Current Molecular Medicine

Author(s): Smriti Sharma*

DOI: 10.2174/1566524021666210406121807

Role of Extracellular Vesicles in Alzheimer’s Disease: Current Advances

Page: [85 - 97] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

The recent developments in the field of extracellular vesicles (EVs) point to their potential use for predicting and treating neurodegenerative diseases. This review focusses on the importance and latest advances in this field, especially with respect to Alzheimer’s disease (AD). Increasing evidence shows that the progression of amyloidbeta and tau brain pathology is correlated to the cognitive decline associated with AD. Lot of experimental data suggests the involvement of EVs with these processes, for instance EVs are known to circulate the misfolded proteins involved in AD. The currently available information on the role of EVs in neurodegenerative disorder especially in AD have also presented the knowledge gaps on which future research efforts should be focused.

Keywords: Extracellular vesicles, Alzheimer’s disease, neurodegeneration, exosomes, Aβ aggregation, biomarkers.

[1]
Yáñez-mó M, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles ISSN 2017; p. 3078.
[2]
Zhang YW, Xu H. Molecular and cellular mechanisms for Alzheimer’s disease: understanding APP metabolism. Curr Mol Med 2007; 7(7): 687-96.
[http://dx.doi.org/10.2174/156652407782564462] [PMID: 18045146]
[3]
Gill S, Catchpole RPF. Extracellular membrane vesicles (EVs) in the three domains of life and beyond. FEMS Microbiol Rev 2018.
[PMID: 30476045]
[4]
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 36(3): 301-12.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[5]
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40: 41-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.010] [PMID: 25721812]
[6]
Dozio V, Sanchez JC. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles 2017; 6(1)1302705
[http://dx.doi.org/10.1080/20013078.2017.1302705] [PMID: 28473883]
[7]
O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21(10): 585-606.
[http://dx.doi.org/10.1038/s41580-020-0251-y] [PMID: 32457507]
[8]
Yuyama K, et al. Decreased Amyloid- β Pathologies by Intracerebral Loading of Glycosphingolipid-enriched Exosomes in Alzheimer Model 2014
[http://dx.doi.org/10.1074/jbc.M114.577213]
[9]
Agosta F, Dalla Libera D, Spinelli EG, et al. Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Ann Neurol 2014; 76(6): 813-25.
[http://dx.doi.org/10.1002/ana.24235] [PMID: 25087695]
[10]
An K, Klyubin I, Kim Y, et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain 2013; 6: 47.
[http://dx.doi.org/10.1186/1756-6606-6-47] [PMID: 24284042]
[11]
Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012; 3(MAY): 124.
[http://dx.doi.org/10.3389/fphys.2012.00124] [PMID: 22563321]
[12]
Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 2014; 35(8): 1792-800.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.012] [PMID: 24650793]
[13]
Ghidoni R, Paterlini A, Albertini V, et al. Cystatin C is released in association with exosomes: a new tool of neuronal communication which is unbalanced in Alzheimer’s disease. Neurobiol Aging 2011; 32(8): 1435-42.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.08.013] [PMID: 19773092]
[14]
Sharma S, Bhatia V. Treatment of Type 2 Diabetes mellitus (T2DM): Can GLP-1 Receptor Agonists fill in the gaps? Chem Biol Lett 2020; 7: 215-24.
[15]
Trotta T, Panaro MA, Cianciulli A, Mori G, Di Benedetto A, Porro C. Microglia-derived extracellular vesicles in Alzheimer’s Disease: A double-edged sword. Biochem Pharmacol 2018; 148: 184-92.
[http://dx.doi.org/10.1016/j.bcp.2017.12.020] [PMID: 29305855]
[16]
Vingtdeux V, Sergeant N, Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front Physiol 2012; 3(JUL): 229.
[http://dx.doi.org/10.3389/fphys.2012.00229] [PMID: 22783199]
[17]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[18]
Finch CE, Cohen DM, Angeles L. Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp Neurol 1997; 143(1): 82-102.
[http://dx.doi.org/10.1006/exnr.1996.6339] [PMID: 9000448]
[19]
Citron M. Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(9): 677-85.
[http://dx.doi.org/10.1038/nrn1495] [PMID: 15322526]
[20]
Maslow K. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement 2010; 6(2): 158-94.
