The Beneficial Effects of QIAPI 1® against Pentavalent Arsenic-Induced Lung Toxicity: A Hypothetical Model for SARS CoV2-I nduced Lung Toxicity

Page: [307 - 315] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop a susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Considering the commonalities of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. The As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to Asinduced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.

Keywords: COVID-19, SARS-CoV2, QIAPI1®, alveoli, arsenic, lung toxicity, fibrosis.

Graphical Abstract

[1]
Pritt, B.S.; Aubry, M.C. Histopathology of viral infections of the lung.Seminars in Diagnostic Pathology; Elsevier, 2017, p. 510.
[http://dx.doi.org/10.1053/j.semdp.2017.06.005]
[2]
de Roux, A.; Marcos, M.A.; Garcia, E.; Mensa, J.; Ewig, S.; Lode, H.; Torres, A. Viral community-acquired pneumonia in nonimmunocompromised adults. Chest, 2004, 125(4), 1343-1351.
[http://dx.doi.org/10.1378/chest.125.4.1343] [PMID: 15078744]
[3]
Marcos, M.A.; Esperatti, M.; Torres, A. Viral pneumonia. Curr. Opin. Infect. Dis., 2009, 22(2), 143-147.
[http://dx.doi.org/10.1097/QCO.0b013e328328cf65] [PMID: 19276881]
[4]
Gehr, P.; Bachofen, M.; Weibel, E.R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol., 1978, 32(2), 121-140.
[http://dx.doi.org/10.1016/0034-5687(78)90104-4] [PMID: 644146]
[5]
Petersson, J.; Glenny, R.W. Gas exchange and ventilation–perfusion relationships in the lung; Eur Respiratory Soc, 2014.
[http://dx.doi.org/10.1183/09031936.00037014]
[6]
Song, Y.; Schwager, M.J.; Backer, V.; Guo, J.; Porsbjerg, C.; Khoo, S-K.; Laing, I.A.; Moses, E.K.; LeSouëf, P.; Zhang, G.B. Environment changes genetic effects on respiratory conditions and allergic phenotypes. Sci. Rep., 2017, 7(1), 6342.
[http://dx.doi.org/10.1038/s41598-017-06791-y] [PMID: 28740106]
[7]
Flora, S.J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med., 2011, 51(2), 257-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.008] [PMID: 21554949]
[8]
Rossman, T.G. Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res., 2003, 533(1-2), 37-65.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.07.009] [PMID: 14643412]
[9]
Hubaux, R.; Becker-Santos, D.D.; Enfield, K.S.; Rowbotham, D.; Lam, S.; Lam, W.L.; Martinez, V.D. Molecular features in arsenic-induced lung tumors. Mol. Cancer, 2013, 12, 20.
[http://dx.doi.org/10.1186/1476-4598-12-20] [PMID: 23510327]
[10]
Lynch, H.N.; Zu, K.; Kennedy, E.M.; Lam, T.; Liu, X.; Pizzurro, D.M.; Loftus, C.T.; Rhomberg, L.R. Quantitative assessment of lung and bladder cancer risk and oral exposure to inorganic arsenic: Meta-regression analyses of epidemiological data. Environ. Int., 2017, 106, 178-206.
[http://dx.doi.org/10.1016/j.envint.2017.04.008] [PMID: 28625818]
[11]
Ferreccio, C.; Smith, A.H.; Durán, V.; Barlaro, T.; Benítez, H.; Valdés, R.; Aguirre, J.J.; Moore, L.E.; Acevedo, J.; Vásquez, M.I.; Pérez, L.; Yuan, Y.; Liaw, J.; Cantor, K.P.; Steinmaus, C. Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am. J. Epidemiol., 2013, 178(5), 813-818.
[http://dx.doi.org/10.1093/aje/kwt059] [PMID: 23764934]
[12]
Wang, S.; Shi, N.; Geng, Z.; Li, X.; Hu, X.; Wang, Z. Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic. Biochimie, 2014, 106, 167-174.
