In Vitro, In Vivo and Ex Vivo Models for Peripheral Nerve Injury and Regeneration

Page: [344 - 361] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.

Keywords: Ex vivo models, in vitro models, in vivo models, organotypic models, peripheral nerve, peripheral nerve injury, peripheral nerve regeneration.

Graphical Abstract

[1]
Ashley, W.W., Jr; Baty, J.D.; Hollander, T.; Noetzel, M.J.; Park, T.S. Long-term motor outcome analysis using a motor score composite following surgical brachial plexus repair. J. Neurosurg., 2007, 106(4), 276-281.
[PMID: 17465360]
[2]
Belkas, J.S.; Shoichet, M.S.; Midha, R. Peripheral nerve regeneration through guidance tubes. Neurol. Res., 2004, 26(2), 151-160.
[http://dx.doi.org/10.1179/016164104225013798] [PMID: 15072634]
[3]
Noble, J.; Munro, C.A.; Prasad, V.S.; Midha, R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J. Trauma, 1998, 45(1), 116-122.
[http://dx.doi.org/10.1097/00005373-199807000-00025] [PMID: 9680023]
[4]
Li, R.; Liu, Z.; Pan, Y.; Chen, L.; Zhang, Z.; Lu, L. Peripheral nerve injuries treatment: a systematic review. Cell Biochem. Biophys., 2014, 68(3), 449-454.
[http://dx.doi.org/10.1007/s12013-013-9742-1] [PMID: 24037713]
[5]
Karsy, M.; Watkins, R.; Jensen, M.R.; Guan, J.; Brock, A.A.; Mahan, M.A. Trends and cost analysis of upper extremity nerve injury using the National (Nationwide) inpatient sample. World Neurosurg., 2019, 123, e488-e500.
[http://dx.doi.org/10.1016/j.wneu.2018.11.192] [PMID: 30502477]
[6]
Geuna, S.; Raimondo, S.; Fregnan, F.; Haastert-Talini, K.; Grothe, C. In vitro models for peripheral nerve regeneration. Eur. J. Neurosci., 2016, 43(3), 287-296.
[http://dx.doi.org/10.1111/ejn.13054] [PMID: 26309051]
[7]
Imada, M.; Sueoka, N. Clonal sublines of rat neurotumor RT4 and cell differentiation. I. Isolation and characterization of cell lines and cell type conversion. Dev. Biol., 1978, 66(1), 97-108.
[http://dx.doi.org/10.1016/0012-1606(78)90276-2] [PMID: 751847]
[8]
Kimura, H.; Fischer, W.H.; Schubert, D. Structure, expression and function of a schwannoma-derived growth factor. Nature, 1990, 348(6298), 257-260.
[http://dx.doi.org/10.1038/348257a0] [PMID: 2234093]
[9]
Badache, A.; De Vries, G.H. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J. Cell. Physiol., 1998, 177(2), 334-342.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199811)177:2<334:AID-JCP15>3.0.CO;2-9] [PMID: 9766530]
[10]
Ridley, A.J.; Paterson, H.F.; Noble, M.; Land, H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J., 1988, 7(6), 1635-1645.
[http://dx.doi.org/10.1002/j.1460-2075.1988.tb02990.x] [PMID: 3049071]
[11]
Toda, K.; Small, J.A.; Goda, S.; Quarles, R.H. Biochemical and cellular properties of three immortalized Schwann cell lines expressing different levels of the myelin-associated glycoprotein. J. Neurochem., 1994, 63(5), 1646-1657.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63051646.x] [PMID: 7523597]
[12]
Hai, M.; Muja, N.; DeVries, G.H.; Quarles, R.H.; Patel, P.I. Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J. Neurosci. Res., 2002, 69(4), 497-508.
[http://dx.doi.org/10.1002/jnr.10327] [PMID: 12210843]
[13]
Sangsanoh, P.; Waleetorncheepsawat, S.; Suwantong, O.; Wutticharoenmongkol, P.; Weeranantanapan, O.; Chuenjitbuntaworn, B.; Cheepsunthorn, P.; Pavasant, P.; Supaphol, P. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules, 2007, 8(5), 1587-1594.
[http://dx.doi.org/10.1021/bm061152a] [PMID: 17429941]
[14]
Li, A.; Hokugo, A.; Yalom, A.; Berns, E.J.; Stephanopoulos, N.; McClendon, M.T.; Segovia, L.A.; Spigelman, I.; Stupp, S.I.; Jarrahy, R. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials, 2014, 35(31), 8780-8790.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.049] [PMID: 25064803]
[15]
Pascal, D.; Giovannelli, A.; Gnavi, S.; Hoyng, S.A.; de Winter, F.; Morano, M.; Fregnan, F.; Dell’Albani, P.; Zaccheo, D.; Perroteau, I.; Pellitteri, R.; Gambarotta, G. Characterization of glial cell models and in vitro manipulation of the neuregulin1/ErbB system. BioMed Res. Int., 2014, 2014310215
[http://dx.doi.org/10.1155/2014/310215] [PMID: 25177687]
[16]
Goodman, M.N.; Silver, J.; Jacobberger, J.W. Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Res., 1993, 619(1-2), 199-213.
[http://dx.doi.org/10.1016/0006-8993(93)91613-W] [PMID: 8374779]
[17]
Audisio, C.; Raimondo, S.; Nicolino, S.; Gambarotta, G.; Di Scipio, F.; Macrì, L.; Montarolo, F.; Giacobini-Robecchi, M.G.; Porporato, P.; Filigheddu, N.; Graziani, A.; Geuna, S.; Perroteau, I. Morphological and biomolecular characterization of the neonatal olfactory bulb ensheathing cell line. J. Neurosci. Methods, 2009, 185(1), 89-98.
[http://dx.doi.org/10.1016/j.jneumeth.2009.09.021] [PMID: 19786050]
[18]
Gambarotta, G.; Ronchi, G.; Geuna, S.; Perroteau, I. Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regen. Res., 2014, 9(12), 1183-1185.
[http://dx.doi.org/10.4103/1673-5374.135324] [PMID: 25206780]
[19]
Greene, L.A.; Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 1976, 73(7), 2424-2428.