[http://dx.doi.org/10.1016/j.jalz.2010.01.009] [PMID: 20298981]
[21]
Uddin S, Rahman M, Rahman S, Hossain S. Estrogen signaling in Alzheimer’s disease : molecular insights and therapeutic targets for Alzheimer’s dementia. Mol Neurobiol 2020.
[http://dx.doi.org/10.1007/s12035-020-01911-8]
[22]
Selkoe D J. Alzheimer’s disease Is a synaptic failureScience (80- ) 2002; 298: 789-91
[23]
Hatashita S, Yamasaki H. Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS One 2013; 8(6)e66877
[http://dx.doi.org/10.1371/journal.pone.0066877] [PMID: 23799136]
[24]
Walsh D M, Selkoe D J. Deciphering the molecular basis of memory failure in Alzheimer ’ s disease 2004; 44: 181-93
[25]
Sharma S, Bhatia V. Phytochemicals for drug discovery in Alzheimer’s disease: in silico advances. Curr Pharm Des 2020; 1-17.
[26]
Mroczko B. Biochemical markers in Alzheimer’s disease. Internatioanal J Mol Sci 2020; 21: 1-11.
[27]
Bickel H, Cooper B. Incidence and relative risk of dementia in an urban elderly population: findings of a prospective field study. Psychol Med 1994; 24(1): 179-92.
[http://dx.doi.org/10.1017/S0033291700026945] [PMID: 8208883]
[28]
Wang LY, Labardi BA, Raskind MA, Peskind ER. Alzheimer ’ s disease and other neurocognitive disordersHandbook of Mental Health and Aging 2020; pp 161-84.
[29]
Association A. 2019 Alzheimer ’ s disease facts and figures. Alzheimers Dement 2019; 15: 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[30]
Forner S, Martini AC, Prieto GA, et al. Intra- and extracellular β-amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Sci Rep 2019; 9(1): 15936.
[http://dx.doi.org/10.1038/s41598-019-52324-0] [PMID: 31685865]
[31]
Jagust WJ, Mormino EC. Lifespan brain activity, β-amyloid, and Alzheimer’s disease. Trends Cogn Sci 2011; 15(11): 520-6.
[http://dx.doi.org/10.1016/j.tics.2011.09.004] [PMID: 21983147]
[32]
Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 2010; 119(5): 523-41.
[http://dx.doi.org/10.1007/s00401-010-0679-9] [PMID: 20354705]
[33]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[34]
Banzhaf-Strathmann J, Benito E, May S, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 2014; 33(15): 1667-80.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
[35]
Basurto-Islas G, Gu JH, Tung YC, Liu F, Iqbal K. Mechanism of Tau Hyperphosphorylation Involving Lysosomal Enzyme Asparagine Endopeptidase in a Mouse Model of Brain Ischemia. J Alzheimers Dis 2018; 63(2): 821-33.
[http://dx.doi.org/10.3233/JAD-170715] [PMID: 29689717]
[36]
Hu W, Zhang X, Tung YC, Xie S, Liu F, Iqbal K. Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimers Dement 2016; 12(10): 1066-77.
[http://dx.doi.org/10.1016/j.jalz.2016.01.014] [PMID: 27133892]
[37]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[38]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22. [Review]
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[39]
Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17(5): 681-6.
[http://dx.doi.org/10.1016/0197-4580(96)00115-7] [PMID: 8892340]
[40]
Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 2005; 37(2): 289-305.
[http://dx.doi.org/10.1016/j.biocel.2004.07.009] [PMID: 15474976]
[41]
Doraiswamy PM. The role of the N-methyl-D-aspartate receptor in Alzheimer’s disease: therapeutic potential. Curr Neurol Neurosci Rep 2003; 3(5): 373-8.
[http://dx.doi.org/10.1007/s11910-003-0019-8] [PMID: 12914679]
[42]
Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 2011; 32(5): 802-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.002] [PMID: 19501936]
[43]
Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 1997; 56(8): 901-11.
[http://dx.doi.org/10.1097/00005072-199708000-00008] [PMID: 9258260]
[44]
Francis BPT. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2016; 10: 10-3.
