Nilotinib, A Tyrosine Kinase Inhibitor, Suppresses the Cell Growth and Triggers Autophagy in Papillary Thyroid Cancer

Page: [596 - 602] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Papillary Thyroid Carcinoma (PTC) represents the most common thyroid cancer. Until recently, treatment options for PTC patients are limited. Nilotinib is the second-generation tyrosine kinase inhibitor, and has been widely used in the treatment of Chronic Myeloid Leukemia (CML).

Objectives: We aimed to explore whether nilotinib is effective for the suppression PTC cancer progression and the underlying mechanisms.

Methods: In this study, the three human PTC cell lines (KTC-1, BCPAP, and TPC1) were used to verify the effects of nilotinib on cell growth. The half maximal inhibitory concentration (IC50) was calculated according to the growth curve post nilotinib treatment at different concentrations. Cell counting kit-8 and colony formation analysis were used to monitor cell growth after nilotinib treatment. Cell apoptosis and autophagy related proteins and phosphorylation of PI3K/Akt/mTOR were detected by Western blotting analysis.

Results: Nilotinib treatment could effectively inhibit PTC cell growth, which was accompanied by an increase in apoptosis and induction of autophagy. Mechanistically, nilotinib treatment repressed the phosphorylation of the PI3K/Akt/mTOR pathway.

Conclusion: Collectively, our results demonstrated that nilotinib may display anti-tumor effect against PTC via inhibiting PI3K/Akt/mTOR pathway and inducing apoptosis and autophagy.

Keywords: Nilotinib, papillary thyroid carcinoma, PI3K/Akt/mTOR, apoptosis, autophagy, phosphorylation.