[http://dx.doi.org/10.1073/pnas.73.7.2424] [PMID: 1065897]
[20]
Morano, M.; Wrobel, S.; Fregnan, F.; Ziv-Polat, O.; Shahar, A.; Ratzka, A.; Grothe, C.; Geuna, S.; Haastert-Talini, K. Nanotechnology versus stem cell engineering: In vitro comparison of neurite inductive potentials. Int. J. Nanomed, 2014, 9, 5289-5306.
[PMID: 25484582]
[21]
Pittier, R.; Sauthier, F.; Hubbell, J.A.; Hall, H. Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices. J. Neurobiol., 2005, 63(1), 1-14.
[http://dx.doi.org/10.1002/neu.20116] [PMID: 15616962]
[22]
Bhattacherjee, A.; Liao, Z.; Smith, P.G. Trophic factor and hormonal regulation of neurite outgrowth in sensory neuron-like 50B11 cells. Neurosci. Lett., 2014, 558, 120-125.
[http://dx.doi.org/10.1016/j.neulet.2013.11.018] [PMID: 24269872]
[23]
Chen, W.; Mi, R.; Haughey, N.; Oz, M.; Höke, A. Immortalization and characterization of a nociceptive dorsal root ganglion sensory neuronal line. J. Peripher. Nerv. Syst., 2007, 12(2), 121-130.
[http://dx.doi.org/10.1111/j.1529-8027.2007.00131.x] [PMID: 17565537]
[24]
Blugeon, C.; Le Crom, S.; Richard, L.; Vallat, J-M.; Charnay, P.; Decker, L. Dok4 is involved in Schwann cell myelination and axonal interaction in vitro. Glia, 2011, 59(3), 351-362.
[http://dx.doi.org/10.1002/glia.21106] [PMID: 21264944]
[25]
Cashman, N.R.; Durham, H.D.; Blusztajn, J.K.; Oda, K.; Tabira, T.; Shaw, I.T.; Dahrouge, S.; Antel, J.P. Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev. Dyn., 1992, 194(3), 209-221.
[http://dx.doi.org/10.1002/aja.1001940306] [PMID: 1467557]
[26]
Raimondi, A.; Mangolini, A.; Rizzardini, M.; Tartari, S.; Massari, S.; Bendotti, C.; Francolini, M.; Borgese, N.; Cantoni, L.; Pietrini, G. Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur. J. Neurosci., 2006, 24(2), 387-399.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04922.x] [PMID: 16903849]
[27]
Sun, H.; Bénardais, K.; Stanslowsky, N.; Thau-Habermann, N.; Hensel, N.; Huang, D.; Claus, P.; Dengler, R.; Stangel, M.; Petri, S. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS)-in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PLoS One, 2013, 8(9)e72926
[http://dx.doi.org/10.1371/journal.pone.0072926] [PMID: 24069165]
[28]
Madison, R.D.; McGee, C.; Rawson, R.; Robinson, G.A. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34). J. Extracell. Vesicles, 2014, 3(1), 22865.
[http://dx.doi.org/10.3402/jev.v3.22865] [PMID: 24563732]
[29]
Haastert-Talini, K.; Geuna, S.; Dahlin, L.B.; Meyer, C.; Stenberg, L.; Freier, T.; Heimann, C.; Barwig, C.; Pinto, L.F.V.; Raimondo, S.; Gambarotta, G.; Samy, S.R.; Sousa, N.; Salgado, A.J.; Ratzka, A.; Wrobel, S.; Grothe, C. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials, 2013, 34(38), 9886-9904.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.074] [PMID: 24050875]
[30]
Tao, Y. Isolation and culture of Schwann cells. Methods Mol. Biol., 2013, 1018, 93-104.
[http://dx.doi.org/10.1007/978-1-62703-444-9_9] [PMID: 23681620]
[31]
Wei, Y.; Zhou, J.; Zheng, Z.; Wang, A.; Ao, Q.; Gong, Y.; Zhang, X. An improved method for isolating Schwann cells from postnatal rat sciatic nerves. Cell Tissue Res., 2009, 337(3), 361-369.
[http://dx.doi.org/10.1007/s00441-009-0836-4] [PMID: 19639342]
[32]
van Neerven, S.G.; Pannaye, P.; Bozkurt, A.; Van Nieuwenhoven, F.; Joosten, E.; Hermans, E.; Taccola, G.; Deumens, R. Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts. Neuroscience, 2013, 252, 144-153.
[http://dx.doi.org/10.1016/j.neuroscience.2013.08.009] [PMID: 23954802]
[33]
Wrobel, S.; Serra, S.C.; Ribeiro-Samy, S.; Sousa, N.; Heimann, C.; Barwig, C.; Grothe, C.; Salgado, A.J.; Haastert-Talini, K. In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng. Part A, 2014, 20(17-18), 2339-2349.
[http://dx.doi.org/10.1089/ten.tea.2013.0621] [PMID: 24606318]
[34]
Kaewkhaw, R.; Scutt, A.M.; Haycock, J.W. Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat. Protoc., 2012, 7(11), 1996-2004.
[http://dx.doi.org/10.1038/nprot.2012.118] [PMID: 23060244]
[35]
Haastert, K.; Mauritz, C.; Chaturvedi, S.; Grothe, C. Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat. Protoc., 2007, 2(1), 99-104.
[http://dx.doi.org/10.1038/nprot.2006.486] [PMID: 17401343]
[36]
Guérout, N.; Derambure, C.; Drouot, L.; Bon-Mardion, N.; Duclos, C.; Boyer, O.; Marie, J-P. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia, 2010, 58(13), 1570-1580.
[http://dx.doi.org/10.1002/glia.21030] [PMID: 20549746]
[37]
Honoré, A.; Le Corre, S.; Derambure, C.; Normand, R.; Duclos, C.; Boyer, O.; Marie, J-P.; Guérout, N. Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb. Glia, 2012, 60(3), 404-413.
[http://dx.doi.org/10.1002/glia.22274] [PMID: 22161947]
[38]
Guerout, N.; Paviot, A.; Bon-Mardion, N.; Honoré, A.; Obongo, R.; Duclos, C.; Marie, J-P. Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury. J. Vis. Exp., 2014, (84)e50590
[http://dx.doi.org/10.3791/50590] [PMID: 24637657]
[39]
de Luca, A.C.; Faroni, A.; Reid, A.J. Dorsal root ganglia neurons and differentiated adipose-derived stem cells: an in vitro co-culture model to study peripheral nerve regeneration. J. Vis. Exp.,, 2015, (96)
[http://dx.doi.org/10.3791/52543] [PMID: 25742570]
[40]
Zhang, H.; Verkman, A.S. Aquaporin-1 water permeability as a novel determinant of axonal regeneration in dorsal root ganglion neurons. Exp. Neurol., 2015, 265, 152-159.