[45]
Ying Y, et al. Neurobiology of Aging Disruption of cholinergic neurotransmission exacerbates A b -related cognitive impairment in preclinical Alzheimer ’ s disease. Neurobiol Aging 2015; 36: 2709-15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.07.009] [PMID: 26233262]
[46]
Coyle J T, Price D L, Delong M R. Alzheimer’s disease : a disorder of cortical cholinergic innervationScience (80- ) 1983; 219: 1184-90
[47]
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer’s disease. Neuroimage 2019; 199: 143-52.
[http://dx.doi.org/10.1016/j.neuroimage.2019.05.044] [PMID: 31112788]
[48]
Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA. Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 1984; 43(6): 1574-81.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb06081.x] [PMID: 6208336]
[49]
Raskind MA, Peskind ER, Halter JB, Jimerson DC. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch Gen Psychiatry 1984; 41(4): 343-6.
[http://dx.doi.org/10.1001/archpsyc.1984.01790150033006] [PMID: 6703854]
[50]
Sweet RA, Nimgaonkar VL, Kamboh MI, Lopez OL, Zhang F, DeKosky ST. Dopamine receptor genetic variation, psychosis, and aggression in Alzheimer disease. Arch Neurol 1998; 55(10): 1335-40.
[http://dx.doi.org/10.1001/archneur.55.10.1335] [PMID: 9779662]
[51]
Rf C, Cj F, Neurotransmitters ONC. Neurotransmitters, signal transduction and second-messengers in Alzheimer ’ s disease. Acta Neurol Scand 1996; 165: 25-32.
[52]
McKee AC, Kosik KS, Kowall NW. Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 1991; 30(2): 156-65.
[http://dx.doi.org/10.1002/ana.410300206] [PMID: 1910274]
[53]
Duyckaerts C, Brion JP, Hauw JJ, Flament-Durand J. Quantitative assessment of the density of neurofibrillary tangles and senile plaques in senile dementia of the Alzheimer type. Comparison of immunocytochemistry with a specific antibody and Bodian’s protargol method. Acta Neuropathol 1987; 73(2): 167-70.
[http://dx.doi.org/10.1007/BF00693783] [PMID: 2440224]
[54]
Kumar P, Pillay V, Choonara YE, Modi G, Naidoo D, du Toit LC. In silico theoretical molecular modeling for Alzheimer’s disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int J Mol Sci 2011; 12(1): 694-724.
[http://dx.doi.org/10.3390/ijms12010694] [PMID: 21340009]
[55]
Breitner JC. Inflammatory processes and antiinflammatory drugs in Alzheimer’s disease: a current appraisal. Neurobiol Aging 1996; 17(5): 789-94.
[http://dx.doi.org/10.1016/0197-4580(96)00109-1] [PMID: 8892353]
[56]
Sharma S, Bhatia V. Appraisal of the role of In silico Methods in Pyrazole based drug design. Mini Reviews Med Chem 2020; 21(2): 204-16.
[57]
Qian X, Hamad B, Dias-Lalcaca G, Ad M. The Alzheimer disease market. Nat Rev Drug Discov 2015; 14(10): 675-6.
[http://dx.doi.org/10.1038/nrd4749] [PMID: 26388231]
[58]
Müller-Hill B, Beyreuther K. Molecular biology of Alzheimer’s disease. Annu Rev Biochem 1989; 58: 287-307.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001443] [PMID: 2673012]
[59]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[60]
Board E, et al. NMDA receptor antagonists and their potential as neuroprotective agentsIonotropic Glutamate Receptors in the CNS Handbook of Experimental Pharmacology 1999; 141: pp 495-529.
[http://dx.doi.org/10.1007/978-3-662-08022-1_16]
[61]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012728983
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[62]
Pegtel D M, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brainPhilos Trans R Soc B Biol Sci 2014; 369
[63]
Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci 2018; 41(6): 360-72.
[http://dx.doi.org/10.1016/j.tins.2018.03.006] [PMID: 29605090]
[64]
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci 2019; 42(5): 361-72.