[http://dx.doi.org/10.1016/j.biochi.2014.08.017] [PMID: 25194983]
[13]
Tanaka-Kagawa, T.; Hanioka, N.; Yoshida, H.; Jinno, H.; Ando, M. Arsenite and arsenate activate extracellular signal-regulated kinases 1/2 by an epidermal growth factor receptor-mediated pathway in normal human keratinocytes. Br. J. Dermatol., 2003, 149(6), 1116-1127.
[http://dx.doi.org/10.1111/j.1365-2133.2003.05704.x] [PMID: 14674888]
[14]
Bulka, C.M.; Jones, R.M.; Turyk, M.E.; Stayner, L.T.; Argos, M. Arsenic in drinking water and prostate cancer in Illinois counties: An ecologic study. Environ. Res., 2016, 148, 450-456.
[http://dx.doi.org/10.1016/j.envres.2016.04.030] [PMID: 27136670]
[15]
Rahman, A.; Vahter, M.; Ekström, E-C.; Persson, L-Å. Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ. Health Perspect., 2011, 119(5), 719-724.
[http://dx.doi.org/10.1289/ehp.1002265] [PMID: 21147604]
[16]
Yadav, R.S.; Chandravanshi, L.P.; Shukla, R.K.; Sankhwar, M.L.; Ansari, R.W.; Shukla, P.K.; Pant, A.B.; Khanna, V.K. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology, 2011, 32(6), 760-768.
[http://dx.doi.org/10.1016/j.neuro.2011.07.004] [PMID: 21839772]
[17]
Srivastava, P.; Yadav, R.S.; Chandravanshi, L.P.; Shukla, R.K.; Dhuriya, Y.K.; Chauhan, L.K.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol. Appl. Pharmacol., 2014, 279(3), 428-440.
[http://dx.doi.org/10.1016/j.taap.2014.06.006] [PMID: 24952339]
[18]
Long, M.; Yang, S.; Zhang, Y.; Li, P.; Han, J.; Dong, S.; Chen, X.; He, J. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice. Environ. Sci. Pollut. Res. Int., 2017, 24(1), 938-946.
[http://dx.doi.org/10.1007/s11356-016-7886-4] [PMID: 27761864]
[19]
Wei, M.; Guo, F.; Rui, D.; Wang, H.; Feng, G.; Li, S.; Song, G. Alleviation of arsenic-induced pulmonary oxidative damage by GSPE as shown during in vivo and in vitro experiments. Biol. Trace Elem. Res., 2018, 183(1), 80-91.
[http://dx.doi.org/10.1007/s12011-017-1111-2] [PMID: 28803342]
[20]
Zhou, Q.; Yin, Z-P.; Ma, L.; Zhao, W.; Hao, H-W.; Li, H-L. Free radical-scavenging activities of oligomeric proanthocyanidin from Rhodiola rosea L. and its antioxidant effects in vivo. Nat. Prod. Res., 2014, 28(24), 2301-2303.
[http://dx.doi.org/10.1080/14786419.2014.921786] [PMID: 24896611]
[21]
Zhang, Z.; Pratheeshkumar, P.; Budhraja, A.; Son, Y-O.; Kim, D.; Shi, X. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells. Biochem. Biophys. Res. Commun., 2015, 456(2), 643-648.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.010] [PMID: 25499816]
[22]
Putila, J.J.; Guo, N.L. Association of arsenic exposure with lung cancer incidence rates in the United States. PLoS One, 2011, 6(10)e25886
[http://dx.doi.org/10.1371/journal.pone.0025886] [PMID: 22003413]
[23]
Kumar, A.; Adak, P.; Gurian, P.L.; Lockwood, J.R. Arsenic exposure in US public and domestic drinking water supplies: a comparative risk assessment. J. Expo. Sci. Environ. Epidemiol., 2010, 20(3), 245-254.
[http://dx.doi.org/10.1038/jes.2009.24] [PMID: 19401722]
[24]
Nieder, A.M.; MacKinnon, J.A.; Fleming, L.E.; Kearney, G.; Hu, J.J.; Sherman, R.L.; Huang, Y.; Lee, D.J. Bladder cancer clusters in Florida: identifying populations at risk. J. Urol., 2009, 182(1), 46-50.