Graphical Abstract

[1]
LiVolsi, V.A. Papillary thyroid carcinoma: an update. Mod. Pathol., 2011, 24(Suppl. 2), S1-S9.
[http://dx.doi.org/10.1038/modpathol.2010.129] [PMID: 21455196]
[2]
(a) Cristal, N.; Stern, J.; Ronen, M.; Silverman, C.; Ho, W.; Bartov, E. Identifying patients at risk for thromboembolism. Use of 125I-labeled fibrinogen in patients with acute myocardial infarction. JAMA, 1976, 236(24), 2755-2757.
[http://dx.doi.org/10.1001/jama.1976.03270250023018] [PMID: 1036567]
(b) Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med., 1994, 97(5), 418-428.
[http://dx.doi.org/10.1016/0002-9343(94)90321-2] [PMID: 7977430]
[3]
Robinson, D.R.; Wu, Y.M.; Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene, 2000, 19(49), 5548-5557.
[http://dx.doi.org/10.1038/sj.onc.1203957] [PMID: 11114734]
[4]
(a) Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
(b) Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science, 1995, 267(5205), 1782-1788.
[http://dx.doi.org/10.1126/science.7892601] [PMID: 7892601]
[5]
(a) Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J.D. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br. J. Cancer, 2006, 94(12), 1765-1769.
[http://dx.doi.org/10.1038/sj.bjc.6603170] [PMID: 16721371]
(b) Quintás-Cardama, A.; Cortes, J. Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL, KIT and PDGFR kinases. Future Oncol., 2008, 4(5), 611-621.
[http://dx.doi.org/10.2217/14796694.4.5.611] [PMID: 18922118]
[6]
(a) Manley, P.W.; Drueckes, P.; Fendrich, G.; Furet, P.; Liebetanz, J.; Martiny-Baron, G.; Mestan, J.; Trappe, J.; Wartmann, M.; Fabbro, D. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim. Biophys. Acta, 2010, 1804(3), 445-453.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.008] [PMID: 19922818]
(b) Tian, X.; Zhang, H.; Heimbach, T.; He, H.; Buchbinder, A.; Aghoghovbia, M.; Hourcade-Potelleret, F. clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor. J. Clin. Pharmacol., 2018, 58(12), 1533-1540.
[http://dx.doi.org/10.1002/jcph.1312] [PMID: 30179260]
[7]
(a) Tallini, G.; Asa, S.L. RET oncogene activation in papillary thyroid carcinoma. Adv. Anat. Pathol., 2001, 8(6), 345-354.
[http://dx.doi.org/10.1097/00125480-200111000-00005] [PMID: 11707626]
(b) Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res., 2003, 63(7), 1454-1457.
[PMID: 12670889]
[8]
(a) Kim, D.W.; Jo, Y.S.; Jung, H.S.; Chung, H.K.; Song, J.H.; Park, K.C.; Park, S.H.; Hwang, J.H.; Rha, S.Y.; Kweon, G.R.; Lee, S.J.; Jo, K.W.; Shong, M. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J. Clin. Endocrinol. Metab., 2006, 91(10), 4070-4076.
[http://dx.doi.org/10.1210/jc.2005-2845] [PMID: 16849418]
(b) Dawson, S.J.; Conus, N.M.; Toner, G.C.; Raleigh, J.M.; Hicks, R.J.; McArthur, G.; Rischin, D. Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma. Anticancer Drugs, 2008, 19(5), 547-552.
[http://dx.doi.org/10.1097/CAD.0b013e3282fc6cf7] [PMID: 18418222]
(c) Sherman, S.I. Targeted therapy of thyroid cancer. Biochem. Pharmacol., 2010, 80(5), 592-601.
[http://dx.doi.org/10.1016/j.bcp.2010.05.003] [PMID: 20471374]
[9]
Pereverzev, B.L.; Nikolaeva, N.V. DNA level in the spermatozoa of mice, rats, and bulls. Tsitologiia, 1974, 16(10), 1305-1309.
[PMID: 4439480]
[10]
Torino, F.; Corsello, S.M.; Longo, R.; Barnabei, A.; Gasparini, G. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat. Rev. Clin. Oncol., 2009, 6(4), 219-228.
[http://dx.doi.org/10.1038/nrclinonc.2009.4] [PMID: 19333228]
[11]
Yu, H-C.; Lin, C-S.; Tai, W-T.; Liu, C-Y.; Shiau, C-W.; Chen, K-F. Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation. J. Biol. Chem., 2013, 288(25), 18249-18259.
[http://dx.doi.org/10.1074/jbc.M112.446385] [PMID: 23677989]
[12]
(a) Chen, T.C.; Yu, M.C.; Chien, C.C.; Wu, M.S.; Lee, Y.C.; Chen, Y.C. Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol. In Vitro, 2016, 31, 1-11.
[http://dx.doi.org/10.1016/j.tiv.2015.11.002] [PMID: 26549707]
(b) Silveira, E.; Cavalcante, I.P.; Kremer, J.L.; de Mendonça, P.O.R.; Lotfi, C.F.P. The tyrosine kinase inhibitor nilotinib is more efficient than mitotane in decreasing cell viability in spheroids prepared from adrenocortical carcinoma cells. Cancer Cell Int., 2018, 18(1), 29.
[http://dx.doi.org/10.1186/s12935-018-0527-x] [PMID: 29507530]
[13]
O’Hare, T.; Corbin, A.S.; Druker, B.J. Targeted CML therapy: controlling drug resistance, seeking cure. Curr. Opin. Genet. Dev., 2006, 16(1), 92-99.
