Nutrigenomics and Lifestyle Facet- A Modulatory Molecular Evidence in Progression of Breast and Colon Cancer with Emerging Importance

Page: [336 - 348] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Legitimate nutrition assumes a significant role in preventing diseases and, in this way, nutritional interventions establish vital strategies in the area of public health. Nutrigenomics centres on the different genes and diets in an individual and how an individual’s genes influence the reaction to bioactive foodstuff. It targets considering the genetic and epigenetic interactions with nutrients to lead to a phenotypic alteration and consequently to metabolism, differentiation, or even apoptosis. Nutrigenomics and lifestyle factors play a vital role in health management and represent an exceptional prospect for the improvement of personalized diets to the individual at risk of developing diseases like cancer. Concerning cancer as a multifactorial genetic ailment, several aspects need to be investigated and analysed. Various perspectives should be researched and examined regarding the development and prognosis of breast and colon cancer. Malignant growth occurrence is anticipated to upsurge in the impending days, and an effective anticipatory strategy is required. The effect of dietary components, basically studied by nutrigenomics, looks at gene expression and molecular mechanisms. It also interrelates bioactive compounds and nutrients because of different 'omics' innovations. Several preclinical investigations demonstrate the pertinent role of nutrigenomics in breast and colon cancer, and change of dietary propensities is conceivably a successful methodology for reducing cancer risk. With the connection between the genomic profile of patients with breast or colon cancer and their supplement intake, it is conceivable to imagine an idea of personalized medicine, including nutrition and medicinal services.

Keywords: Nutrigenomics, nutritional interventions, lifestyle factors, breast and colon cancer, dietary propensities, molecular mechanisms, personalized nutrition.

[1]
Key TJ, Bradbury KE, Perez-Cornago A, Sinha R, Tsilidis KK, Tsugane S. Diet, nutrition, and cancer risk: what do we know and what is the way forward? BMJ 2020; 368: m511.
[http://dx.doi.org/10.1136/bmj.m511] [PMID: 32139373]
[2]
Nasir A, Bullo MMH, Ahmed Z, et al. Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review. Crit Rev Food Sci Nutr 2020; 60(8): 1375-87.
[http://dx.doi.org/10.1080/10408398.2019.1571480] [PMID: 30729798]
[3]
Smiliotopoulos T, Magriplis E, Zampelas A. Validation of a food propensity questionnaire for the hellenic national nutrition and health survey (HNNHS) and results on this population’s adherence to key food-group nutritional guidelines. Nutrients 2020; 12(6): 1808.
[http://dx.doi.org/10.3390/nu12061808] [PMID: 32560456]
[4]
Braicua C, Mehterov N, Vladimirov B, et al. Nutrigenomics in cancer: revisiting the effects of natural Compounds Seminars in Cancer Biology 2017.http://dx.doi.org/doi:10.1016/j.semcancer.2017.06.011
[http://dx.doi.org/10.1016/j.semcancer.2017.06.011]
[5]
Peregrin T. The new frontier of nutrition science: nutrigenomics. J Am Diet Assoc 2001; 101(11): 1306.
[http://dx.doi.org/10.1016/S0002-8223(01)00309-1] [PMID: 11716306]
[6]
Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand 2015; 73(3): 161-8.
[http://dx.doi.org/10.3109/00016357.2014.986754] [PMID: 25598447]
[7]
Irimie AI, Braicu C, Pileczki V, et al. Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem 2016; 419(1-2): 75-82.
[http://dx.doi.org/10.1007/s11010-016-2751-9] [PMID: 27370646]
[8]
Ilea A, Băbţan AM, Boşca BA, et al. Advanced glycation end products (AGEs) in oral pathology. Arch Oral Biol 2018; 93: 22-30.
[http://dx.doi.org/10.1016/j.archoralbio.2018.05.013] [PMID: 29803117]
[9]
Abdel-Rahman WM, Faris ME, Peltomaki P. Molecular determinants of colon cancer susceptibility in the east and west. Curr Mol Med 2017; 17(1): 34-45.
[http://dx.doi.org/10.2174/1566524017666170220094705] [PMID: 28231750]
[10]
Riscuta G. Nutrigenomics at the interface of aging, lifespan, and cancer prevention. J Nutr 2016; 146(10): 1931–1939.