[http://dx.doi.org/10.1016/j.expneurol.2015.01.002] [PMID: 25585012]
[41]
Zuchero, J.B. Purification of dorsal root ganglion neurons from rat by immunopanning. Cold Spring Harb. Protoc., 2014, 2014(8), 826-838.
[http://dx.doi.org/10.1101/pdb.prot074948] [PMID: 25086011]
[42]
Gornstein, E.L.; Schwarz, T.L. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp. Neurol., 2017, 288, 153-166.
[http://dx.doi.org/10.1016/j.expneurol.2016.11.015] [PMID: 27894788]
[43]
Milligan, C.; Gifondorwa, D. Isolation and culture of postnatal spinal motoneurons. Methods Mol. Biol., 2011, 793, 77-85.
[http://dx.doi.org/10.1007/978-1-61779-328-8_5] [PMID: 21913094]
[44]
Montoya-Gacharna, J.V.; Sutachan, J.J.; Chan, W.S.; Sideris, A.; Blanck, T.J.J.; Recio-Pinto, E. Preparation of adult spinal cord motor neuron cultures under serum-free conditions. Methods Mol. Biol., 2012, 846, 103-116.
[http://dx.doi.org/10.1007/978-1-61779-536-7_10] [PMID: 22367805]
[45]
Chambers, S.M.; Qi, Y.; Mica, Y.; Lee, G.; Zhang, X-J.; Niu, L.; Bilsland, J.; Cao, L.; Stevens, E.; Whiting, P.; Shi, S-H.; Studer, L. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol., 2012, 30(7), 715-720.
[http://dx.doi.org/10.1038/nbt.2249] [PMID: 22750882]
[46]
Liu, Q.; Swistowski, A.; Zeng, X. Human neural crest stem cells derived from human pluripotent stem cells. Methods Mol. Biol., 2014, 1210, 79-90.
[http://dx.doi.org/10.1007/978-1-4939-1435-7_7] [PMID: 25173162]
[47]
Yi, S.; Zhang, Y.; Gu, X.; Huang, L.; Zhang, K.; Qian, T.; Gu, X. Application of Stem cells in peripheral nerve regeneration. Burns Trauma, 2020, 8, tkaa002.,
[48]
Liu, Q.; Spusta, S.C.; Mi, R.; Lassiter, R.N.T.; Stark, M.R.; Höke, A.; Rao, M.S.; Zeng, X. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl. Med., 2012, 1(4), 266-278.
[http://dx.doi.org/10.5966/sctm.2011-0042] [PMID: 23197806]
[49]
Jones, I.; Novikova, L.N.; Novikov, L.N.; Renardy, M.; Ullrich, A.; Wiberg, M.; Carlsson, L.; Kingham, P.J. Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury. J. Tissue Eng. Regen. Med., 2018, 12(4), e2099-e2109.
[http://dx.doi.org/10.1002/term.2642] [PMID: 29327452]
[50]
Lee, G.; Kim, H.; Elkabetz, Y.; Al Shamy, G.; Panagiotakos, G.; Barberi, T.; Tabar, V.; Studer, L. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol., 2007, 25(12), 1468-1475.
[http://dx.doi.org/10.1038/nbt1365] [PMID: 18037878]
[51]
Wang, A.; Tang, Z.; Park, I-H.; Zhu, Y.; Patel, S.; Daley, G.Q.; Li, S. Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 2011, 32(22), 5023-5032.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.070] [PMID: 21514663]
[52]
Odorico, J.S.; Kaufman, D.S.; Thomson, J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001, 19(3), 193-204.
[http://dx.doi.org/10.1634/stemcells.19-3-193] [PMID: 11359944]
[53]
Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391), 1145-1147.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[54]
Wobus, A.M.; Boheler, K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev., 2005, 85(2), 635-678.
[http://dx.doi.org/10.1152/physrev.00054.2003] [PMID: 15788707]
[55]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[56]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858), 1917-1920.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[57]
Wainger, B.J.; Buttermore, E.D.; Oliveira, J.T.; Mellin, C.; Lee, S.; Saber, W.A.; Wang, A.J.; Ichida, J.K.; Chiu, I.M.; Barrett, L.; Huebner, E.A.; Bilgin, C.; Tsujimoto, N.; Brenneis, C.; Kapur, K.; Rubin, L.L.; Eggan, K.; Woolf, C.J. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci., 2015, 18(1), 17-24.
[http://dx.doi.org/10.1038/nn.3886] [PMID: 25420066]
[58]
Lee, G.; Chambers, S.M.; Tomishima, M.J.; Studer, L. Derivation of neural crest cells from human pluripotent stem cells. Nat. Protoc., 2010, 5(4), 688-701.
[http://dx.doi.org/10.1038/nprot.2010.35] [PMID: 20360764]
[59]
Rippon, H.J.; Bishop, A.E. Embryonic stem cells. Cell Prolif., 2004, 37(1), 23-34.
[http://dx.doi.org/10.1111/j.1365-2184.2004.00298.x] [PMID: 14871235]
[60]
Caddick, J.; Kingham, P.J.; Gardiner, N.J.; Wiberg, M.; Terenghi, G. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia, 2006, 54(8), 840-849.
[http://dx.doi.org/10.1002/glia.20421] [PMID: 16977603]
[61]
Tomita, K.; Madura, T.; Sakai, Y.; Yano, K.; Terenghi, G.; Hosokawa, K. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013, 236, 55-65.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.066] [PMID: 23370324]
[62]
Xie, S.; Lu, F.; Han, J.; Tao, K.; Wang, H.; Simental, A.; Hu, D.; Yang, H. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions. Cell Cycle, 2017, 16(9), 841-851.
[http://dx.doi.org/10.1080/15384101.2017.1304328] [PMID: 28296571]
[63]
McKenzie, I.A.; Biernaskie, J.; Toma, J.G.; Midha, R.; Miller, F.D. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci., 2006, 26(24), 6651-6660.