[http://dx.doi.org/10.1016/j.tins.2019.02.007] [PMID: 30926143]
[65]
Kushwah N, Jain V, Yadav D. Osmolytes: A possible therapeutic molecule for ameliorating the neurodegeneration caused by protein misfolding and aggregation. Biomolecules 2020; 10(1)
[http://dx.doi.org/10.3390/biom10010132] [PMID: 31941036]
[66]
Sinnige T, Stroobants K, Dobson CM, Vendruscolo M. Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer’s and Parkinson’s diseases. Q Rev Biophys 2020; 49e22
[http://dx.doi.org/10.1017/S0033583520000025] [PMID: 32493529]
[67]
Dobson CM. Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 2004; 15(1): 3-16.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.008] [PMID: 15036202]
[68]
Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 2014; 24(9): 506-14.
[http://dx.doi.org/10.1016/j.tcb.2014.05.003] [PMID: 24946960]
[69]
Mäger I, Willms E, Bonner S, Hill AF. Extracellular vesicles in neurodegenerative disorders Exosomes. Elsevier Inc. 2020.
[70]
Lim CZJ, Natalia A, Sundah NR, Shao H. Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv Biosyst 2020; 4(12)e1900309
[http://dx.doi.org/10.1002/adbi.201900309] [PMID: 32597034]
[71]
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126(4): 1198-207.
[http://dx.doi.org/10.1172/JCI81134] [PMID: 27035811]
[72]
Dostert G, Mesure B, Menu P, Velot É. How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 2017; 5: 6.
[http://dx.doi.org/10.3389/fcell.2017.00006] [PMID: 28224125]
[73]
Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. Adv Exp Med Biol 2018; 1056: 87-108.
[http://dx.doi.org/10.1007/978-3-319-74470-4_6] [PMID: 29754176]
[74]
Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017; 27(3): 172-88.
[http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
[75]
Patricia F. Herkert, Rafaela F. Amatuzzi, L. R. A. and M. L. R. Extracellular vesicles as vehicles for the delivery of biologically active fungal molecules. Curr Protein Pept Sci 2019; 20: 2174.
[76]
Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond) 2012; 7(8): 1225-33.
[http://dx.doi.org/10.2217/nnm.12.86] [PMID: 22931448]
[77]
Matsumoto J, Stewart T, Banks WA, Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 2017; 23(40): 6206-14.
[http://dx.doi.org/10.2174/1381612823666170913164738] [PMID: 28914201]
[78]
Upadhya D, Shetty AK. Extracellular Vesicles as Therapeutics for Brain Injury and Disease”, Current Pharmaceutical Design. Curr Pharm Des 2019; 25: 6128.
[http://dx.doi.org/10.2174/1381612825666191014164950]
[79]
Simeone P, Bologna G, Lanuti P, et al. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers. Int J Mol Sci 2020; 21(7)
[http://dx.doi.org/10.3390/ijms21072514] [PMID: 32260425]
[80]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 2015; 6: 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[81]
Lefaucheur JP, André-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125(11): 2150-206.
[http://dx.doi.org/10.1016/j.clinph.2014.05.021] [PMID: 25034472]
[82]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[83]
Bavisotto CC, et al. Extracellular vesicle-mediated cell–cell communication in the nervous system: Focus on neurological diseases. Int J Mol Sci 2019; 20: 1-23.
[http://dx.doi.org/10.3390/ijms20020434]
[84]
Willis C M, Nicaise AN, Bangarzone ER, et al. Astrocyte support for oligodendrocyte differentiation can be conveyed via extracellular vesicles but diminishes with age 2020; 10 (1): 828
[http://dx.doi.org/10.1038/s41598-020-57663-x.]
[85]
Saugstad J A, Lusardi TA, Keuren-Jensen KRV, et al. Analysis of extracellular RNA in cerebrospinal fluid 2017; 3078.
[86]
Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 2017; 483(4): 1178-86.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.090] [PMID: 27659705]
[87]
Fiandaca MS, Kapogiannis D, Mapstone M, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement 2015; 11(6): 600-7.e1.
[http://dx.doi.org/10.1016/j.jalz.2014.06.008] [PMID: 25130657]
[88]
Abner EL, Jicha GA, Karydas AM, Boxer A, Miller BL. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer ’ s disease. FASEB J 2016.
[http://dx.doi.org/10.1096/fj.201600816R]
[89]
Sharples RA, Vella LJ, Nisbet RM, et al. Inhibition of γ-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes. FASEB J 2008; 22(5): 1469-78.