[11]
Sellami M, Bragazzi NL. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020; 12(2): 512.
[http://dx.doi.org/10.3390/nu12020512] [PMID: 32085420]
[12]
Valle I, Tramalloni D, Bragazzi NL. Cancer prevention: state of the art and future prospects. J Prev Med Hyg 2015; 56(1): E21-7.
[PMID: 26789828]
[13]
Buja A, Pierbon M, Lago L, Grotto G, Baldo V. Breast cancer primary prevention and diet: an umbrella review. Int J Environ Res Public Health 2020; 17(13): 4731.
[http://dx.doi.org/10.3390/ijerph17134731] [PMID: 32630215]
[14]
Wang YP, Lei QY. Metabolite sensing and signaling in cell metabolism. Signal Transduct Target Ther 2018; 3: 30.
[http://dx.doi.org/10.1038/s41392-018-0024-7] [PMID: 30416760]
[15]
Marcum JA. Nutrigenetics/nutrigenomics, personalized nutrition, and precision healthcare. Curr Nutr Rep 2020; 9(4): 338-45.
[http://dx.doi.org/10.1007/s13668-020-00327-z] [PMID: 32578026]
[16]
Rogers PC, Barr RD. The relevance of nutrition to pediatric oncology: A cancer control perspective. Pediatr Blood Cancer 2020; 67(Suppl. 3): e28213.
[http://dx.doi.org/10.1002/pbc.28213] [PMID: 32096351]
[17]
Koromina M, Konstantinidou V, Georgaka M, Innocenti F, Patrinos GP. Nutrigenetics and nutrigenomics: ready for clinical use or still a way to go? Per Med 2020; 17(3): 171-3.
[http://dx.doi.org/10.2217/pme-2020-0007] [PMID: 32329405]
[18]
Ahmadi KR, Andrew T. Opportunism: a panacea for implementation of whole-genome sequencing studies in nutrigenomics research? Genes Nutr 2014; 9(2): 387.
[http://dx.doi.org/10.1007/s12263-014-0387-5] [PMID: 24535715]
[19]
Lundstrom K. Past, present and future of nutrigenomics and its influence on drug development. Curr Drug Discov Technol 2013; 10(1): 35-46.
[PMID: 22725689]
[20]
Pop LA, Puscas E, Pileczki V, et al. Quality control of ion torrent sequencing library. Cancer Biomark 2014; 14(2-3): 93-101.
[http://dx.doi.org/10.3233/CBM-130358] [PMID: 24878810]
[21]
Lucock M, Beckett E, Martin C, et al. UV-associated decline in systemic folate: implications for human nutrigenetics, health, and evolutionary processes. Am J Hum Biol 2017; 29(2): e22929.
[http://dx.doi.org/10.1002/ajhb.22929] [PMID: 27771938]
[22]
Corella D, Coltell O, Sorlí JV, et al. Polymorphism of the transcription factor 7-Like 2 Gene (TCF7L2) interacts with obesity on type-2 diabetes in the PREDIMED study emphasizing the heterogeneity of genetic variants in type-2 diabetes risk prediction: Time for obesity-specific genetic risk scores. Nutrients 2016; 8(12): 793.
[http://dx.doi.org/10.3390/nu8120793] [PMID: 27929407]
[23]
Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl MC. Effects of peroxisome proliferator-activated receptors, dietary fat intakes and gene-diet interactions on peak particle diameters of low-density lipoproteins. J Nutrigenet Nutrigenomics 2011; 4(1): 36-48.
[http://dx.doi.org/10.1159/000324531] [PMID: 21487230]
[24]
Irimie AI, Sonea L, Jurj A, et al. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017; 12: 4593-606.
[http://dx.doi.org/10.2147/IJN.S133219] [PMID: 28721037]
[25]
Seo EJ, Wu CF, Ali Z, et al. both phenolic and non-phenolic green tea fractions inhibit migration of cancer cells. Front Pharmacol 2016; 7: 398.
[http://dx.doi.org/10.3389/fphar.2016.00398] [PMID: 28194107]
[26]
Luge T, Fischer C, Sauer S. Efficient application of de novo rna assemblers for proteomics informed by transcriptomics. J Proteome Res 2016; 15(10): 3938-43.