[http://dx.doi.org/10.1016/j.juro.2009.02.149] [PMID: 19450849]
[25]
Hong, Y-S.; Song, K-H.; Chung, J-Y. Health effects of chronic arsenic exposure. J. Prev. Med. Public Health, 2014, 47(5), 245-252.
[http://dx.doi.org/10.3961/jpmph.14.035] [PMID: 25284195]
[26]
Abernathy, C.O.; Liu, Y-P.; Longfellow, D.; Aposhian, H.V.; Beck, B.; Fowler, B.; Goyer, R.; Menzer, R.; Rossman, T.; Thompson, C.; Waalkes, M. Arsenic: health effects, mechanisms of actions, and research issues. Environ. Health Perspect., 1999, 107(7), 593-597.
[http://dx.doi.org/10.1289/ehp.99107593] [PMID: 10379007]
[27]
Water SoAiD.Arsenic in drinking water; National Academy Press, 1999.
[28]
Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect., 1992, 97, 259-267.
[http://dx.doi.org/10.1289/ehp.9297259] [PMID: 1396465]
[29]
Tapio, S.; Grosche, B. Arsenic in the aetiology of cancer. Mutat. Res., 2006, 612, 215-246. [Find this article online]
[30]
Watanabe, C.; Inaoka, T.; Matsui, T.; Ishigaki, K.; Murayama, N.; Ohtsuka, R. Effects of arsenic on younger generations. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2003, 38(1), 129-139..
[http://dx.doi.org/10.1081/ESE-120016885] [PMID: 12635823]
[31]
Ghosh, P.; Banerjee, M.; De Chaudhuri, S.; Chowdhury, R.; Das, J.K.; Mukherjee, A.; Sarkar, A.K.; Mondal, L.; Baidya, K.; Sau, T.J.; Banerjee, A.; Basu, A.; Chaudhuri, K.; Ray, K.; Giri, A.K. Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J. Expo. Sci. Environ. Epidemiol., 2007, 17(3), 215-223.
[http://dx.doi.org/10.1038/sj.jes.7500510] [PMID: 16835595]
[32]
Raqib, R.; Ahmed, S.; Sultana, R.; Wagatsuma, Y.; Mondal, D.; Hoque, A.M.; Nermell, B.; Yunus, M.; Roy, S.; Persson, L.A.; Arifeen, S.E.; Moore, S.; Vahter, M. Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol. Lett., 2009, 185(3), 197-202.
[http://dx.doi.org/10.1016/j.toxlet.2009.01.001] [PMID: 19167470]
[33]
Kozul, C.D.; Ely, K.H.; Enelow, R.I.; Hamilton, J.W. Low-dose arsenic compromises the immune response to influenza A infection in vivo. Environ. Health Perspect., 2009, 117(9), 1441-1447.
[http://dx.doi.org/10.1289/ehp.0900911] [PMID: 19750111]
[34]
Andrew, A.S.; Bernardo, V.; Warnke, L.A.; Davey, J.C.; Hampton, T.; Mason, R.A.; Thorpe, J.E.; Ihnat, M.A.; Hamilton, J.W. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung. Toxicol. Sci., 2007, 100(1), 75-87.
[http://dx.doi.org/10.1093/toxsci/kfm200] [PMID: 17682005]
[35]
Andrew, A.S.; Jewell, D.A.; Mason, R.A.; Whitfield, M.L.; Moore, J.H.; Karagas, M.R. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ. Health Perspect., 2008, 116(4), 524-531.
[http://dx.doi.org/10.1289/ehp.10861] [PMID: 18414638]
[36]
Hernández-Castro, B.; Doníz-Padilla, L.M.; Salgado-Bustamante, M.; Rocha, D.; Ortiz-Pérez, M.D.; Jiménez-Capdeville, M.E.; Portales-Pérez, D.P.; Quintanar-Stephano, A.; González-Amaro, R. Effect of arsenic on regulatory T cells. J. Clin. Immunol., 2009, 29(4), 461-469.