[http://dx.doi.org/10.1096/fj.07-9357com] [PMID: 18171695]
[90]
Sardar M, et al. Alzheimer ’ s disease pathology propagation by exosomes containing toxic amyloid beta oligomers. Acta Neuropathol 2018.
[http://dx.doi.org/10.1007/s00401-018-1868-1]
[91]
Boudreau E, Roufaiel M, Cybulsky MI, Schober A, Fish JE. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiin fl ammatory microRNAs. Blood 2016; 125: 3202-13.
[92]
Badhwar A, Haqqani AS. Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement (Amst) 2020; 12(1)e12001
[http://dx.doi.org/10.1002/dad2.12001] [PMID: 32211497]
[93]
Hill AF. Extracellular Vesicles and Neurodegenerative Diseases. J Neurosci 2019; 39(47): 9269-73.
[http://dx.doi.org/10.1523/JNEUROSCI.0147-18.2019] [PMID: 31748282]
[94]
Cooper JM, Wiklander PB, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 2014; 29(12): 1476-85.
[http://dx.doi.org/10.1002/mds.25978] [PMID: 25112864]
[95]
Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[96]
Lee S, Im W, Ban J-J, et al. Exosome-Based Delivery of miR- 124 in a Huntington ’ s Disease Model 2017; 10 (1): 45-52
[97]
Didiot MC, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 2016; 24(10): 1836-47.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[98]
Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS, Ai J. Potential of extracellular vesicles in neurodegenerative diseases: diagnostic and therapeutic indications. J Mol Neurosci 2018; 66(2): 172-9.
[http://dx.doi.org/10.1007/s12031-018-1135-x] [PMID: 30140997]
[99]
Lee JY, Kim HS. Extracellular vesicles in neurodegenerative diseases: a double-edged sword. Tissue Eng Regen Med 2017; 14(6): 667-78.
[http://dx.doi.org/10.1007/s13770-017-0090-x] [PMID: 30603519]
[100]
Gross C, Bloch I. Quantum simulations with ultracold atoms in optical lattices 2017.1001: 995-1001.
[101]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[102]
Scotti L, Scotti MT. Activity against Alzheimer’s disease Computational modeling of drugs against alzheimer’s disease neuromethods. New York, NY: Humana Press 2018; Vol. 132: pp. 513-31.
[http://dx.doi.org/10.1007/978-1-4939-7404-7_18]
[103]
Bukhsh D, Manish S, Gupta K. Comparative docking and ADMET study of some curcumin derivatives and herbal congeners targeting b -amyloid. Netw Model Anal Health Inform Bioinform 2013; 2: 13-27.
[http://dx.doi.org/10.1007/s13721-012-0021-7]
[104]
Akhil K, Ashish TSA. Changing paradigm from one target one ligand towards multi-target directed ligand design for key drug targets of Alzheimer disease: an important role of in silico methods in multi-target directed ligands design. Curr Neuropharmacol Vol 2018; 16: 726-39.
[http://dx.doi.org/10.2174/1570159X16666180315141643]
[105]
Alcaro S, Bolognesi M L, García-sosa A T. Editorial : Multitarget- directed ligands (MTDL) as challenging research tools in drug discovery : from design to pharmacological evaluation Front inchemistry 2019; 7: 71
[106]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[107]
Gong C, Grundke-iqbal I, Iqbal K. Targeting tau protein in Alzheimer ’ s disease 2010; 27: 351-65
[108]
Current Drug Targets for Alzheimer’s Disease Treatment Drug Dev Res 2002; 56: 267-81..
[http://dx.doi.org/10.1002/ddr.10081]
[109]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[110]
Kejing L, Ji N, Zhang X, et al. Drug development for Alzheimer’s disease. review J Drug Target 2019; 27(2): 164-73.
[111]
Tan J Z A, Gleeson P A. BBA - Biomembranes The role of membrane tra ffi cking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease BBA - Biomembr 2019; 1861: 697-712
[112]
Kung HF. The β-amyloid hypothesis in Alzheimer’s disease: seeing Is believing. ACS Med Chem Lett 2012; 3(4): 265-7.