[http://dx.doi.org/10.1021/acs.jproteome.6b00301] [PMID: 27523192]
[27]
Luceri C, Bigagli E, Pitozzi V, Giovannelli L. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr 2017; 56(2): 865-77.
[http://dx.doi.org/10.1007/s00394-015-1134-4] [PMID: 26695409]
[28]
Lee H, Qian K, von Toerne C, et al. Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Res 2017; 45(6): 3266-79.
[http://dx.doi.org/10.1093/nar/gkx105] [PMID: 28334807]
[29]
Méplan C, Johnson IT, Polley AC, et al. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J 2016; 30(8): 2812-25.
[http://dx.doi.org/10.1096/fj.201600251R] [PMID: 27103578]
[30]
Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD. Effect of sweetened dried cranberry consumption on urinary proteome and fecal microbiome in healthy human subjects. OMICS 2018; 22(2): 145-53.
[http://dx.doi.org/10.1089/omi.2016.0167] [PMID: 28618237]
[31]
Kakkoura MG, Sokratous K, Demetriou CA, et al. Mediterranean diet-gene interactions: a targeted metabolomics study in greek-cypriot women. Mol Nutr Food Res 2017; 61(4): 1600558.
[http://dx.doi.org/10.1002/mnfr.201600558] [PMID: 27860207]
[32]
Baek SH, Kim M, Kim M, et al. Metabolites distinguishing visceral fat obesity and atherogenic traits in individuals with overweight. Obesity (Silver Spring) 2017; 25(2): 323-31.
[http://dx.doi.org/10.1002/oby.21724] [PMID: 28000430]
[33]
Suárez-García S, Arola L, Pascual-Serrano A, et al. Development and validation of a UHPLC-ESI-MS/MS method for the simultaneous quantification of mammal lysophosphatidylcholines and lysophosphatidylethanolamines in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056: 86-97.
[http://dx.doi.org/10.1016/j.jchromb.2017.04.028] [PMID: 28445851]
[34]
Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci 2017; 18(4): 787.
[http://dx.doi.org/10.3390/ijms18040787] [PMID: 28387720]
[35]
McCarty MF. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr Cancer Ther 2004; 3(4): 349-80.
[http://dx.doi.org/10.1177/1534735404270757] [PMID: 15523106]
[36]
Manson MM. Inhibition of survival signalling by dietary polyphenols and indole-3-carbinol. Eur J Cancer 2005; 41(13): 1842-53.
[http://dx.doi.org/10.1016/j.ejca.2005.05.008] [PMID: 16087329]
[37]
Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet 2002; 3(11): 872-82.
[http://dx.doi.org/10.1038/nrg932] [PMID: 12415317]
[38]
Rana S, Kumar S, Rathore N, Padwad Y, Bhushana S. nutrigenomics and its impact on life style associated metabolic diseases. Curr Genomics 2016; 17(3): 261-78.
[http://dx.doi.org/10.2174/1389202917666160202220422] [PMID: 27252592]
[39]
Sales NM, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014; 2014: 202759.
[http://dx.doi.org/10.1155/2014/202759] [PMID: 24795820]
[40]
Tiffon C. The Impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci 2018; 19(11): 3425.
[http://dx.doi.org/10.3390/ijms19113425] [PMID: 30388784]
[41]
Childs CE, Calder PC, Miles EA. Diet and immune function. Nutrients 2019; 11(8): 1933.
[http://dx.doi.org/10.3390/nu11081933] [PMID: 31426423]
[42]
Subbiah MTR. Nutrigenetics and nutraceuticals: the next wave riding on personalized medicine. Transl Res 2007; 149(2): 55-61.
[http://dx.doi.org/10.1016/j.trsl.2006.09.003] [PMID: 17240315]
[43]
Mourouti N, Kontogianni MD, Papavagelis C, Panagiotakos DB. Diet and breast cancer: a systematic review. Int J Food Sci Nutr 2015; 66(1): 1-42.
[http://dx.doi.org/10.3109/09637486.2014.950207] [PMID: 25198160]
[44]
Brennan SF, Woodside JV, Lunny PM, Cardwell CR, Cantwell MM. Dietary fat and breast cancer mortality: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2017; 57(10): 1999-2008.