[http://dx.doi.org/10.1523/JNEUROSCI.1007-06.2006] [PMID: 16775154]
[64]
Hyung, S.; Yoon Lee, B.; Park, J-C.; Kim, J.; Hur, E-M.; Francis Suh, J-K. Coculture of primary motor neurons and schwann cells as a model for in vitro myelination. Sci. Rep., 2015, 5(1), 15122.
[http://dx.doi.org/10.1038/srep15122] [PMID: 26456300]
[65]
Mohanty, C.B.; Bhat, D.I.; Devi, B.I. Use of animal models in peripheral nerve surgery and research. Neurol. India, 2019, 67(Suppl.), S100-S105.
[http://dx.doi.org/10.4103/0028-3886.250706] [PMID: 30688242]
[66]
Ronchi, G.; Morano, M.; Fregnan, F.; Pugliese, P.; Crosio, A.; Tos, P.; Geuna, S.; Haastert-Talini, K.; Gambarotta, G. The median nerve injury model in pre-clinical research - a critical review on benefits and limitations. Front. Cell. Neurosci., 2019, 13, 288.
[http://dx.doi.org/10.3389/fncel.2019.00288] [PMID: 31316355]
[67]
Brace, E.J.; DiAntonio, A. Models of axon regeneration in Drosophila. Exp. Neurol., 2017, 287(Pt 3), 310-317.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.014] [PMID: 26996133]
[68]
Hao, Y.; Collins, C. Intrinsic mechanisms for axon regeneration: insights from injured axons in Drosophila. Curr. Opin. Genet. Dev., 2017, 44, 84-91.
[http://dx.doi.org/10.1016/j.gde.2017.01.009] [PMID: 28232273]
[69]
Li, D.; Li, F.; Guttipatti, P.; Song, Y. A Drosophila in vivo injury model for studying neuroregeneration in the peripheral and central nervous system. J. Vis. Exp.,, 2018, (135)
[http://dx.doi.org/10.3791/57557] [PMID: 29781994]
[70]
Rooney, T.M.; Freeman, M.R. Drosophila models of neuronal injury. ILAR J., 2014, 54(3), 291-295.
[http://dx.doi.org/10.1093/ilar/ilt057] [PMID: 24615442]
[71]
Tao, J.; Rolls, M.M. Dendrites have a rapid program of injury-induced degeneration that is molecularly distinct from developmental pruning. J. Neurosci., 2011, 31(14), 5398-5405.
[http://dx.doi.org/10.1523/JNEUROSCI.3826-10.2011] [PMID: 21471375]
[72]
Xiong, X.; Wang, X.; Ewanek, R.; Bhat, P.; Diantonio, A.; Collins, C.A. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J. Cell Biol., 2010, 191(1), 211-223.
[http://dx.doi.org/10.1083/jcb.201006039] [PMID: 20921142]
[73]
Soares, L.; Parisi, M.; Bonini, N.M. Axon injury and regeneration in the adult Drosophila. Sci. Rep., 2014, 4(1), 6199.
[http://dx.doi.org/10.1038/srep06199] [PMID: 25160612]
[74]
Purice, M.D.; Ray, A.; Münzel, E.J.; Pope, B.J.; Park, D.J.; Speese, S.D.; Logan, M.A. A novel Drosophila injury model reveals severed axons are cleared through a Draper/MMP-1 signaling cascade. eLife, 2017, 6e23611
[http://dx.doi.org/10.7554/eLife.23611] [PMID: 28825401]
[75]
Konno, M.; Asai, A.; Kitagawa, T.; Yabumoto, M.; Ofusa, K.; Arai, T.; Hirotsu, T.; Doki, Y.; Eguchi, H.; Ishii, H. State-of-the-art technology of model organisms for current Human medicine. Diagnostics (Basel), 2020, 10(6), 392.
[http://dx.doi.org/10.3390/diagnostics10060392] [PMID: 32532032]
[76]
Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci., 2014, 37(5), 264-278.
[http://dx.doi.org/10.1016/j.tins.2014.02.011] [PMID: 24726051]
[77]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G-J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J-H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.J.; Enright, A.; Geisler, R.; Plasterk, R.H.A.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.P.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[78]
Ceci, M.L.; Mardones-Krsulovic, C.; Sánchez, M.; Valdivia, L.E.; Allende, M.L. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev., 2014, 9(1), 22.
[http://dx.doi.org/10.1186/1749-8104-9-22] [PMID: 25326036]
[79]
Ducommun Priest, M.; Navarro, M.F.; Bremer, J.; Granato, M. Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet., 2019, 15(2)e1007982
[http://dx.doi.org/10.1371/journal.pgen.1007982] [PMID: 30779743]
[80]
Gribble, K.D.; Walker, L.J.; Saint-Amant, L.; Kuwada, J.Y.; Granato, M. The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat. Commun., 2018, 9(1), 2389.
[http://dx.doi.org/10.1038/s41467-018-04806-4] [PMID: 29921864]
[81]
Rosenberg, A.F.; Wolman, M.A.; Franzini-Armstrong, C.; Granato, M. In vivo nerve-macrophage interactions following peripheral nerve injury. J. Neurosci., 2012, 32(11), 3898-3909.
[http://dx.doi.org/10.1523/JNEUROSCI.5225-11.2012] [PMID: 22423110]
[82]
Villegas, R.; Martin, S.M.; O’Donnell, K.C.; Carrillo, S.A.; Sagasti, A.; Allende, M.L. Dynamics of degeneration and regeneration in developing zebrafish peripheral axons reveals a requirement for extrinsic cell types. Neural Dev., 2012, 7(1), 19.
[http://dx.doi.org/10.1186/1749-8104-7-19] [PMID: 22681863]
[83]
Xiao, Y.; Faucherre, A.; Pola-Morell, L.; Heddleston, J.M.; Liu, T-L.; Chew, T-L.; Sato, F.; Sehara-Fujisawa, A.; Kawakami, K.; López-Schier, H. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. Dis. Model. Mech., 2015, 8(6), 553-564.
[http://dx.doi.org/10.1242/dmm.018184] [PMID: 26035865]
[84]
Diogo, C.C.; Camassa, J.A.; Pereira, J.E.; Costa, L.M.D.; Filipe, V.; Couto, P.A.; Geuna, S.; Maurício, A.C.; Varejão, A.S. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Neurol. Res., 2017, 39(10), 926-939.