[http://dx.doi.org/10.1007/s10875-009-9280-1] [PMID: 19247822]
[37]
Lemarie, A.; Morzadec, C.; Bourdonnay, E.; Fardel, O.; Vernhet, L. Human macrophages constitute targets for immunotoxic inorganic arsenic. J. Immunol., 2006, 177(5), 3019-3027.
[http://dx.doi.org/10.4049/jimmunol.177.5.3019] [PMID: 16920938]
[38]
Nayak, A.S.; Lage, C.R.; Kim, C.H. Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol. Sci., 2007, 98(1), 118-124.
[http://dx.doi.org/10.1093/toxsci/kfm072] [PMID: 17400579]
[39]
Kozul, C.D.; Hampton, T.H.; Davey, J.C.; Gosse, J.A.; Nomikos, A.P.; Eisenhauer, P.L.; Weiss, D.J.; Thorpe, J.E.; Ihnat, M.A.; Hamilton, J.W. Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environ. Health Perspect., 2009, 117(7), 1108-1115.
[http://dx.doi.org/10.1289/ehp.0800199] [PMID: 19654921]
[40]
Burleson, G.R.; Lebrec, H.; Yang, Y.G.; Ibanes, J.D.; Pennington, K.N.; Birnbaum, L.S. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on influenza virus host resistance in mice. Fundam. Appl. Toxicol., 1996, 29(1), 40-47.
[http://dx.doi.org/10.1006/faat.1996.0004] [PMID: 8838638]
[41]
Gualano, R.C.; Hansen, M.J.; Vlahos, R.; Jones, J.E.; Park-Jones, R.A.; Deliyannis, G.; Turner, S.J.; Duca, K.A.; Anderson, G.P. Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice. Respir. Res., 2008, 9, 53.
[http://dx.doi.org/10.1186/1465-9921-9-53] [PMID: 18627612]
[42]
Warren, T.K.; Mitchell, K.A.; Lawrence, B.P. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the humoral and cell-mediated immune responses to influenza A virus without affecting cytolytic activity in the lung. Toxicol. Sci., 2000, 56(1), 114-123.
[http://dx.doi.org/10.1093/toxsci/56.1.114] [PMID: 10869459]
[43]
D’Ippoliti, D.; Santelli, E.; De Sario, M.; Scortichini, M.; Davoli, M.; Michelozzi, P. Arsenic in drinking water and mortality for cancer and chronic diseases in Central Italy, 1990-2010. PLoS One, 2015, 10(9)e0138182
[http://dx.doi.org/10.1371/journal.pone.0138182] [PMID: 26383851]
[44]
George, C.M.; Brooks, W.A.; Graziano, J.H.; Nonyane, B.A.; Hossain, L.; Goswami, D.; Zaman, K.; Yunus, M.; Khan, A.F.; Jahan, Y.; Ahmed, D.; Slavkovich, V.; Higdon, M.; Deloria-Knoll, M.; O’ Brien, K.L. Arsenic exposure is associated with pediatric pneumonia in rural Bangladesh: a case control study. Environ. Health, 2015, 14, 83.
[http://dx.doi.org/10.1186/s12940-015-0069-9] [PMID: 26497043]
[45]
Mazumder, D.N.; Steinmaus, C.; Bhattacharya, P.; von Ehrenstein, O.S.; Ghosh, N.; Gotway, M.; Sil, A.; Balmes, J.R.; Haque, R.; Hira-Smith, M.M.; Smith, A.H. Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology, 2005, 16(6), 760-765.
[http://dx.doi.org/10.1097/01.ede.0000181637.10978.e6] [PMID: 16222165]
[46]
Smith, A.H.; Marshall, G.; Yuan, Y.; Liaw, J.; Ferreccio, C.; Steinmaus, C. Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis. Am. J. Epidemiol., 2011, 173(4), 414-420.