[http://dx.doi.org/10.1080/10408398.2012.724481] [PMID: 25692500]
[45]
Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res 2016; 36(7): 627-35.
[http://dx.doi.org/10.1016/j.nutres.2016.04.009] [PMID: 27333953]
[46]
Guo J, Wei W, Zhan L. Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 2015; 151(1): 191-8.
[http://dx.doi.org/10.1007/s10549-015-3380-9] [PMID: 25893586]
[47]
Boyd NF, Stone J, Vogt KN, Connelly BS, Martin LJ, Minkin S. Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer 2003; 89(9): 1672-85.
[http://dx.doi.org/10.1038/sj.bjc.6601314] [PMID: 14583769]
[48]
Zang J, Shen M, Du S, Chen T, Zou S. The Association between dairy intake and breast cancer in western and asian populations: a systematic review and meta-analysis. J Breast Cancer 2015; 18(4): 313-22.
[http://dx.doi.org/10.4048/jbc.2015.18.4.313] [PMID: 26770237]
[49]
Keum N, Lee DH, Marchand N, et al. Egg intake and cancers of the breast, ovary and prostate: a dose-response meta-analysis of prospective observational studies. Br J Nutr 2015; 114(7): 1099-107.
[http://dx.doi.org/10.1017/S0007114515002135] [PMID: 26293984]
[50]
Chen P, Li C, Li X, Li J, Chu R, Wang H. Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis. Br J Cancer 2014; 110(9): 2327-38.
[http://dx.doi.org/10.1038/bjc.2014.155] [PMID: 24667649]
[51]
Song JK, Bae JM. Citrus fruit intake and breast cancer risk: a quantitative systematic review. J Breast Cancer 2013; 16(1): 72-6.
[http://dx.doi.org/10.4048/jbc.2013.16.1.72] [PMID: 23593085]
[52]
Fabiani R, Minelli L, Rosignoli P. Apple intake and cancer risk: a systematic review and meta-analysis of observational studies. Public Health Nutr 2016; 19(14): 2603-17.
[http://dx.doi.org/10.1017/S136898001600032X] [PMID: 27000627]
[53]
Badger TM, Ronis MJ, Simmen RC, Simmen FA. Soy protein isolate and protection against cancer. J Am Coll Nutr 2005; 24(2): 146S-9S.
[http://dx.doi.org/10.1080/07315724.2005.10719456] [PMID: 15798082]
[54]
Pauwels EK, Kairemo K. Fatty acid facts, part II: role in the prevention of carcinogenesis, or, more fish on the dish? Drug News Perspect 2008; 21(9): 504-10.
[http://dx.doi.org/10.1358/dnp.2008.21.9.1290819] [PMID: 19180268]
[55]
Zheng JS, Hu XJ, Zhao YM, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 2013; 346: f3706.
[http://dx.doi.org/10.1136/bmj.f3706] [PMID: 23814120]
[56]
Yang B, Ren XL, Fu YQ, Gao JL, Li D. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer 2014; 14: 105.
[http://dx.doi.org/10.1186/1471-2407-14-105] [PMID: 24548731]
[57]
de Lorgeril M, Salen P. Helping women to good health: breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med 2014; 12: 54.
[http://dx.doi.org/10.1186/1741-7015-12-54] [PMID: 24669767]
[58]
Bøhn SK, Blomhoff R, Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol Nutr Food Res 2014; 58(5): 915-30.
[http://dx.doi.org/10.1002/mnfr.201300526] [PMID: 24668519]
[59]
Tang N, Zhou B, Wang B, Yu R. Coffee consumption and risk of breast cancer: a metaanalysis. Am J Obstet Gynecol 2009; 200(3): 290.e1-9.
[http://dx.doi.org/10.1016/j.ajog.2008.10.019] [PMID: 19114275]
[60]
Li XJ, Ren ZJ, Qin JW, et al. Coffee consumption and risk of breast cancer: an up-to-date meta-analysis. PLoS One 2013; 8(1): e52681.
[http://dx.doi.org/10.1371/journal.pone.0052681] [PMID: 23308117]
[61]
Ryan-Harshman M, Aldoori W. Diet and colorectal cancer: Review of the evidence. Can Fam Physician 2007; 53(11): 1913-20.