[http://dx.doi.org/10.1080/01616412.2017.1331873] [PMID: 28604272]
[85]
Gordon, T.; Borschel, G.H. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp. Neurol., 2017, 287(Pt 3), 331-347.
[http://dx.doi.org/10.1016/j.expneurol.2016.01.014] [PMID: 26795087]
[86]
Golzadeh, A.; Mohammadi, R. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model. Dent. Res. J. (Isfahan), 2016, 13(3), 225-232.
[http://dx.doi.org/10.4103/1735-3327.182181] [PMID: 27274342]
[87]
Tos, P.; Ronchi, G.; Nicolino, S.; Audisio, C.; Raimondo, S.; Fornaro, M.; Battiston, B.; Graziani, A.; Perroteau, I.; Geuna, S. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J. Neurosci. Methods, 2008, 169(1), 119-127.
[http://dx.doi.org/10.1016/j.jneumeth.2007.11.030] [PMID: 18201767]
[88]
Moradzadeh, A.; Borschel, G.H.; Luciano, J.P.; Whitlock, E.L.; Hayashi, A.; Hunter, D.A.; Mackinnon, S.E. The impact of motor and sensory nerve architecture on nerve regeneration. Exp. Neurol., 2008, 212(2), 370-376.
[http://dx.doi.org/10.1016/j.expneurol.2008.04.012] [PMID: 18550053]
[89]
Jeans, L.A.; Gilchrist, T.; Healy, D. Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: a comparison with microsurgical epineurial repair. J. Plast. Reconstr. Aesthet. Surg., 2007, 60(12), 1302-1308.
[http://dx.doi.org/10.1016/j.bjps.2006.06.014] [PMID: 18005921]
[90]
Radtke, C.; Allmeling, C.; Waldmann, K-H.; Reimers, K.; Thies, K.; Schenk, H.C.; Hillmer, A.; Guggenheim, M.; Brandes, G.; Vogt, P.M. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One, 2011, 6(2)e16990
[http://dx.doi.org/10.1371/journal.pone.0016990] [PMID: 21364921]
[91]
Glasby, M.A.; Gilmour, J.A.; Gschmeissner, S.E.; Hems, T.E.J.; Myles, L.M. The repair of large peripheral nerves using skeletal muscle autografts: a comparison with cable grafts in the sheep femoral nerve. Br. J. Plast. Surg., 1990, 43(2), 169-178.
[http://dx.doi.org/10.1016/0007-1226(90)90157-U] [PMID: 2328378]
[92]
Turner, A.S. Experiences with sheep as an animal model for shoulder surgery: strengths and shortcomings. J. Shoulder Elbow Surg., 2007, 16(5)(Suppl.), S158-S163.
[http://dx.doi.org/10.1016/j.jse.2007.03.002] [PMID: 17507248]
[93]
Fullarton, A.C.; Lenihan, D.V.; Myles, L.M.; Glasby, M.A. Obstetric brachial plexus palsy: a large animal model for traction injury and its repair. Part 1: age of the recipient. J. Hand Surg. [Br.], 2000, 25(1), 52-57.
[http://dx.doi.org/10.1054/jhsb.1999.0337] [PMID: 10763725]
[94]
Glasby, M.A.; Fullerton, A.C.; Lawson, G.M. Immediate and delayed nerve repair using freeze-thawed muscle autografts in complex nerve injuries. Associated arterial injury. J. Hand Surg., 1998, 23(3), 354-359.
[http://dx.doi.org/10.1016/S0266-7681(98)80057-0] [PMID: 9665525]
[95]
Lawson, G.M.; Glasby, M.A. A comparison of immediate and delayed nerve repair using autologous freeze-thawed muscle grafts in a large animal model. The simple injury. J. Hand Surg., 1995, 20(5), 663-700.
[http://dx.doi.org/10.1016/S0266-7681(05)80131-7] [PMID: 8543876]
[96]
Matsuyama, T.; Midha, R.; Mackinnon, S.E.; Munro, C.A.; Wong, P.Y.; Ang, L.C. Long nerve allografts in sheep with Cyclosporin A immunosuppression. J. Reconstr. Microsurg., 2000, 16(3), 219-225.
[http://dx.doi.org/10.1055/s-2000-7556] [PMID: 10803627]
[97]
Jeans, L.; Healy, D.; Gilchrist, T. An evaluation using techniques to assess muscle and nerve regeneration of a flexible glass wrap in the repair of peripheral nerves. Acta Neurochir. Suppl. (Wien), 2007, 100, 25-28.
[http://dx.doi.org/10.1007/978-3-211-72958-8_5] [PMID: 17985539]
[98]
Forden, J.; Xu, Q-G.; Khu, K.J.; Midha, R. A long peripheral nerve autograft model in the sheep forelimb. Neurosurgery, 2011, 68(5), 1354-1362.
[http://dx.doi.org/10.1227/NEU.0b013e31820c08de] [PMID: 21307797]
[99]
Carlstedt, T.P.; Hallin, R.G.; Hedström, K.G.; Nilsson-Remahl, I.A. Functional recovery in primates with brachial plexus injury after spinal cord implantation of avulsed ventral roots. J. Neurol. Neurosurg. Psychiatry, 1993, 56(6), 649-654.
[http://dx.doi.org/10.1136/jnnp.56.6.649] [PMID: 8509779]
[100]
Lu, Q.; Gu, L.; Jiang, L.; Qin, B.; Fu, G.; Li, X.; Yang, J.; Huang, X.; Yang, Y.; Zhu, Q.; Liu, X.; Zhu, J. The upper brachial plexus defect model in rhesus monkeys: a cadaveric feasibility study. Neuroreport, 2013, 24(16), 884-888.
[http://dx.doi.org/10.1097/WNR.0000000000000011] [PMID: 24025797]
[101]
Hu, N.; Wu, H.; Xue, C.; Gong, Y.; Wu, J.; Xiao, Z.; Yang, Y.; Ding, F.; Gu, X. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials, 2013, 34(1), 100-111.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.020] [PMID: 23063298]
[102]
Daeschler, S.C.; Harhaus, L.; Bergmeister, K.D.; Boecker, A.; Hoener, B.; Kneser, U.; Schoenle, P. Clinically available low intensity ultrasound devices do not promote axonal regeneration after peripheral nerve surgery-A preclinical investigation of an FDA-approved device. Front. Neurol., 2018, 9, 1057.