[http://dx.doi.org/10.1093/aje/kwq383] [PMID: 21190988]
[47]
Ramsey, K.A.; Foong, R.E.; Sly, P.D.; Larcombe, A.N.; Zosky, G.R. Early life arsenic exposure and acute and long-term responses to influenza A infection in mice. Environ. Health Perspect., 2013, 121(10), 1187-1193.
[http://dx.doi.org/10.1289/ehp.1306748] [PMID: 23968752]
[48]
Ahmed, S.; Moore, S.E.; Kippler, M.; Gardner, R.; Hawlader, M.D.; Wagatsuma, Y.; Raqib, R.; Vahter, M. Arsenic exposure and cell-mediated immunity in pre-school children in rural Bangladesh. Toxicol. Sci., 2014, 141(1), 166-175.
[http://dx.doi.org/10.1093/toxsci/kfu113] [PMID: 24924402]
[49]
Raqib, R.; Ahmed, S.; Ahsan, K.B.; Kippler, M.; Akhtar, E.; Roy, A.K.; Lu, Y.; Arifeen, S.E.; Wagatsuma, Y.; Vahter, M. Humoral immunity in arsenic-exposed children in rural Bangladesh: total immunoglobulins and vaccine-specific antibodies. Environ. Health Perspect., 2017, 125(6)067006
[http://dx.doi.org/10.1289/EHP318] [PMID: 28657894]
[50]
Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci., 2011, 123(2), 305-332.
[http://dx.doi.org/10.1093/toxsci/kfr184] [PMID: 21750349]
[51]
Kojima, C.; Ramirez, D.C.; Tokar, E.J.; Himeno, S.; Drobná, Z.; Stýblo, M.; Mason, R.P.; Waalkes, M.P. Requirement of arsenic biomethylation for oxidative DNA damage. J. Natl. Cancer Inst., 2009, 101(24), 1670-1681.
[http://dx.doi.org/10.1093/jnci/djp414] [PMID: 19933942]
[52]
Liu, Y.; Hong, L.; Wakamatsu, K.; Ito, S.; Adhyaru, B.; Cheng, C.Y.; Bowers, C.R.; Simon, J.D. Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem. Photobiol., 2005, 81(1), 135-144.
[http://dx.doi.org/10.1562/2004-08-03-RA-259.1] [PMID: 15504086]
[53]
Herrera, A.S.; del Carmen Arias Esparza, M.; Solís Arias, P.E.; Ávila-Rodriguez, M.; Barreto, G.E.; Li, Y.; Bachurin, S.O.; Aliev, G. Unsuspected intrinsic property of melanin to dissociate water can be used for the treatment of CNS diseases. CNS Neurol. Disord. Drug Targets, 2016, 15(2), 135-140.
[http://dx.doi.org/10.2174/1871527315666160202122943]
[54]
Solís-Herrera, A.; Ashraf, G.M. del C A Esparza, M.; Arias, R. I. S.; Bachurin, S. O.; Barreto, G. E.; Aliev, G. Biological activities of QIAPI 1 as a melanin precursor and its therapeutic effects in wistar rats exposed to arsenic poisoning. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(2), 99-108.
[55]
Herrera, A.S. Esparza MdCA, Esquivel JJA, Miranda GL, Arias RIS, Arias PES, Arias MPS. The pharmacologic intensification of the water dissociation process, or human photosynthesis, and its effect over the recovery mechanisms in tissues affected by bloodshed of diverse etiology. Int. J. Clin. Med., 2011, 2, 332.
[http://dx.doi.org/10.4236/ijcm.2011.23058]
[56]
Solís-Herrera, A. The unexpected capacity of melanin to dissociate the water molecule fills the gap between the life before and after ATP., 2010.
[57]
del Carmen Arias-Esparza, M.; Arias, R.I.S.; Arias, P.E.S.; Arias, M.P.S.; Solís-Herrera, A. The unexpected capability of melanin to split the water molecule and the Alzheimer’s disease. Neurosci. Med., 2011, 2, 217.