[PMID: 18000268]
[62]
Terry P, Giovannucci E, Michels KB, et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst 2001; 93(7): 525-33.
[http://dx.doi.org/10.1093/jnci/93.7.525] [PMID: 11287446]
[63]
Asano T, McLeod RS. Dietary fibre for the prevention of colorectal adenomas and carcinomas. Cochrane Database Syst Rev 2002; 2(2): CD003430.
[http://dx.doi.org/10.1002/14651858.CD003430] [PMID: 12076480]
[64]
Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3(10): 768-80.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[65]
Keum YS, Jeong WS, Kong AN. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 2004; 555(1-2): 191-202.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.05.024] [PMID: 15476860]
[66]
Milner JA. A historical perspective on garlic and cancer. J Nutr 2001; 131(3s): 1027S-31S.
[http://dx.doi.org/10.1093/jn/131.3.1027S] [PMID: 11238810]
[67]
Jacks T, Weinberg RA. Taking the study of cancer cell survival to a new dimension. Cell 2002; 111(7): 923-5.
[http://dx.doi.org/10.1016/S0092-8674(02)01229-1] [PMID: 12507419]
[68]
Chen C, Kong AN. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 2005; 26(6): 318-26.
[http://dx.doi.org/10.1016/j.tips.2005.04.004] [PMID: 15925707]
[69]
Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 2000; 21(5): 857-64.
[http://dx.doi.org/10.1093/carcin/21.5.857] [PMID: 10783304]
[70]
Agarwal R. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol 2000; 60(8): 1051-9.
[http://dx.doi.org/10.1016/S0006-2952(00)00385-3] [PMID: 11007941]
[71]
Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem 2004; 11(9): 1163-82.
[http://dx.doi.org/10.2174/0929867043365323] [PMID: 15134513]
[72]
Hu R, Kong AN. Activation of MAP kinases, apoptosis and nutrigenomics of gene expression elicited by dietary cancer-prevention compounds. Nutrition 2004; 20(1): 83-8.
[http://dx.doi.org/10.1016/j.nut.2003.09.015] [PMID: 14698020]
[73]
Martin KR. Targeting apoptosis with dietary bioactive agents. Exp Biol Med (Maywood) 2006; 231(2): 117-29.
[http://dx.doi.org/10.1177/153537020623100201] [PMID: 16446487]
[74]
Goni L, Cuervo M, Milagro FI, Martínez JA. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr 2015; 10(1): 445.
[http://dx.doi.org/10.1007/s12263-014-0445-z] [PMID: 25430627]
[75]
Zeng YW, Yang JZ, Pu XY, et al. Strategies of functional food for cancer prevention in human beings. Asian Pac J Cancer Prev 2013; 14(3): 1585-92.
[http://dx.doi.org/10.7314/APJCP.2013.14.3.1585] [PMID: 23679240]
[76]
Pem D, Jeewon R. Fruit and vegetable intake: benefits and progress of nutrition education interventions- narrative review article. Iran J Public Health 2015; 44(10): 1309-21.
[PMID: 26576343]
[77]
Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: a comprehensive review. Am J Cancer Res 2017; 7(4): 740-69.
[PMID: 28469951]
[78]
Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011; 3(4): 503-18.
[http://dx.doi.org/10.2217/epi.11.71] [PMID: 22022340]
[79]
Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxidative Med Cell Longev 2016; 2016: 6475624.
[http://dx.doi.org/10.1155/2016/6475624]
[80]
Beckett EL, Yates Z, Veysey M, Duesing K, Lucock M. The role of vitamins and minerals in modulating the expression of microRNA. Nutr Res Rev 2014; 27(1): 94-106.
[http://dx.doi.org/10.1017/S0954422414000043] [PMID: 24814762]
[81]
Nepomuceno JC. Nutrigenomics and cancer prevention. Cancer Treatment. IntechOpen 2013; pp. 391-416.
[82]
Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 2006; 231(1): 20-7.
[http://dx.doi.org/10.1177/153537020623100103] [PMID: 16380641]
[83]
Rose DP, Connolly JM. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer 2000; 37(2): 119-27.