[http://dx.doi.org/10.3389/fneur.2018.01057] [PMID: 30564189]
[103]
Liu, Y.; Xiao, F.; Zhuang, Y.; Lao, J. Contralateral C7 transfer to axillary and median nerves in rats with total brachial plexus avulsion. BMC Musculoskelet. Disord., 2020, 21(1), 196.
[http://dx.doi.org/10.1186/s12891-020-03209-1] [PMID: 32222152]
[104]
Muratori, L.; Gnavi, S.; Fregnan, F.; Mancardi, A.; Raimondo, S.; Perroteau, I.; Geuna, S. Evaluation of vascular endothelial growth factor (VEGF) and its family member expression after peripheral nerve regeneration and denervation. Anat. Rec. (Hoboken), 2018, 301(10), 1646-1656.
[http://dx.doi.org/10.1002/ar.23842] [PMID: 29710417]
[105]
Stößel, M.; Rehra, L.; Haastert-Talini, K. Reflex-based grasping, skilled forelimb reaching, and electrodiagnostic evaluation for comprehensive analysis of functional recovery-The 7-mm rat median nerve gap repair model revisited. Brain Behav., 2017, 7(10)e00813
[http://dx.doi.org/10.1002/brb3.813] [PMID: 29075572]
[106]
Yuan, Y-S.; Niu, S-P.; Yu, Y-L.; Zhang, P-X.; Yin, X-F.; Han, N.; Zhang, Y-J.; Zhang, D-Y.; Xu, H-L.; Kou, Y-H.; Jiang, B-G. Reinnervation of spinal cord anterior horn cells after median nerve repair using transposition with other nerves. Neural Regen. Res., 2019, 14(4), 699-705.
[http://dx.doi.org/10.4103/1673-5374.247474] [PMID: 30632511]
[107]
Pace, L.A.; Plate, J.F.; Mannava, S.; Barnwell, J.C.; Koman, L.A.; Li, Z.; Smith, T.L.; Van Dyke, M. A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng. Part A, 2014, 20(3-4), 507-517.
[PMID: 24083825]
[108]
Hara, Y.; Nishiura, Y.; Ochiai, N. Sharula; Nakajima, Y.; Kubota, S.; Saijilafu; Mishima, H. New treatment for peripheral nerve defects: reconstruction of a 2 cm, monkey median nerve gap by direct lengthening of both nerve stumps. J. Orthop. Res., 2012, 30(1), 153-161.
[http://dx.doi.org/10.1002/jor.21476] [PMID: 21671264]
[109]
Wang, D.; Huang, X.; Fu, G.; Gu, L.; Liu, X.; Wang, H.; Hu, J.; Yi, J.; Niu, X.; Zhu, Q. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair. Neural Regen. Res., 2014, 9(10), 1041-1046.
[http://dx.doi.org/10.4103/1673-5374.133166] [PMID: 25206757]
[110]
O’Daly, A.; Rohde, C.; Brushart, T. The topographic specificity of muscle reinnervation predicts function. Eur. J. Neurosci., 2016, 43(3), 443-450.
[http://dx.doi.org/10.1111/ejn.13058] [PMID: 26332647]
[111]
Navarro, X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur. J. Neurosci., 2016, 43(3), 271-286.
[http://dx.doi.org/10.1111/ejn.13033] [PMID: 26228942]
[112]
Pagnussat, A.S.; Michaelsen, S.M.; Achaval, M.; Ilha, J.; Hermel, E.E.S.; Back, F.P.; Netto, C.A. Effect of skilled and unskilled training on nerve regeneration and functional recovery. Braz. J. Med. Biol. Res., 2012, 45(8), 753-762.
[http://dx.doi.org/10.1590/S0100-879X2012007500084] [PMID: 22584636]
[113]
Yu, F.; Yu, Y-L.; Niu, S-P.; Zhang, P-X.; Yin, X-F.; Han, N.; Zhang, Y-J.; Zhang, D-Y.; Kou, Y-H.; Jiang, B-G. Repair of long segmental ulnar nerve defects in rats by several different kinds of nerve transposition. Neural Regen. Res., 2019, 14(4), 692-698.
[http://dx.doi.org/10.4103/1673-5374.247473] [PMID: 30632510]
[114]
Yu, Q.; Zhang, S.H.; Wang, T.; Peng, F.; Han, D.; Gu, Y.D. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration. Neural Regen. Res., 2017, 12(10), 1703-1707.
[http://dx.doi.org/10.4103/1673-5374.217350] [PMID: 29171436]
[115]
Meyers, E.C.; Granja, R.; Solorzano, B.R.; Romero-Ortega, M.; Kilgard, M.P.; Rennaker, R.L., II; Hays, S. Median and ulnar nerve injuries reduce volitional forelimb strength in rats. Muscle Nerve, 2017, 56(6), 1149-1154.
[http://dx.doi.org/10.1002/mus.25590] [PMID: 28120500]
[116]
Bergmeister, K.D.; Aman, M.; Riedl, O.; Manzano-Szalai, K.; Sporer, M.E.; Salminger, S.; Aszmann, O.C. Experimental nerve transfer model in the rat forelimb. Eur. Surg., 2016, 48(6), 334-341.
[http://dx.doi.org/10.1007/s10353-016-0386-4] [PMID: 28058042]
[117]
Hu, J.; Zhu, Q-T.; Liu, X-L.; Xu, Y-B.; Zhu, J-K. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp. Neurol., 2007, 204(2), 658-666.
[http://dx.doi.org/10.1016/j.expneurol.2006.11.018] [PMID: 17316613]
[118]
Geuna, S. The sciatic nerve injury model in pre-clinical research. J. Neurosci. Methods, 2015, 243, 39-46.
[http://dx.doi.org/10.1016/j.jneumeth.2015.01.021] [PMID: 25629799]
[119]
Krarup, C.; Moldovan, M.; Alvarez, S.; Ciano, C.; Pisciotta, C.; Pareyson, D. Motor axon excitability in charcot-marie-tooth disease type 1b with a null mutation in the P-0 gene – insights from a mouse model. J. Peripher. Nerv. Syst., 2017, 22, 320.