[http://dx.doi.org/10.4236/nm.2011.23029]
[58]
Herrera, A.S.A.; Esparza, M.D.C.; Arias, P.E.S.; Ashraf, G.M.; Mosa, O.F.; Fisenko, V.P.; Sologova, S.S.; Dostdar, S.A.; Sokolov, A.V.; Bovina, E.V.; Chubarev, V.N.; Tarasov, V.V.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. The role of melanin to dissociate oxygen from water to treat retinopathy of prematurity. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(3), 215-222.
[http://dx.doi.org/10.2174/1871524919666190702164206]
[59]
Herrera, A.; Leszek, J.; del Carmen Arias Esparza, M.; Solís-Arias, R.; Solís-Arias, P. Human Photosynthesis and alzheimer’s disease.Pharm. Anal. Acta 2012, s15(01).,
[http://dx.doi.org/10.4172/2153-2435.s15-005]
[60]
Bancroft, JD; Gamble, M Theory and practice of histological techniques; Elsevier health sciences,. 2008.
[61]
Tse, G.M.; To, K.F.; Chan, P.K.; Lo, A.W.; Ng, K.C.; Wu, A.; Lee, N.; Wong, H.C.; Mak, S.M.; Chan, K.F.; Hui, D.S.; Sung, J.J.; Ng, H.K. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol., 2004, 57(3), 260-265.
[http://dx.doi.org/10.1136/jcp.2003.013276] [PMID: 14990596]
[62]
Grabie, N.; Delfs, M.W.; Westrich, J.R.; Love, V.A.; Stavrakis, G.; Ahmad, F.; Seidman, C.E.; Seidman, J.G.; Lichtman, A.H. IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis. J. Clin. Invest., 2003, 111(5), 671-680.
[http://dx.doi.org/10.1172/JCI200316867] [PMID: 12618521]
[63]
Gu, J.; Korteweg, C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol., 2007, 170(4), 1136-1147.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[64]
Wojcinski, Z.W.; Percy, D.H. Sialodacryoadenitis virus-associated lesions in the lower respiratory tract of rats. Vet. Pathol., 1986, 23(3), 278-286.
[http://dx.doi.org/10.1177/030098588602300308] [PMID: 3014706]
[65]
Jacoby, R.O.; Bhatt, P.N.; Jonas, A.M. Pathogenesis of sialodacryoadenitis in gnotobiotic rats. Vet. Pathol., 1975, 12(3), 196-209.
[http://dx.doi.org/10.1177/030098587501200305] [PMID: 1198873]
[66]
Bhatt, P.N.; Jacoby, R.O. Experimental infection of adult axenic rats with Parker’s rat coronavirus. Arch. Virol., 1977, 54(4), 345-352.
[http://dx.doi.org/10.1007/BF01314779] [PMID: 907478]
[67]
Miura, T.A.; Wang, J.; Holmes, K.V.; Mason, R.J. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines. Virology, 2007, 369(2), 288-298.
[http://dx.doi.org/10.1016/j.virol.2007.07.030] [PMID: 17804032]
[68]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S-Y. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010] [PMID: 32114094]
[69]
Ghosh, A. Evaluation of chronic arsenic poisoning due to consumption of contaminated ground water in West Bengal, India. Int. J. Prev. Med., 2013, 4(8), 976-979.
[PMID: 24049627]
[70]
Srivastava, P.; Dhuriya, Y.K.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatum. Mol. Neurobiol., 2018, 55(1), 445-461.
[http://dx.doi.org/10.1007/s12035-016-0288-2] [PMID: 27966075]
[71]
Ghazi Harsini, S.; Habibiyan, M.; Moeini, M.M.; Abdolmohammadi, A.R. Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol. Trace Elem. Res., 2012, 148(3), 322-330.
[http://dx.doi.org/10.1007/s12011-012-9374-0] [PMID: 22426748]
[72]
Flora, S.J.; Flora, G.; Saxena, G.; Mishra, M. Arsenic and lead induced free radical generation and their reversibility following chelation. Cell. Mol. Biol., 2007, 53(1), 26-47.
[PMID: 17519110]