[http://dx.doi.org/10.1207/S15327914NC372_1] [PMID: 11142082]
[84]
Oak MH, El Bedoui J, Schini-Kerth VB. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 2005; 16(1): 1-8.
[http://dx.doi.org/10.1016/j.jnutbio.2004.09.004] [PMID: 15629234]
[85]
Dulak J. Nutraceuticals as anti-angiogenic agents: hopes and reality. J Physiol Pharmacol 2005; 56(Suppl. 1): 51-67.
[PMID: 15800385]
[86]
Cao Y, Cao R, Bråkenhielm E. Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 2002; 13(7): 380-90.
[http://dx.doi.org/10.1016/S0955-2863(02)00204-8] [PMID: 12121824]
[87]
Li Y, Li S, Meng X, Gan RY, Zhang JJ, Li HB. Dietary natural products for prevention and treatment of breast cancer. Nutrients 2017; 9(7): 728.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[88]
Kapinova A, Kubatka P, Golubnitschaja O, et al. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 2018; 23(1): 36.
[http://dx.doi.org/10.1186/s12199-018-0724-1] [PMID: 30092754]
[89]
Chen J, Lin C, Yong W, Ye Y, Huang Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem 2015; 35(2): 722-8.
[http://dx.doi.org/10.1159/000369732] [PMID: 25613518]
[90]
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer 2015; 15: 958.
[http://dx.doi.org/10.1186/s12885-015-1965-7] [PMID: 26675309]
[91]
de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, et al. Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutr Cancer 2016; 68(1): 154-64.
[http://dx.doi.org/10.1080/01635581.2016.1115104] [PMID: 26771440]
[92]
Pan X, Zhao B, Song Z, Han S, Wang M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J Pharmacol Sci 2016; 130(2): 85-93.
[http://dx.doi.org/10.1016/j.jphs.2015.12.003] [PMID: 26810571]
[93]
Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K. Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells. J Nutrigenet Nutrigenomics 2015; 8(2): 91-101.
[http://dx.doi.org/10.1159/000439111] [PMID: 26372775]
[94]
Kiesel VA, Stan SD. Diallyl trisulfide, a chemopreventive agent from Allium vegetables, inhibits alpha-secretases in breast cancer cells. Biochem Biophys Res Commun 2017; 484(4): 833-8.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.184] [PMID: 28161636]
[95]
Lee GA, Choi KC, Hwang KA. Treatment with phytoestrogens reversed triclosan and bisphenol A-induced anti-apoptosis in breast cancer cells. Biomol Ther (Seoul) 2018; 26(5): 503-11.
[http://dx.doi.org/10.4062/biomolther.2017.160] [PMID: 29310425]
[96]
Paul B, Li Y, Tollefsbol TO. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci 2018; 19(6): 1754.
[http://dx.doi.org/10.3390/ijms19061754] [PMID: 29899271]
[97]
Galas A, Cebulska-Wasilewska A. Can consumption of raw vegetables decrease the count of sister chromatid exchange? Results from a cross-sectional study in Krakow, Poland. Eur J Nutr 2015; 54(2): 161-71.
[http://dx.doi.org/10.1007/s00394-014-0697-9] [PMID: 24740589]
[98]
Schlörmann W, Lamberty J, Ludwig D, Lorkowski S, Glei M. In vitro-fermented raw and roasted walnuts induce expression of CAT and GSTT2 genes, growth inhibition, and apoptosis in LT97 colon adenoma cells. Nutr Res 2017; 47: 72-80.
[http://dx.doi.org/10.1016/j.nutres.2017.09.004] [PMID: 29241580]
[99]
Liu RX, Ren WY, Ma Y, et al. BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. Int J Oncol 2017; 51(3): 907-17.
[http://dx.doi.org/10.3892/ijo.2017.4078] [PMID: 28731124]
[100]
Rajendran P, Dashwood WM, Li L, et al. Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon. Clin Epigenetics 2015; 7: 102.
[http://dx.doi.org/10.1186/s13148-015-0132-y] [PMID: 26388957]
[101]
Shin EJ, Sung MJ, Park JH, et al. Poly-γ-glutamic acid induces apoptosis via reduction of COX-2 expression in TPA-induced HT-29 human colorectal cancer cells. Int J Mol Sci 2015; 16(4): 7577-86.
