibitors.

Results: This study identified three mutants that have a loss of function for Hsp70, which may alter the drug inhibition activity as oncogenic cells have multiple mutations.

Conclusion: Two commercial inhibitors employed here that mimic ATP and ADP states, respectively, are not affected by these mutational perturbations and displayed effective interference for Hsp70 functions. Designing inhibitors by considering these critical residues may improve drug design and increase drug efficiency.

Keywords: Nucleotide-binding domain, Hsp70, inhibitor, ATP, non-hydrolysable ATP, site-directed mutagenesis.

Graphical Abstract

[1]
Tutar, L.; Tutar, Y. Heat shock proteins; an overview. Curr. Pharm. Biotechnol., 2010, 11(2), 216-222.
[http://dx.doi.org/10.2174/138920110790909632] [PMID: 20170474]
[2]
Zorzi, E.; Bonvini, P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel), 2011, 3(4), 3921-3956.
[http://dx.doi.org/10.3390/cancers3043921] [PMID: 24213118]
[3]
Zuiderweg, E.R.; Bertelsen, E.B.; Rousaki, A.; Mayer, M.P.; Gestwicki, J.E.; Ahmad, A. Allostery in the Hsp70 chaperone proteins. Top. Curr. Chem., 2013, 328, 99-153.
[http://dx.doi.org/10.1007/128_2012_323] [PMID: 22576356]
[4]
Bertelsen, E.B.; Chang, L.; Gestwicki, J.E.; Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8471-8476.Zuiderweg
[http://dx.doi.org/10.1073/pnas.0903503106] [PMID: 19439666]
[5]
Radons, J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones, 2016, 21(3), 379-404.
[http://dx.doi.org/10.1007/s12192-016-0676-6] [PMID: 26865365]
[6]
Sharma, D.; Masison, D.C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett., 2009, 16(6), 571-581.
[http://dx.doi.org/10.2174/092986609788490230] [PMID: 19519514]
[7]
Schlecht, R.; Scholz, S.R.; Dahmen, H.; Wegener, A.; Sirrenberg, C.; Musil, D.; Bomke, J.; Eggenweiler, H.M.; Mayer, M.P.; Bukau, B. Functional analysis of Hsp70 inhibitors. PLoS One, 2013, 8(11), e78443.
[http://dx.doi.org/10.1371/journal.pone.0078443] [PMID: 24265689]
[8]
Ko, S.K.; Kim, J.; Na, D.C.; Park, S.; Park, S.H.; Hyun, J.Y.; Baek, K.H.; Kim, N.D.; Kim, N.K.; Park, Y.N.; Song, K.; Shin, I. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chem. Biol., 2015, 22(3), 391-403.
[http://dx.doi.org/10.1016/j.chembiol.2015.02.004] [PMID: 25772468]
[9]
Tutar, Y. Therapeutic use of Heat Shock Protein 70. Recent Pat. DNA Gene Seq., 2007, 1(2), 125-127.
[http://dx.doi.org/10.2174/187221507780887090] [PMID: 19075925]
[10]
Williamson, D.S.; Borgognoni, J.; Clay, A.; Daniels, Z.; Dokurno, P.; Drysdale, M.J.; Foloppe, N.; Francis, G.L.; Graham, C.J.; Howes, R.; Macias, A.T.; Murray, J.B.; Parsons, R.; Shaw, T.; Surgenor, A.E.; Terry, L.; Wang, Y.; Wood, M.; Massey, A.J. Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J. Med. Chem., 2009, 52(6), 1510-1513.
[http://dx.doi.org/10.1021/jm801627a] [PMID: 19256508]
[11]
Massey, A.J.; Williamson, D.S.; Browne, H.; Murray, J.B.; Dokurno, P.; Shaw, T.; Macias, A.T.; Daniels, Z.; Geoffroy, S.; Dopson, M.; Lavan, P.; Matassova, N.; Francis, G.L.; Graham, C.J.; Parsons, R.; Wang, Y.; Padfield, A.; Comer, M.; Drysdale, M.J.; Wood, M. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother. Pharmacol., 2010, 66(3), 535-545.
[http://dx.doi.org/10.1007/s00280-009-1194-3] [PMID: 20012863]
[12]
Li, X.; Srinivasan, S.R.; Connarn, J.; Ahmad, A.; Young, Z.T.; Kabza, A.M.; Zuiderweg, E.R.P.; Sun, D.; Gestwicki, J.E. Analogs of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents. ACS Med. Chem. Lett., 2013, 4(11), 1042-1047.
[http://dx.doi.org/10.1021/ml400204n] [PMID: 24312699]
[13]
Kumar, S.; Stokes, J., III; Singh, U.P.; Scissum Gunn, K.; Acharya, A.; Manne, U.; Mishra, M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett., 2016, 374(1), 156-166.
[http://dx.doi.org/10.1016/j.canlet.2016.01.056] [PMID: 26898980]
[14]
Vogel, M.; Mayer, M.P.; Bukau, B. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem., 2006, 281(50), 38705-38711.
[http://dx.doi.org/10.1074/jbc.M609020200] [PMID: 17052976]
[15]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochem. Biophys. Res. Commun., 2014, 454(1), 36-41.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.060] [PMID: 25450359]
[16]
Ferraro, M.; D’Annessa, I.; Moroni, E.; Morra, G.; Paladino, A.; Rinaldi, S.; Compostella, F.; Colombo, G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J. Med. Chem., 2019, 62(1), 60-87.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00825] [PMID: 30048133]
[17]
Jones, A.M.; Westwood, I.M.; Osborne, J.D.; Matthews, T.P.; Cheeseman, M.D.; Rowlands, M.G.; Jeganathan, F.; Burke, R.; Lee, D.; Kadi, N.; Liu, M.; Richards, M.; McAndrew, C.; Yahya, N.; Dobson, S.E.; Jones, K.; Workman, P.; Collins, I.; van Montfort, R.L.M. A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms. Sci. Rep., 2016, 6, 34701.
[http://dx.doi.org/10.1038/srep34701] [PMID: 27708405]
[18]
Robert, F.; Pelletier, J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front. Genet., 2018, 9, 507.
[http://dx.doi.org/10.3389/fgene.2018.00507] [PMID: 30425729]