[http://dx.doi.org/10.1021/ml300058m] [PMID: 24936237]
[113]
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y) 2019; 5: 272-93.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[114]
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother 2018; 106: 553-65.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[115]
Vignes M, Maurice T, Lanté F, et al. Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Res 2006; 1110(1): 102-15.
[http://dx.doi.org/10.1016/j.brainres.2006.06.062] [PMID: 16859659]
[116]
Hathout RM, El-ahmady SH, Metwally AA. Curcumin or bisdemethoxycurcumin for nose- to-brain treatment of Alzheimer disease? A bio/chemo-informatics case study. Nat Prod Res 2017; 6419: 1-9.
[PMID: 29022380]
[117]
Prabhakaran Pratibha. Eapen, et al. Structural Insights in Designing Spice Derivatives Against Alzheimer’s Disease Through Computational In Silico Approaches. Proceedings of International Conference on Drug Discovery (ICDD) 2020.
[118]
Monteiro AFM, Viana JO, Nayarisseri A, et al. Computational Studies Applied to Flavonoids against Alzheimer’s and Parkinson’s Diseases. Oxid Med Cell Longev 2018; 20187912765
[http://dx.doi.org/10.1155/2018/7912765] [PMID: 30693065]
[119]
Prati F, Bottegoni G, Bolognesi ML, Cavalli A. BACE-1 inhibitors: from recent single-target molecules to multitarget compounds for Alzheimer’s disease. J Med Chem 2018; 61(3): 619-37.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00393] [PMID: 28749667]
[120]
Zhu K, Xiang X, Filser S, et al. BACE1 inhibition impairs synaptic plasticity via seizure protein 6BACE1 inhibition impairs synaptic plasticity via Sez6. Biol Psychiatry 2016; 83: 428-37.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.023] [PMID: 28129943]
[121]
Pacha NMM, Alniss H, Omar HA, Al Tel TH. BACE1 inhibitors : Current status and future directions in treating Alzheimer ’ s disease. Med Res Rev 2019; 1-46.
[http://dx.doi.org/10.1002/med.21622]
[122]
Alam A, Tamkeen N, Imam N, Farooqui A. Pharmacokinetic and molecular docking studies of plant-derived natural compounds to exploring potential anti- alzheimer activity In: in silico approach for sustainable agriculture 2018; pp 217- 38.
[http://dx.doi.org/10.1007/978-981-13-0347-0.]
[123]
Joshi A, Kumar R, Sharma A. Molecular docking studies, bioactivity score prediction, drug likeness analysis of GSK-3 β inhibitors : A target protein involved in Alzheimer’s disease. Biosci Biotechnol Res Asia 2018; 15: 455-67.
[http://dx.doi.org/10.13005/bbra/2650]
[124]
Bu XL, Rao PPN, Wang YJ. Anti-amyloid aggregation activity of natural compounds: implications for Alzheimer’s drug discovery. Mol Neurobiol 2016; 53(6): 3565-75.
[http://dx.doi.org/10.1007/s12035-015-9301-4] [PMID: 26099310]
[125]
Li RS, Wang XB, Hu XJ, Kong LY. Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23(9): 2636-41.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.095] [PMID: 23511019]
[126]
Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer ’ s disease 2014; 1-14
[http://dx.doi.org/10.1186/s13195-014-0089-7.]
[127]
Zhang T, Zhang J, Derreumaux P, Mu Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ(1-42) dimer. J Phys Chem B 2013; 117(15): 3993-4002.
[http://dx.doi.org/10.1021/jp312573y] [PMID: 23537203]
[128]
Luo Y, Smith JV, Paramasivam V, et al. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 2002; 99(19): 12197-202.
[http://dx.doi.org/10.1073/pnas.182425199] [PMID: 12213959]
[129]
Taylor P, Ngo ST, Li MS. Top-leads from natural products for treatment of Alzheimer ’ s disease : docking and molecular dynamics study. Mol Simul 2013; 39: 279-91.
[http://dx.doi.org/10.1080/08927022.2012.718769]
[130]
Shetty P, Palve A, Pimpliskar M, Jadhav RN, Shinde P. In-silico docking analysis of sterculia lychnophora compounds against proteins causing Alzheimer’s disease. Int J Eng Sci Innov Technol 2014; 3: 158-64.