[120]
Vela, F.J.; Martínez-Chacón, G.; Ballestín, A.; Campos, J.L.; Sánchez-Margallo, F.M.; Abellán, E. Animal models used to study direct peripheral nerve repair: a systematic review. Neural Regen. Res., 2020, 15(3), 491-502.
[http://dx.doi.org/10.4103/1673-5374.266068] [PMID: 31571661]
[121]
Adams, A.M.; VanDusen, K.W.; Kostrominova, T.Y.; Mertens, J.P.; Larkin, L.M. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats. Neural Regen. Res., 2017, 12(9), 1529-1537.
[http://dx.doi.org/10.4103/1673-5374.215265] [PMID: 29090000]
[122]
Pang, Y.; Hong, Q.; Zheng, J. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein grafts. Neural Regen. Res., 2014, 9(6), 610-615.
[http://dx.doi.org/10.4103/1673-5374.130103] [PMID: 25206863]
[123]
Lin, Y-F.; Xie, Z.; Zhou, J.; Yin, G.; Lin, H-D. Differential gene and protein expression between rat tibial nerve and common peroneal nerve during Wallerian degeneration. Neural Regen. Res., 2019, 14(12), 2183-2191.
[http://dx.doi.org/10.4103/1673-5374.262602] [PMID: 31397358]
[124]
Yan, Y-H.; Yan, J-G.; Sanger, J.R.; Zhang, L-L.; Riley, D.A.; Matloub, H.S. Nerve repair at different angles of attachment: experiment in rats. J. Reconstr. Microsurg., 2002, 18(8), 703-708.
[http://dx.doi.org/10.1055/s-2002-36503] [PMID: 12524590]
[125]
Beer, G.M.; Burg, D.; Zehnder, A.; Seifert, B.; Steurer, M.; Grimaldi, H.; Meyer, V.E. Functional, electrophysiologic, and morphometric evaluation of nerve regeneration from coaptation on regenerated nerve fibers: experimental study in rabbits. J. Reconstr. Microsurg., 2004, 20(2), 159-166.
[http://dx.doi.org/10.1055/s-2004-820773] [PMID: 15011125]
[126]
Isaacs, J.E.; Cheatham, S.; Gagnon, E.B.; Razavi, A.; McDowell, C.L. Reverse end-to-side neurotization in a regenerating nerve. J. Reconstr. Microsurg., 2008, 24(7), 489-496.
[http://dx.doi.org/10.1055/s-0028-1088230] [PMID: 18803150]
[127]
Flores, A.J.; Lavernia, C.J.; Owens, P.W. Anatomy and physiology of peripheral nerve injury and repair. Am. J. Orthop., 2000, 29(3), 167-173.
[PMID: 10746467]
[128]
Caillaud, M.; Richard, L.; Vallat, J-M.; Desmoulière, A.; Billet, F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen. Res., 2019, 14(1), 24-33.
[http://dx.doi.org/10.4103/1673-5374.243699] [PMID: 30531065]
[129]
Alvites, R.; Rita, C.A.; Santos, P.S.; Vieira, B.M.; Ronchi, G.; Geuna, S.; Varejão, A.S.P.; Colette, M.A. Peripheral nerve injury and axonotmesis: state of the art and recent advances. Cogent Med., 2018, 5(1)1466404
[http://dx.doi.org/10.1080/2331205X.2018.1466404]
[130]
Savastano, L.E.; Laurito, S.R.; Fitt, M.R.; Rasmussen, J.A.; Gonzalez Polo, V.; Patterson, S.I. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery. J. Neurosci. Methods, 2014, 227, 166-180.
[http://dx.doi.org/10.1016/j.jneumeth.2014.01.020] [PMID: 24487015]
[131]
Driscoll, P.J.; Glasby, M.A.; Lawson, G.M. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J. Orthop. Res., 2002, 20(2), 370-375.
[http://dx.doi.org/10.1016/S0736-0266(01)00104-8] [PMID: 11918319]
[132]
Cobianchi, S.; de Cruz, J.; Navarro, X. Assessment of sensory thresholds and nociceptive fiber growth after sciatic nerve injury reveals the differential contribution of collateral reinnervation and nerve regeneration to neuropathic pain. Exp. Neurol., 2014, 255, 1-11.
[http://dx.doi.org/10.1016/j.expneurol.2014.02.008] [PMID: 24552688]
[133]
Chen, X.; Yin, Y.; Zhang, T.; Zhao, Y.; Yang, Y.; Yu, X.; Wang, H. Ultrasound imaging of chitosan nerve conduits that bridge sciatic nerve defects in rats. Neural Regen. Res., 2014, 9(14), 1386-1388.
[http://dx.doi.org/10.4103/1673-5374.137592] [PMID: 25221596]
[134]
Hayashi, A.; Moradzadeh, A.; Hunter, D.A.; Kawamura, D.H.; Puppala, V.K.; Tung, T.H.H.; Mackinnon, S.E.; Myckatyn, T.M. Retrograde labeling in peripheral nerve research: it is not all black and white. J. Reconstr. Microsurg., 2007, 23(7), 381-389.
[http://dx.doi.org/10.1055/s-2007-992344] [PMID: 17979067]
[135]
Bozkurt, A.; Brook, G.A.; Moellers, S.; Lassner, F.; Sellhaus, B.; Weis, J.; Woeltje, M.; Tank, J.; Beckmann, C.; Fuchs, P.; Damink, L.O.; Schügner, F.; Heschel, I.; Pallua, N. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng., 2007, 13(12), 2971-2979.
[http://dx.doi.org/10.1089/ten.2007.0116] [PMID: 17937537]
[136]
Gerardo-Nava, J.; Hodde, D.; Katona, I.; Bozkurt, A.; Grehl, T.; Steinbusch, H.W.M.; Weis, J.; Brook, G.A. Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials, 2014, 35(14), 4288-4296.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.007] [PMID: 24565523]
[137]
Srinivasan, A.; Guo, L.; Bellamkonda, R.V. Regenerative Microchannel Electrode Array for Peripheral Nerve Interfacing. 5th International IEEE/EMBS Conference on Neural Engineering IEEE,2011.,
[http://dx.doi.org/10.1109/NER.2011.5910535]
[138]
Chen, W-H.; Lin, Y-W. A substrate scaffold for assessment of nerve regeneration and neurodegenerative diseases. Neural Regen. Res., 2015, 10(1), 41-42.