[http://dx.doi.org/10.1016/j.gde.2005.11.002] [PMID: 16343892]
[14]
Martinelli, G.; Iacobucci, I.; Soverini, S.; Palandri, F.; Castagnetti, F.; Rosti, G.; Baccarani, M. Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance. Biologics, 2007, 1(2), 121-127.
[PMID: 19707322]
[15]
(a) Hiwase, D.K.; White, D.L.; Saunders, V.A.; Kumar, S.; Melo, J.V.; Hughes, T.P. Short-term intense Bcr-Abl kinase inhibition with nilotinib is adequate to trigger cell death in BCR-ABL(+) cells. Leukemia, 2009, 23(6), 1205-1206.
[http://dx.doi.org/10.1038/leu.2009.45] [PMID: 19262594]
(b) Forchap, S.L.; Pirmohamed, M.; Clark, R.E. Release of intracellular calcium primes chronic myeloid leukaemia cells for tyrosine kinase inhibitor-induced apoptosis. Leukemia, 2012, 26(3), 490-498.
[http://dx.doi.org/10.1038/leu.2011.231] [PMID: 21886172]
[16]
Khodarev, N.N.; Volgina, V.V.; Aleksandrova, S.S.; Votrin, I.I. Dynamics of the endo-DNAase activity of cell nuclei of mouse thymus and spleen lymphocytes during the immune response. Biull. Eksp. Biol. Med., 1987, 104(12), 713-716.
[PMID: 3689967]
[17]
(a) Thorburn, A.; Thamm, D.H.; Gustafson, D.L. Autophagy and cancer therapy. Mol. Pharmacol., 2014, 85(6), 830-838.
[http://dx.doi.org/10.1124/mol.114.091850] [PMID: 24574520]
(b) Hippert, M.M.; O’Toole, P.S.; Thorburn, A. Autophagy in cancer: good, bad, or both? Cancer Res., 2006, 66(19), 9349-9351.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1597] [PMID: 17018585]
[18]
Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F. Autophagy modulation for cancer therapy. Cancer Biol. Ther., 2011, 11(2), 169-176.
[http://dx.doi.org/10.4161/cbt.11.2.14663] [PMID: 21263212]
[19]
Jeitany, M.; Leroy, C.; Tosti, P.; Lafitte, M.; Le Guet, J.; Simon, V.; Bonenfant, D.; Robert, B.; Grillet, F.; Mollevi, C.; El Messaoudi, S.; Otandault, A.; Canterel-Thouennon, L.; Busson, M.; Thierry, A.R.; Martineau, P.; Pannequin, J.; Roche, S.; Sirvent, A. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Med., 2018, 10(4)e7918
[http://dx.doi.org/10.15252/emmm.201707918] [PMID: 29438985]
[20]
(a) Montemurro, M.; Schöffski, P.; Reichardt, P.; Gelderblom, H.; Schütte, J.; Hartmann, J.T.; von Moos, R.; Seddon, B.; Joensuu, H.; Wendtner, C.M.; Weber, E.; Grünwald, V.; Roth, A.; Leyvraz, S. Nilotinib in the treatment of advanced gastrointestinal stromal tumours resistant to both imatinib and sunitinib. Eur. J. Cancer, 2009, 45(13), 2293-2297.
[http://dx.doi.org/10.1016/j.ejca.2009.04.030] [PMID: 19467857]
(b) Italiano, A.; Cioffi, A.; Coco, P.; Maki, R.G.; Schöffski, P.; Rutkowski, P.; Le Cesne, A.; Duffaud, F.; Adenis, A.; Isambert, N.; Bompas, E.; Blay, J.Y.; Casali, P.; Keohan, M.L.; Toulmonde, M.; Antonescu, C.R.; Debiec-Rychter, M.; Coindre, J.M.; Bui, B. Patterns of care, prognosis, and survival in patients with metastatic Gastrointestinal Stromal Tumors (GIST) refractory to first-line imatinib and second-line sunitinib. Ann. Surg. Oncol., 2012, 19(5), 1551-1559.
[http://dx.doi.org/10.1245/s10434-011-2120-6] [PMID: 22065192]
[21]
Hussain, T.; Zhao, D.; Shah, S.Z.A.; Sabir, N.; Wang, J.; Liao, Y.; Song, Y.; Dong, H.; Hussain Mangi, M.; Ni, J.; Yang, L.; Zhou, X. Nilotinib: a tyrosine kinase inhibitor mediates resistance to intracellular Mycobacterium via regulating autophagy. Cells, 2019, 8(5)E506
[http://dx.doi.org/10.3390/cells8050506] [PMID: 31130711]
[22]
(a) Belopolsky, Y.; Grinblatt, D.L.; Dunnenberger, H.M.; Sabatini, L.M.; Joseph, N.E.; Fimmel, C.J. A case of severe, nilotinib-Induced liver injury. ACG Case Rep. J., 2019, 6(2)e00003
[http://dx.doi.org/10.14309/crj.0000000000000003] [PMID: 31616712]
(b) Sasaki, K.; Lahoti, A.; Jabbour, E.; Jain, P.; Pierce, S.; Borthakur, G.; Daver, N.; Kadia, T.; Pemmaraju, N.; Ferrajoli, A.; O’Brien, S.; Kantarjian, H.; Cortes, J. Clinical safety and efficacy of nilotinib or dasatinib in patients with newly diagnosed chronic-phase chronic myelogenous leukemia and pre-existing liver and/or renal dysfunction. Clin. Lymphoma Myeloma Leuk., 2016, 16(3), 152-162.
[http://dx.doi.org/10.1016/j.clml.2015.12.003] [PMID: 26796981]
[23]
Pedersen, A.M.; Thrane, S.; Lykkesfeldt, A.E.; Yde, C.W. Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α. Int. J. Oncol., 2014, 45(5), 2167-2175.
[http://dx.doi.org/10.3892/ijo.2014.2619] [PMID: 25175082]