[131]
Amat-ur-rasool H, Ahmed M. Designing second generation anti-alzheimer compounds as inhibitors of human acetylcholinesterase : computational screening of synthetic molecules and dietary phytochemicals. PLoS One 2015; 10: 1-11.
[132]
Modeling C, Inhibitors M. Computational modeling of multi-target-directed inhibitors against Alzheimer’s disease computational modeling of drugs against Alzheimer’s disease neuromethods. New York, NY: Humana Press 2018; Vol. 132: pp. 533-69.
[http://dx.doi.org/10.1007/978-1-4939-7404-7_19]
[134]
Lessard C B, et al. γ -Secretase modulators exhibit selectivity for modulation of APP cleavage but inverse γ -secretase modulators do not 2020; 5: 1-8
[135]
Bernabeu-Zornoza A, Coronel R, Palmer C, et al. Aβ42 peptide promotes proliferation and gliogenesis in human neural stem cells. Mol Neurobiol 2019; 56(6): 4023-36.
[http://dx.doi.org/10.1007/s12035-018-1355-7] [PMID: 30259399]
[136]
Pettersson M, Stepan AF, Kauffman GW, Johnson DS. Novel γ-secretase modulators for the treatment of Alzheimer’s disease: a review focusing on patents from 2010 to 2012. Expert Opin Ther Pat 2013; 23(10): 1349-66.
[http://dx.doi.org/10.1517/13543776.2013.821465] [PMID: 23875696]
[137]
Rao PPN, Mohamed T, Teckwani K, Tin G. Curcumin binding to beta amyloid: a computational study. Chem Biol Drug Des 2015; 86(4): 813-20.
[http://dx.doi.org/10.1111/cbdd.12552] [PMID: 25776887]
[138]
Cukierman DS, et al. Aroylhydrazones constitute a promising class of ‘ metal protein attenuating compounds ’ for the treatment of Alzheimer ’ s disease : a proof of concept based on the study of the interactions between zinc (II) and pyridine 2 carboxaldehyde ison. J Biol Inorg Chem 2018; 23: 1227-41.
[http://dx.doi.org/10.1007/s00775-018-1606-0] [PMID: 30145655]
[139]
Barnham K J, et al. Metal-protein attenuating compounds (MPACs ) for the treatment of Alzheimer’s disease 2004; 75- 82
[140]
Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 2017; 4(12): 931-42.
[http://dx.doi.org/10.1002/acn3.469] [PMID: 29296624]
[141]
Dennehy PH. Active immunization in the United States: developments over the past decade. Clin Microbiol Rev 2001; 14(4): 872-908.
[http://dx.doi.org/10.1128/CMR.14.4.872-908.2001] [PMID: 11585789]
[142]
Zeitlin L, Cone RA, Moench TR, Whaley KJ. Preventing infectious disease with passive immunization. Microbes Infect 2000; 2(6): 701-8.
[http://dx.doi.org/10.1016/S1286-4579(00)00355-5] [PMID: 10884621]
[143]
Geerts H, Grossberg GT. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol 2006; 46(7)(Suppl. 1): 8S-16S.
[http://dx.doi.org/10.1177/0091270006288734] [PMID: 16809810]
[144]
Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002; 111(4): 815-35.
[http://dx.doi.org/10.1016/S0306-4522(02)00026-X] [PMID: 12031406]
[145]
Foster AC, Kemp JA. Glutamate- and GABA-based CNS therapeutics. Curr Opin Pharmacol 2006; 6(1): 7-17.
[http://dx.doi.org/10.1016/j.coph.2005.11.005] [PMID: 16377242]
[146]
Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 2003; 4(2): 121-30.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[147]
Wang H, Zhang H. Reconsideration of anticholinesterase therapeutic strategies against alzheimer’s disease. ACS Chem Neurosci 2019; 10(2): 852-62.
[http://dx.doi.org/10.1021/acschemneuro.8b00391] [PMID: 30521323]
[148]
Verma S, Kumar A, Tripathi T, Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol 2018; 70(8): 985-93.