[http://dx.doi.org/10.3390/ijms16047577] [PMID: 25854428]
[102]
Camargo Cde Q, Mocellin MC, Pastore Silva Jde A, Fabre ME, Nunes EA, Trindade EB. Fish oil supplementation during chemotherapy increases posterior time to tumor progression in colorectal cancer. Nutr Cancer 2016; 68(1): 70-6.
[http://dx.doi.org/10.1080/01635581.2016.1115097] [PMID: 26700096]
[103]
Bisen P, Sinha N, Dixit M, et al. Therapeutic and preventive potential of foods specific to cancer. Funct Foods Integr Oncol 2017; 1: 199-246.
[104]
Gupta PC. Functional foods for cancer therapeutics. Nat Prod Chem Res 2016; 4: e115.
[http://dx.doi.org/10.4172/2329-6836.1000e115]
[105]
Pop S, Enciu AM, Tarcomnicu I, et al. Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation. Phytochem Rev 2019; 18: 1005-24.
[http://dx.doi.org/10.1007/s11101-019-09627-x]
[106]
Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46(3): 1029-56.
[http://dx.doi.org/10.1093/ije/dyw319] [PMID: 28338764]
[107]
Kapinova A, Stefanicka P, Kubatka P, et al. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother 2017; 96: 1465-77.
[http://dx.doi.org/10.1016/j.biopha.2017.11.134] [PMID: 29198744]
[108]
Kok DEG, Dhonukshe-Rutten RAM, Lute C, et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics 2015; 7: 121.
[http://dx.doi.org/10.1186/s13148-015-0154-5] [PMID: 26568774]
[109]
Ulrich CM. Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr 2007; 86(2): 271-3.
[http://dx.doi.org/10.1093/ajcn/86.2.271] [PMID: 17684194]
[110]
Duthie SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis 2011; 34(1): 101-9.
[http://dx.doi.org/10.1007/s10545-010-9128-0] [PMID: 20544289]
[111]
Kang JX. Nutrigenomics and cancer therapy. J Nutrigenet Nutrigenomics 2013; 6(3): I-II.
[http://dx.doi.org/10.1159/000355340] [PMID: 24081310]
[112]
Azrad M, Turgeon C, Demark-Wahnefried W. Current evidence linking polyunsaturated Fatty acids with cancer risk and progression. Front Oncol 2013; 3: 224.
[http://dx.doi.org/10.3389/fonc.2013.00224] [PMID: 24027672]
[113]
Pettersen K, Monsen VT, Hakvåg Pettersen CH, et al. DHA-induced stress response in human colon cancer cells - Focus on oxidative stress and autophagy. Free Radic Biol Med 2016; 90: 158-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.018] [PMID: 26585906]
[114]
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 2014; 4(3): 173-81.
[http://dx.doi.org/10.1016/j.apsb.2014.04.002] [PMID: 26579381]
[115]
Lopez-Legarrea P, Fuller NR, Zulet MA, Martinez JA, Caterson ID. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr 2014; 23(3): 360-8.
[PMID: 25164445]
[116]
Lim HS, Shin EJ, Yeom JW, Park YH, Kim SK. Association between nutrient intake and metabolic syndrome in patients with colorectal cancer. Clin Nutr Res 2017; 6(1): 38-46.
[http://dx.doi.org/10.7762/cnr.2017.6.1.38] [PMID: 28168180]
[117]
Narita S, Inoue M, Saito E, et al. JPHC Study Group Dietary fiber intake and risk of breast cancer defined by estrogen and progesterone receptor status: the Japan Public Health Center-based Prospective Study. Cancer Causes Control 2017; 28(6): 569-78.
[http://dx.doi.org/10.1007/s10552-017-0881-3] [PMID: 28337559]
[118]
Lei L, Chen C, Zhao J, et al. Targeted Expression of miR-7 operated by ttf-1 promoter inhibited the growth of human lung cancer through the ndufa4 pathway. Mol Ther Nucleic Acids 2017; 6: 183-97.
[http://dx.doi.org/10.1016/j.omtn.2016.12.005] [PMID: 28325285]
[119]
Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr 2009; 90(3): 664-71.