[http://dx.doi.org/10.4103/1673-5374.150650] [PMID: 25788915]
[139]
Blasiak, A.; Guerin, T.H.M.; Teh, D.B.L.; Yang, I.H.; Lahiri, A.; Thakor, N.V. Fibro-neuronal guidance on common, 3D-Printed textured substrates. IEEE Trans. Nanobioscience, 2019, 18(2), 226-229.
[http://dx.doi.org/10.1109/TNB.2019.2905469] [PMID: 30892222]
[140]
Batth, A.; Thompson, I. Nylon as an in vitro scaffold for three-dimensional study of neural cells. J. Biomed. Mater. Res. A, 2018, 106(6), 1575-1584.
[http://dx.doi.org/10.1002/jbm.a.36367] [PMID: 29430862]
[141]
Siddique, R.; Vyas, A.; Thakor, N.; Brushart, T.M. A two-compartment organotypic model of mammalian peripheral nerve repair. J. Neurosci. Methods, 2014, 232, 84-92.
[http://dx.doi.org/10.1016/j.jneumeth.2014.05.005] [PMID: 24837281]
[142]
Vyas, A.; Li, Z.; Aspalter, M.; Feiner, J.; Hoke, A.; Zhou, C.; O’Daly, A.; Abdullah, M.; Rohde, C.; Brushart, T.M. An in vitro model of adult mammalian nerve repair. Exp. Neurol., 2010, 223(1), 112-118.
[http://dx.doi.org/10.1016/j.expneurol.2009.05.022] [PMID: 19464291]
[143]
Horacek, M.J.; Thompson, J.C.; Dada, M.O.; Terracio, L. The extracellular matrix components laminin, fibronectin, and collagen IV are present among the epithelial cells forming Rathke’s pouch. Acta Anat. (Basel), 1993, 147(2), 69-74.
[http://dx.doi.org/10.1159/000147484] [PMID: 8379294]
[144]
Letourneau, P.C.; Condic, M.L.; Snow, D.M. Interactions of developing neurons with the extracellular matrix. J. Neurosci., 1994, 14(3 Pt 1), 915-928.
[http://dx.doi.org/10.1523/JNEUROSCI.14-03-00915.1994] [PMID: 8120634]
[145]
Sundararaghavan, H.G.; Masand, S.N.; Shreiber, D.I. Microfluidic generation of haptotactic gradients through 3D collagen gels for enhanced neurite growth. J. Neurotrauma, 2011, 28(11), 2377-2387.
[http://dx.doi.org/10.1089/neu.2010.1606] [PMID: 21473683]
[146]
Allodi, I.; Guzmán-Lenis, M-S.; Hernàndez, J.; Navarro, X.; Udina, E. In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. J. Neurosci. Methods, 2011, 198(1), 53-61.
[http://dx.doi.org/10.1016/j.jneumeth.2011.03.006] [PMID: 21402104]
[147]
Gingras, M.; Beaulieu, M-M.; Gagnon, V.; Durham, H.D.; Berthod, F. In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia, 2008, 56(3), 354-364.
[http://dx.doi.org/10.1002/glia.20617] [PMID: 18098124]
[148]
Corey, J.M.; Lin, D.Y.; Mycek, K.B.; Chen, Q.; Samuel, S.; Feldman, E.L.; Martin, D.C. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A, 2007, 83(3), 636-645.
[http://dx.doi.org/10.1002/jbm.a.31285] [PMID: 17508416]
[149]
Schnell, E.; Klinkhammer, K.; Balzer, S.; Brook, G.; Klee, D.; Dalton, P.; Mey, J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials, 2007, 28(19), 3012-3025.
[http://dx.doi.org/10.1016/j.biomaterials.2007.03.009] [PMID: 17408736]
[150]
Gähwiler, B.H.; Capogna, M.; Debanne, D.; McKinney, R.A.; Thompson, S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci., 1997, 20(10), 471-477.
[http://dx.doi.org/10.1016/S0166-2236(97)01122-3] [PMID: 9347615]
[151]
Rothstein, J.D.; Jin, L.; Dykes-Hoberg, M.; Kuncl, R.W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6591-6595.
[http://dx.doi.org/10.1073/pnas.90.14.6591] [PMID: 8393571]
[152]
Brushart, T.; Kebaish, F.; Wolinsky, R.; Skolasky, R.; Li, Z.; Barker, N. Sensory axons inhibit motor axon regeneration in vitro. Exp. Neurol., 2020, 323(113073)113073
[http://dx.doi.org/10.1016/j.expneurol.2019.113073] [PMID: 31639375]
[153]
Sharma, A.D.; McCoy, L.; Jacobs, E.; Willey, H.; Behn, J.Q.; Nguyen, H.; Bolon, B.; Curley, J.L.; Moore, M.J. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci. Rep., 2019, 9(1), 8921.
[http://dx.doi.org/10.1038/s41598-019-45407-5] [PMID: 31222141]
[154]
Natarajan, A.; Sethumadhavan, A.; Krishnan, U.M. Toward building the neuromuscular junction: in vitro models to study synaptogenesis and neurodegeneration. ACS Omega, 2019, 4(7), 12969-12977.
[http://dx.doi.org/10.1021/acsomega.9b00973] [PMID: 31460423]
[155]
Kubo, T.; Randolph, M.A.; Gröger, A.; Winograd, J.M. Embryonic stem cell-derived motor neurons form neuromuscular junctions in vitro and enhance motor functional recovery in vivo. Plast. Reconstr. Surg., 2009, 123(2)(Suppl.), 139S-148S.
[http://dx.doi.org/10.1097/PRS.0b013e3181923d07] [PMID: 19182673]
[156]
Froeter, P.; Huang, Y.; Cangellaris, O.V.; Huang, W.; Dent, E.W.; Gillette, M.U.; Williams, J.C.; Li, X. Toward intelligent synthetic neural circuits: directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array. ACS Nano, 2014, 8(11), 11108-11117.
[http://dx.doi.org/10.1021/nn504876y] [PMID: 25329686]
[157]
Lin, Y-W.; Cheng, C-M.; Leduc, P.R.; Chen, C-C. Understanding sensory nerve mechanotransduction through localized elastomeric matrix control. PLoS One, 2009, 4(1)e4293
[http://dx.doi.org/10.1371/journal.pone.0004293] [PMID: 19173000]