[http://dx.doi.org/10.1111/jphp.12919] [PMID: 29663387]
[149]
Felder CC, Goldsmith PJ, Jackson K, et al. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 2018; 136(Pt C): 449-58.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.028] [PMID: 29374561]
[150]
Kandimalla R, Reddy PH. Therapeutics of Neurotransmitters in Alzheimer’s Disease. J Alzheimers Dis 2017; 57(4): 1049-69.
[http://dx.doi.org/10.3233/JAD-161118] [PMID: 28211810]
[151]
Rothstein JD. Excitotoxicity hypothesis. Neurology 1996; 47(4)(Suppl. 2): S19-25.
[http://dx.doi.org/10.1212/WNL.47.4_Suppl_2.19S] [PMID: 8858047]
[152]
Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 2004; 1(1): 101-10.
[http://dx.doi.org/10.1602/neurorx.1.1.101] [PMID: 15717010]
[153]
Kaur S, Dasgupta G, Singh S. Altered neurochemistry in Alzheimer’s disease : targeting neurotransmitter receptor mechanisms and therapeutic strategy. Neurophysiology 2019; 51: 293-309.
[http://dx.doi.org/10.1007/s11062-019-09823-7]
[154]
Willetts J, Balster R L, Leander J D. The behavioral pharmacology of NMDA receptor antagonists 1990.11.
[155]
Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 2008; 60(4): 534-42.
[http://dx.doi.org/10.1016/j.neuron.2008.11.007] [PMID: 19038212]
[156]
Ittner LM, Götz J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2011; 12(2): 65-72.
[http://dx.doi.org/10.1038/nrn2967] [PMID: 21193853]
[157]
Reinke AA, Gestwicki JE. Structure-activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 2007; 70(3): 206-15.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00557.x] [PMID: 17718715]
[158]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[159]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3)e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[160]
Pagano E, Romano B, Izzo AA, Borrelli F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol Res 2018; 134: 79-91.
[http://dx.doi.org/10.1016/j.phrs.2018.06.007] [PMID: 29890252]
[161]
Iserloh U, et al. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors 2015; 18: 414-7
[162]
Naaz H, Singh S, Pandey VP, Singh P, Dwivedi UN. Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: an in silico approach. Indian J Biochem Biophys 2013; 50(2): 120-5.
[PMID: 23720886]
[163]
Mdiering States leading to Alzheimer’s disease CCA-SA https://commons.wikimedia.org/wiki/File:Apomorphine_therapeutic_scheme.png2015
[164]
Joshi P, Benussi L, Furlan R, Ghidoni R, Verderio C. Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci 2015; 16(3): 4800-13.
[http://dx.doi.org/10.3390/ijms16034800] [PMID: 25741766]
[165]
Joshi P, Turola E, Ruiz A, et al. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 2014; 21(4): 582-93.
[http://dx.doi.org/10.1038/cdd.2013.180] [PMID: 24336048]
[166]
Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem 2012; 287(14): 10977-89.
[http://dx.doi.org/10.1074/jbc.M111.324616] [PMID: 22303002]
[167]
Tamboli IY, Barth E, Christian L, et al. Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 2010; 285(48): 37405-14.
[http://dx.doi.org/10.1074/jbc.M110.149468] [PMID: 20876579]
[168]
Lee S, Liu Y, Lim MH. Untangling Amyloid- β, Tau, and Metals in Alzheimer ’ s Disease. ACS Chem Biol 2013; 8(5): 856-65.
[169]
Ma QL, Yang F, Rosario ER, et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 2009; 29(28): 9078-89.
[http://dx.doi.org/10.1523/JNEUROSCI.1071-09.2009] [PMID: 19605645]
[170]
Lee S, Mankhong S, Kang JH. Extracellular vesicle as a source of alzheimer’s biomarkers: Opportunities and challenges. Int J Mol Sci 2019; 20(7): 1728.
[http://dx.doi.org/10.3390/ijms20071728] [PMID: 30965555]
[171]
Kapogiannis D, Mustapic M, Shardell MD, et al. Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol 2019; 76: 1340-51.
[http://dx.doi.org/10.1001/jamaneurol.2019.2462] [PMID: 31305918]
[172]
Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 2019; 405: 148-57.
[http://dx.doi.org/10.1016/j.neuroscience.2018.04.003] [PMID: 29660443]