[http://dx.doi.org/10.3945/ajcn.2009.27758] [PMID: 19625685]
[120]
Dong JY, He K, Wang P, Qin LQ. Dietary fiber intake and risk of breast cancer: a meta-analysis of prospective cohort studies. Am J Clin Nutr 2011; 94(3): 900-5.
[http://dx.doi.org/10.3945/ajcn.111.015578] [PMID: 21775566]
[121]
Tsavachidou D, McDonnell TJ, Wen S, et al. Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst 2009; 101(5): 306-20.
[http://dx.doi.org/10.1093/jnci/djn512] [PMID: 19244175]
[122]
Cai X, Wang C, Yu W, et al. Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep 2016; 6: 19213.
[http://dx.doi.org/10.1038/srep19213] [PMID: 26786590]
[123]
Xiang N, Zhao R, Song G, Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 2008; 29(11): 2175-81.
[http://dx.doi.org/10.1093/carcin/bgn179] [PMID: 18676679]
[124]
Kurokawa S, Berry MJ. Selenium. Role of the essential metalloid in health. Met Ions Life Sci 2013; 13: 499-534.
[http://dx.doi.org/10.1007/978-94-007-7500-8_16] [PMID: 24470102]
[125]
Lv W, Zhong X, Xu L, Han W. Association between dietary vitamin a intake and the risk of glioma: evidence from a meta-analysis. Nutrients 2015; 7(11): 8897-904.
[http://dx.doi.org/10.3390/nu7115438] [PMID: 26516909]
[126]
Sheikh A, Takatori A, Hossain MS, et al. Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway. Cancer Sci 2016; 107(9): 1223-32.
[http://dx.doi.org/10.1111/cas.13003] [PMID: 27357360]
[127]
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54(7): 1761-75.
[http://dx.doi.org/10.1194/jlr.R030833] [PMID: 23440512]
[128]
Mustafi S, Camarena V, Volmar CH, et al. Vitamin C sensitizes melanoma to BET Inhibitors. Cancer Res 2018; 78(2): 572-83.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2040] [PMID: 29180474]
[129]
Layne TM, Weinstein SJ, Graubard BI, Ma X, Mayne ST, Albanes D. Serum 25-hydroxyvitamin D, vitamin D binding protein, and prostate cancer risk in black men. Cancer 2017; 123(14): 2698-704.
[http://dx.doi.org/10.1002/cncr.30634] [PMID: 28369777]
[130]
Carlberg C, Seuter S. A genomic perspective on vitamin D signaling. Anticancer Res 2009; 29(9): 3485-93.
[PMID: 19667142]
[131]
Al-Asmari AK, Khan AQ, Al-Asmari SA, Al-Rawi A, Al-Omani S. Alleviation of 5-fluorouracil-induced intestinal mucositis in rats by vitamin E via targeting oxidative stress and inflammatory markers. J Complement Integr Med 2016; 13(4): 377-85.
[http://dx.doi.org/10.1515/jcim-2016-0043] [PMID: 27682716]
[132]
Lance P, Alberts DS, Thompson PA, et al. Colorectal adenomas in participants of the select randomized trial of selenium and vitamin e for prostate cancer prevention. Cancer Prev Res (Phila) 2017; 10(1): 45-54.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0104] [PMID: 27777235]
[133]
Galmés S, Serra F, Palou A, Vitamin E. Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients 2018; 10(12): 1919.
[http://dx.doi.org/10.3390/nu10121919] [PMID: 30518135]
[134]
Verrax J, Calderon PB. The controversial place of vitamin C in cancer treatment. Biochem Pharmacol 2008; 76(12): 1644-52.
[http://dx.doi.org/10.1016/j.bcp.2008.09.024] [PMID: 18938145]
[135]
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 2013; 33: 45-70.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161246] [PMID: 23642198]
[136]
Yang G, Yan Y, Ma Y, Yang Y. Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations. Mol Carcinog 2017; 56(8): 1965-76.
[http://dx.doi.org/10.1002/mc.22654] [PMID: 28370562]
[137]
Carr AC, McCall C. The role of vitamin C in the treatment of pain: new insights. J Transl Med 2017; 15(1): 77.
[http://dx.doi.org/10.1186/s12967-017-1179-7] [PMID: 28410599]